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Abstract—The power consumption of the Internet is becoming
more and more a key issue, and several projects are studying
how to reduce its energy consumption. In this paper, we provide
a first evaluation of the amount of redundant resources (nodes
and links) that can be powered off from a network topology
to reduce power consumption. We first formulate a theoretical
evaluation that exploits random graph theory to estimate the
fraction of devices that can be removed from the topology still
guaranteeing connectivity. Then we compare theoretical results
with simulation results using realistic Internet topologies. Results,
although preliminary, show that large energy savings can be
achieved by accurately turning off nodes and links, e.g., during
off-peak time. We show also that the non-cooperative design
of the current Internet severely impacts the possible energy
saving, suggesting that a cooperative approach can be investigated
further.

I. I NTRODUCTION

The energy consumption is becoming a sensible topic to
which both people and the research community are devoting
increasing attention. The ICT makes no exception, and more
and more activities and projects are studying how to reduce the
energy waste. Current estimates indicate that ICT is responsi-
ble for a significant fraction of the world power consumption,
ranging between 2% and 10% (the latter figure including
also the manufacturing and cooling costs of ICT devices), as
reported in [1]. To reduce energy consumption (and costs),
large data centers and telecommunication networks, as wellas
the Internet, are identified as possible targets for optimization.

To this extent, the study of power-saving network devices
has been introduced over these years, starting from the pio-
neering work of [2]. In [3] we faced the problem of defining
which is the minimum set of routers and links that have to
be used in order to support a given traffic demand under QoS
constraints. Unfortunately, the complexity of the problemdoes
not allow to study cases with large networks.

In this paper, we focus on the Internet-wide backbone
network, and in particular we aim at estimating the world-
wide amount of resources that potentially are redundant in
the current Internet topology. We do not directly tackle the
energy consumption figure, since the actual energy footprint
of devices is hard to know. We rather simply count the number
of resources (nodes and links) that can be possibly powered
down still guaranteeing the service, e.g., during the off-peak
periods when network load is sufficiently light (at night, during
weekends, holidays etc). Our goal is to have a first estimate
of the possible savings that the adoption of smart energy
saving policies may entail. We base our considerations on
purely topological properties of the Internet graph, ignoring
the effect of traffic flowing in the system. We recognize that

this work is somehow preliminary, since a careful evaluation of
the network devices to be switched off cannot ignore the traffic
flowing in the network. Nevertheless our study permits in a
simpler way to estimate the possible gain margins, providing
a first answer to the question of whether it could be worth
to include in the future Internet design the capability of
selectively turning on/off nodes and links still matching the
traffic demand and QoS.

We tackle this problem using both analysis and simulation.
Given the graph that models the Internet router level topology,
nodes belong to two classes: actual source and destination
nodes (called terminals in the remaining of the paper), and
pure transit nodes, i.e., nodes that are neither source nor
destination of information. Clearly, nodes in the first class
cannot be turned off, while transit nodes (and corresponding
links) can be switched off, still guaranteeing that the residual
graph is connected. We consider bothOne-connected graphs,
i.e., graphs in which a single path is guaranteed for each
source destination node pair, andTwo-connected graphs, i.e.,
graphs in which at least two distinct paths exist to guarantee
eventual failure recovery. Given the terminal set, the minimum
set of links and nodes that are part of a one-connected graph
forms a Steiner Tree [4]. Since the minimum Steiner Tree is
known to be a NP-hard problem in general graphs, we exploit
random graph theory to estimate the number of devices that
can be eventually powered off. This allows us to evaluate the
average figure, and to consider very large graphs to see how the
saving figure evolves considering a worldwide topology. Then,
in order to validate analytical results accounting for more
complex (and possibly realistic) graphs, we consider synthetic
Internet topologies and evaluate the number of nodes that can
be switched off by using a heuristic to get the Steiner tree.
Finally, we evaluate the impact of the current Internet design,
in which the global topology is partitioned into subgraphs
(i.e., Autonomous Systems - AS) that implement autonomous
decisions, therefore limiting the possibility of turning off the
devices. We compare results in a possible future scenario in
which ASs cooperate with the aim of reducing energy waste.

The paper is organized as follows. Sec. II describes the main
graph models used to represent Internet. Sec. III presents our
theoretical models. Simulation results are shown in Sec. IV.
Finally conclusions are drawn in Sec. V.

II. I NTERNET TOPOLOGYMODELS

The Internet is a complex, distributed and evolving system:
understanding, measuring and modeling it is a complex task.
In this paper, we are interested in evaluating the amount of
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resources (in terms of nodes and links) that are redundant and
thus can be switched off to reduce the energy consumption1

The Internet topology is typically modeled as an undirected
graphG(v, e), beingv the set of vertices (i.e., nodes) ande
the set of edges (i.e., bidirectional links). Which graph better
models the current Internet graph is still a matter of discussion.
Indeed, knowing the actual topology is almost impossible,
since, on the one hand, ISPs are not willing to share their
actual topology, and, on the other hand, the size of the Internet
is so large that it is impossible to experimentally infer it.
Nonetheless, in the literature several graph models have been
proposed, all based on the idea of random graphs, i.e., a
random process that generates a graph with known properties.
Initially, simple random graphs have been proposed, such as
the Erdös and Rényi [5] model, in which nodes are connected
by links according to a given probability. Unfortunately, such
simple graphs do not match properties that have been actually
observed in the Internet, such as the “small-world” property,
according to which even if degree (i.e. the number of edges
per node) of nodes is rather limited, the diameter of the
graph (i.e. the maximum distance in terms of hops between
nodes) is very small. Moreover, the degree distribution of
nodes P (k) is known to follow a power-law distribution,
i.e., P (k) ∼ k−γ . Therefore, more complex random graph
models have been introduced, among which Barábasi and
Albert (BA) [6] is generally accepted as a good (and simple)
model. Indeed, the BA model both matches the small-world
property, and the power-law distribution of edges experienced
in the actual Internet Topology. The BA model builds a graph
by iteratively adding a new node to the already existing graph.
Each new node hasL edges, that are randomly placed to
connect to already existing nodes. The probability of selecting
a node can follow a “preferential attachment paradigm”, so that
nodes with larger degree (large number of edges) are selected
with higher probability than nodes with smaller degree. The
intuition suggests that nodes that are added earlier to the
topology will have a higher probability to become “hubs”,
while nodes that are added later will have fewer edges, being
selected with smaller probability and by fewer nodes.

In this paper, we consider the BA model to study the
probability that a node can be removed from a graph without
producing a disconnected graph, i.e., the probability thata
node is redundant.

Besides random graph models which are suitable for analyt-
ical evaluation of Internet topology properties, several random
topology generators have been proposed in the literature. They
generate a synthetic topology starting from a (possibly more
complex) random graph model. For example, hierarchical
models that better mimic the actual Internet routing policies
can be modeled, as in Brite tool [7]; in particular, a top-down
approach is adopted: first links between different Autonomous
Systems (AS) are placed according to a simple Erdös and
Rényi model, then routers in the same AS are interconnected

1We assume that the rerouting of traffic on the devices that areleft on
induces a negligible increment of power consumption.

Fig. 1. Example of essential node: nodek is essential for nodex, while
nodek′ can be removed without eventually disconnecting nodex.

using a BA model. Other approaches are based on actual
Internet topology, that are used to generate different size
graphs which show the same properties (edge distribution, path
length, etc.) of the sample topology given as reference. For
example, topologies can be generated from the well known
Hot [9] and Skitter [10] topologies, scaled with the tool
Orbis [11], [12].

III. T HEORETICAL MODELS

We consider a BA graphG(v, e), |v| is the cardinality of
v, i.e., the number of vertices. According to the BA model,
vertices are sequentially added to the graph, so that at step
x, vertexx is added, andL edges connectx to L randomly
selected vertices from the set{1, 2, . . . , x − 1} of vertices
already in the graph. The average vertex degree is therefore
2L. Fig. 1 shows vertexx that randomly selectsL = 2 vertices
k′ andk at timex.

First, we focus on the one-connectivity problem. Observe
that by construction at every stepx, the graph comprising
the first x vertices is connected; in particular, forL > 1
it is L connected (i.e., there exist at leastL disjoint paths
between any two vertices). This implies that when a vertex
k is removed fromG(v, e), only the verticesx > k can be
potentially disconnected from theprincipal component of the
remaining graph, which in turn comprises all verticesy < k.
Furthermore, a vertexx > k having an edge pointing tok
can be disconnected from the principal component for effect
of k removal only if none of the edges ofx is pointing to
any vertexy < k. In this latter case,k is declaredessential
for x. Conversely, a vertexk, which is non essential for every
verticesx > k, is declarednon-essential. As a consequence,
the following theorem holds:

Theorem 3.1: Given a BA graphG(v, e), all the non-
essential vertices can be removed fromG(v, e) without dis-
connecting the graph.

Proof: We sequentially scan all the non essential vertices
in graphG(v, e) and remove them, following a reverse order.
Let G+

k (v, e) be the graph obtained after the removal of all
the non essential nodesx > k. Let G−

k (v, e) be the graph after
the removal of non essential nodek. We claim thatG−

k (v, e)
is connected, provided ifG+

k (v, e) is connected too.
Indeed, observe that the non-essential vertexk can be

removed fromG+
k without disconnecting the remaining graph,

since every other vertexx > k is directly (through an edge) or
indirectly (through a path) connected to a vertexy < k. This
can be easily seen by contradiction. Assume there is a vertex



x > k that is disconnected from the principal component for
effect of the removal ofk, i.e., it has no path connecting it
to verticesy < k. Since the nodex was connected before
k removal, necessarily, there was a path fromx to a vertex
y < k passing throughk. Let x1 be the vertex that precedesk
along the pathx → y. By construction,x1 is a neighbor ofk.
If x1 < k, thenx1 is part of the principal component and we
are in contradiction. Ifx1 > k, sincek is not essential forx1,
x1 must have an edge leading to a vertexy1 < k, and then
we are in contradiction.

At last, by induction over the nodes that are removed, the
assertion immediately follows.
Note that Theorem 3.1 expresses a necessary condition only,
i.e., a vertexk that is essential forx can be removed without
necessarily resulting into the disconnection ofx.

Proposition 3.2: Given a BA graphG(v, e), some essential
vertex inv can be removed without necessarily causingG to
be disconnected.
We denote withPr(k, x) the probability thatk is essential to
x, i.e., vertexx has an edge pointing tok and no other edges
pointing to verticesy < k.

At last, observe that the events i)k is essential forx1 > k
and ii) k is essential forx2 > k are independent. Thus we
can easily compute the probabilityProff (k) that nodek is
non-essential as function ofPr(k, x) according to:

Proff (k) =

n
∏

x=k+1

[1 − Pr(k, x)] (1)

Due to Proposition 3.2,Proff (k) provides alower bound to
the probability thatk can be removed without disconnecting
the remaining graph.

In conclusion, recalling that nodes can be removed only if
they are non-terminal vertices, the average fraction of nodes
of the graph that are jointly non-terminal and non-essential
Foff provides a lower bound to the fraction of nodes that can
be potentially switched-off without disconnecting the graph.
It follows that:

Foff =
∑n

k=1(1 − Pt(k))Proff (k) (2)

beingPt(k) the probability that nodek is a terminal node.
Since we are interested in evaluating the asymptotic proba-

bility to remove vertices, we consider an infinite graph by com-
puting the limit forn → ∞, so that verticesk can be mapped
to a unitary segment space by definingα = k/n ∈ [0, 1].
Then, we can approximateProff as:

Foff ≃
∫ 1

0
(1 − Pt(α))Proff (α)dα (3)

In the following we computeProff considering different
cases. For the sake of simplicity, we assume that the prob-
ability of being a terminal node is the same, so thatPt(k) =
Pt, ∀k. Then

Foff ≃ (1 − Pt)
∫ 1

0
Proff (α)dα. (4)

In the remaining of this Section, we specify howPr(k, x) can
be evaluated both for the Uniform Attachment and Preferential
Attachment models.
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Fig. 2. One-connected graph: probability to remove a vertexin the Uniform
Attachment model (top plot) and Preferential Attachment model (bottom plot)

A. Uniform Attachment model

Let us consider first a BA graph obtained using Uniform
Attachment (UA) paradigm, according to which each new
vertex is connected with equal probability to the vertices
already present in the graph. A new vertexx is connected to a
vertexk < x with probability:Pratt(x, k) = L/(x−1) ∀k ∈
[1, x− 1]. The probabilityPr(x, k) thatk is essential forx is
then given by:

Pr(k, x) = L
1

x − 1

L−1
∏

i=1

(

x − k − i

x − i

)

≃

L
1

x

(

x − k

x

)L−1
(5)

for x ≥ k + L, while it is null for x < k + L.
From Eq.(1) and some approximations reported in [14], we

derive the final expression of the probability:

Proff (k) ≥ αβ (6)

with β = L(1 − α)L−1, andα = k/n.

B. Preferential Attachment model

In the Preferential Attachment (PA) model, new vertices
connect preferentially to highly connected vertices so that the
probability for vertexx to select vertexk is proportional to
vertexk degree. BeingKk(x) the degree distribution of vertex
k at time vertexx, then it holds (see [8] for details):

Kk(x) ≃ L

√

x

k



we can derive the probability that vertexx selects vertexk as:

Pratt(x, k) = L
Kk(x)

∑(x−1)
i=1 Ki(x)

for x ≥ k + L, while it is null for x < k + L.
Therefore, the probability that the vertexk is essential for

a vertexx can be approximated by:

Pr(k, x) ≃ Pratt(x, k)

[

∑x−1
i=k+1 Ki(x)

∑x−1
i=1 Ki(x)

]L−1

(7)

After some approximations, from Eq.(1) and Eq.(7) we derive
the final expression of the average probability of removing
vertexk:

Proff (k) ≥ exp

[

(

1−
√

α
L

)L−1 (

1 − 1√
α

)

]

C. Two-connected graph

The previous arguments can be generalized to evaluate
the average fraction of vertices that can be removed still
guaranteeing that the remaining graph is two-connected. In
this case a vertexk is declared essential for a vertexx if the
x has less than two edges pointing to verticesy < k, and
all the non-essential vertices can be removed maintaining the
two-connected properties.

1) Uniform Attachment model: The probabilityPr(x, k)
that k is essential forx is similar to (5), with a further term
due to the presence of the second path:

Pr(k, x) = L 1
x

(

x−k
x

)L−1
− 2

(

L
2

)

1
x

k
x

(

x−k
x

)L−2 (8)

The probability to switch-off vertexk becomes:

Proff (k) ≥ αβ (9)

with β = (1 − α)L−1
[

L + L!α
(L−2)!(1−α)

]

.
2) Preferential Attachment model: We follow the same pro-

cedure of Sec.III-B. The probability that vertexk is essential
for vertexx is:

Pr(k, x) ≃ L Kk(x)
P

x
i=1 Ki(x)

[P

x
i=k+1 Ki(x)

P

x
i=1 Ki(x)

]L−1

−

L!
(L−2)!

Kk(x)
P

x
i=1 Ki(x)

P

k
i=1 Ki(x)

P

x
i=1 Ki(x)

[ P

x
i=k+1 Ki(x)

P

x
i=1 Ki(x)

]L−2
(10)

From Eq.(1) and Eq.(10), we obtain the final expression of
the average probability of removing a vertex:

Proff (k)≥exp

»

“

1−
√

α

L

”L−1“

1− 1
√

α

”“

1+ αL!
L(1−

√

α)(L−2)!

”

–

(11)

D. Results

Top plot of Fig. 2 reports, for different values ofL, the
probability of removing vertexk = nα in a BA graph gener-
ated according to the Uniform Attachment model. Considering
the caseL = 1, the figure shows that a vertexk = nα can be
removed with a probability proportional to the time at which
it joined the graph. Indeed, since only one edge (L = 1)
is used, a vertexk that is selected by any vertexx > k
is clearly an essential vertex. Therefore, the probabilityof
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Fig. 3. Uniform Attachment model:Foff in the One-connected graph (left)
and Two-connected graph (right).
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Fig. 4. Preferential Attachment model:Foff in the One-connected graph
(left) and Two-connected graph (right).

removing a vertex is proportional to the number of times other
vertices select it, i.e., to the time the vertex is added to the
graph. Eq. (6) becomes then simplyProff (k) ≥ k/n. When
L increases, the probability of removing vertexk becomes
smaller for vertices that join the graph early on (smallα),
while it increases for vertices that are added later. This isdue
to the fact that early vertices become “hubs” that guarantee
connectivity for larger number of vertices (therefore allowing
to remove late vertices with higher probability). Considering
the Preferential Attachment case (bottom plot of Fig. 2), the
bias induced by the preferential selection of hubs is even more
evident, so that also in the caseL = 1 early vertices have
higher probability of being essential, while late verticescan
be removed with higher probability.

Fig. 3 shows the average probability of removing a ver-
tex in the Uniform Attachment model. Left plot shows
UA model considering a one-connected graph, while two-
connected graph results are reported in the right plot. Different
values ofPt are reported, specificallyPt ∈ {0.5, 0.6, 0.7}.
Fig. 4 shows the average probability of removing a vertex
in the Preferential Attachment model: the one-connected (left
plot) and two-connected cases (right plot) are reported as well.
Results show that the PA model allows to easily remove a lot
of vertices, so that forL ≥ 4 practically all non-terminal nodes
can be removed still guaranteeing one- and two-connected
properties. Since estimates of average node degree in the actual
Internet show thatL ∈ [2, 3] [8], results show that the number
of redundant nodes that can be removed can be quite large. For



example, whenL = 3 andPt = 0.6, about38% of nodes can
be removed, i.e.,95% of non-terminal nodes are unnecessary.
Even considering the Uniform Attachment model, a large
portion of the nodes can be removed still guaranteeing the
connectivity constraints.

IV. SIMULATION RESULTS

In this section, we consider more complex and realistic
graphs and evaluate the actual minimum number of resources
that guarantee any terminal node to connect to any other ter-
minal node. We consider both flat (one-level) and hierarchical
(two-levels) Internet topologies.

Finding the minimum set of nodes and links in a graph that
is strictly necessary to guarantee the connectivity constraint
among the terminals is equivalent to compute the Steiner Tree.
This problem is known to be NP-hard, and in the last years
different algorithms have been proposed that give approxi-
mated solutions. We choose the Selective Closest Terminal
First algorithm (SCTF) [13], because the accuracy in the
solution and the computational cost can be tuned as input
parameter. In particular, the SCTF algorithm builds the Steiner
Tree by selecting the minimum shortest path between the set
of terminalsT and a set of nodes in the Steiner tree setS. At
stepi, one terminal nodeti ∈ T is selected, andk minimum-
cost paths fromti to sj ∈ S, j = 1, . . . , k are evaluated.
Then, the minimum-cost path is selected, whose destinationis
s∗j . Vertices and links fromti to s∗j are added toS, andti is
removed fromT . The algorithm ends whenT is empty.

A. One-level Topologies

The Hot and Skitter topologies are well-known topologies
often used as benchmark dataset in the Internet design field.
To evaluate the impact of the number of nodes, we artificially
“scale” both the Hot and Skitter samples using the Orbis
tool, which allows to scale a graph, while keeping the same
macroscopic features. Finally, given a topology, terminalnodes
must be selected. For the sake of simplicity, we select terminal
nodes according to a constant probability, i.e.,Pt is constant.

Fig. 5 shows the percentageηN of nodes that can be re-
moved considering different network sizes and different values
of Pt. The Hot and Skitter topologies are considered in the
top and bottom plots respectively2. Values are averaged over
5 different topologies, and maximum and minimum values are
reported as well. The upper bound represents the percentage
of non-terminal nodes. Notice that in all cases, the percentage
of non-terminal nodes that are part of the Steiner tree is very
limited, so that more than 80% of non-terminal nodes can be
easily removed. In the Hot case, it is interesting to observethat
the results presented are similar to the ones obtained by theBA
graph with Preferential Attachment model (Fig. 4) considering

2Being |e| = L|v| the number of edges in the initial graphG(v, e), the
percentage of linksηL that are not part of the final solution in any Steiner
tree comprising|S| nodes, are

ηL =
|e| − (|S| − 1)

|e|
≈ 1 −

|S|

L|v|
= 1 −

1 − ηN

L
(12)
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Fig. 5. Percentage of nodes that can be removed versus the network size.
Hot (top) and Skitter (bottom) topologies.

the corresponding degree (L = 2.2) for this topology. Also,
ηN increases slightly with the number of nodes, hinting that
the border effects marginally impact the solution. Considering
the Skitter topology (bottom plot), the higher average node
degree (L = 5.8) guarantees to remove more non-terminal
nodes, as predicted by the analytical results. This confirms
that the analytical results can accurately predict the number
of useless nodes in actual Internet topologies.

B. Two-level Topologies

In this Section we consider the two-level topologies in
which Autonomous Systems are interconnected by a Tier-1
topology. The Brite tool is used, with the node degree param-
eter equal to 2 for interconnecting both intra-AS and inter-AS
nodes. Moreover, the ASs are randomly interconnected usinga
Erdös and Rényi model, while the BA model with Preferential
Attachment is used for intra-AS topology generation.

Beside considering more complex graphs, our aim is to
compare the possible savings between i) thecurrent Internet,
where the decision in turning off devices is operated by
each AS independently from the others, and ii) acooperative
Internet, where the ASs cooperate to minimize the global
power consumption. In the first case, inter-AS devices (peering
routers) cannot be removed (even if those are non-terminal
nodes by definition). In the latter case this is possible, e.g.,
in any given ASs, one out of two peering routers can be
potentially removed.

In order to test the effectiveness of cooperation, we use
networks with 8192 nodes in total, while the number of
Autonomous SystemsNAS varies between4096 and16, e.g.,
a scenario with many small ASs, to a scenario with few large



ASs. Terminal nodes are then uniformly selected from intra-
AS nodes only, and the SCTF algorithm is then run to obtain
the Steiner tree in each AS, so that the final topology results
as the union ofNAS Steiner trees. Inter-AS nodes and links
are always present in the final graph.

Fig. 6 (top plot) shows the percentage of nodesηN (NAS)
that are removed versus the number of AS in the network,
NAS . The plot clearly shows that the non-cooperative ap-
proach imposed by the hard partitioning of the graph into
independent ASs results in a large inefficiency of the final
solution. The possible saving, indeed, decreases rapidly for
large number of ASs, since a large number of devices has
to be powered on to guarantee the inter-AS connectivity. On
the contrary, for topologies with small number of ASs, the
impact of the partitioning is marginal, suggesting that it is
worth investigating a cooperative and global approach.

To dig further into the impact of cooperativeness, we
compare results obtained considering the previous cases with
the global Steiner tree considering the topology not partitioned
into several ASs, i.e., a scenario in which a global algorithm
is envisioned to achieve resource saving. Let

δN(NAS) = ηN (NAS) − ηN (1)

be the efficiency loss in terms of nodes respectively when con-
sidering a network that is partitioned intok non-cooperative
ASs versus a single (k = 1) cooperative network. Fig. 6
(bottom plot) confirms the previous intuition, showing thata
large waste is achieved if the number of ASs increases (and
therefore the number of nodes in each AS decreases). Indeed,
in a cooperative Internet large savings are possible forNAS

up to 256 ASs, with the major loss due to devices that cannot
be removed from the graph, i.e., inter-AS devices.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we faced the study of the amount of resources
that can be eventually removed from the Internet topology
still guaranteeing connectivity among terminals. The aim is
to study the eventual amount of energy saving obtained once
nodes and links in the Internet can be selectively turned-
off. Results, obtained with both analytical and simulation
methodologies, show that there is potential room to investigate
further whether in the current and future Internet it is possible
to reduce the power consumption by turning off devices that
are not necessary, e.g., during off-peak periods. Both the small-
world and power-low distribution of nodes degree that are
observed in the actual Internet help to keep the topology
connected, allowing to remove up to 80% of transport nodes.

Finally, considering the current rigid partition of the Internet
topology into several and non-cooperative Autonomous Sys-
tems, we show that much higher savings are achievable in
a possible future Internet, in which ASs form a cooperative
network globally targeting energy saving.

Our work is somehow preliminary, since a careful evaluation
of the network devices that can be switched off cannot ignore
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the traffic flowing in the network, the protocol and device sup-
port for remote power management, etc. Nonetheless, results
are encouraging for future investigation in this field.
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