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Abstract

We classify all connected subgroups of SO(2, n) that act irreducibly on R2,n. Apart
from SO0(2, n) itself these are U(1, n/2), SU(1, n/2), if n even, S1 · SO(1, n/2) if n even
and n ≥ 2, and SO0(1, 2) for n = 3. Our proof is based on the Karpelevich Theorem and
uses the classification of totally geodesic submanifolds of complex hyperbolic space and of
the Lie ball. As an application we obtain a list of possible irreducible holonomy groups of
Lorentzian conformal structures, namely SO0(2, n), SU(1, n), and SO0(1, 2).

Keywords: Irreducible representations of Lie groups; Lie ball; complex hyperbolic space;
totally geodesic submanifolds of symmetric spaces; holonomy groups, conformal holonomy.

1 Background, result, and applications

One of the results at the origins of modern differential geometry is Marcel Berger’s classification
of irreducible connected holonomy groups of complete semi-Riemannian manifolds, [Ber55].
The holonomy group at a point of a semi-Riemannian manifold is the group of all parallel
transports (w.r.t. the Levi-Civita connection of the metric) along loops starting at this point.
It is represented on the tangent space as a subgroup of SO(r, s) if (r, s) is the signature of
the metric. The symmetries of the curvature of the Levi-Civita connection impose algebraic
constraints on this representation that were used by Berger in order to determine all possible
holonomy groups which act irreducibly. The most striking feature of this Berger list is that it is
so short. This is more surprising in some signatures and more natural in others. For example, in
signature (1, n−1) the only possible holonomy group of a Lorentzian manifold acting irreducibly
is SO0(1, n− 1), the connected component of the unit in SO(1, n− 1). This is due to the fact
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that there are no proper connected subgroups of SO0(1, n − 1) acting irreducibly on R1,n−1

[DSO01]. In contrary to that, for positive definite metrics, it is more surprising that only so
few groups occur as holonomy groups of Riemannian manifolds, taking into account that any
representation of a compact group, in particular an irreducible one, is orthogonal with respect
to a positive definite scalar product. For a recent proof of Berger’s theorem for Riemannian
manifolds see [Olm05].

In general, for a given orthogonal group SO(r, s), there is no classification of connected
subgroups of SO(r, s) groups that act irreducibly. In this paper we consider the case of signature
(2, n). The result is a classification of connected subgroups of SO(2, n) that act irreducibly on
R2,n:

Theorem 1. Let G ⊂ SO(2, n) be a connected Lie group that acts irreducibly on R2,n. Then
G is conjugated to one of the following,

1. for arbitrary n ≥ 1: SO0(2, n),

2. for n = 2p even: U(1, p), SU(1, p), or S1 · SO0(1, p) if p > 1,

3. for n = 3: SO0(1, 2) ⊂ SO(2, 3).

Our interest in signature (2, n) is twofold. One aspect is the more general interest in the
Berger list. Our result shows that there is only one group, namely S1 · SO(1, n), that does not
appear in the Berger list, i.e. that is not a holonomy group for a metric of signature (2, n). For
this group one can show that the algebraic constraints imposed by the curvature symmetries
are not satisfied.

More important is the relation to conformal Lorentzian structures. To a Lorentzian con-
formal structure in dimension n, which is defined as an equivalence class of Lorentzian metrics
modulo multiplication by a scaling function, one may assign a conformally invariant Cartan con-
nection, that depends only on the conformal class but not on a representative. This conformal
Cartan connectional also defines a holonomy group that is contained in SO(2, n), the so-called
conformal holonomy. For this group and its representation the algebraic restrictions are much
more difficult to handle than the Berger criteria in case of metric holonomy algebras. Hence, it
was natural to ask first: What are possible connected subgroups of SO(2, n) that act irreducibly
on R2,n? Our answer to this question gives a list of possible candidates for special conformal
Lorentzian structures, a name which refers to — in analogy to special Riemannian structures
— Lorentzian conformal structures with irreducibly acting conformal holonomy group. For
indecomposable, non-irreducible Lorentzian conformal structures we refer the reader to [Lei07].

Now, two of the groups in Theorem 1 are known to be Lorentzian conformal holonomy
groups, SO0(2, n) itself and SU(1, n/2). The first is the generic Lorentzian conformal holonomy,
the second is that of a Fefferman space (see for example [Bau07]). In [Leit08] it is proven that
if a connected conformal holonomy group is contained U(1, n/2) then it is already contained in
SU(1, n/2). Hence, S1 ·SO0(1, n/2) and U(1, n) cannot occur as connected conformal holonomy
group of a Lorentzian conformal structure, because they are not contained in SU(1, n/2). We
obtain the following consequence.

Corollary 1. Let G ⊂ SO(2, n) be the connected conformal holonomy group of a Lorentzian
conformal structure. If G acts irreducibly on R2,n, then

G = SO0(2, n), or G = SU(1, n/2) if n is even, or G = SO0(1, 2) if n = 3.
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Unfortunately, we cannot yet exclude the exceptional case of SO0(1, 2) ⊂ SO(2, 3) as a
possible conformal holonomy of a 3-dimensional Lorentzian manifold. We only know that
SO(1, 2) does not define a conformal Cartan reduction in the sense of [Alt08, Section 3.3]. Such
a conformal Cartan reduction of SO(p+1, q+1) to a group G ⊂ SO(p+1, q+1) exists if and only
if G acts transitively on the Möbius-sphere Sp,q = SO(p+ 1, q+ 1)/P , where P is the parabolic
subgroup defined as the stabiliser of a light-like line in Rp+1,q+1. Examples of conformal Cartan
reductions are given by SU(p+ 1, q + 1) ⊂ SO(2p+ 2, 2q + 2), see [Bau07] or [CG06], the non-
compact G2(2) ⊂ SO(3, 4) in [Nur02, Nur08], and Spin(3, 4) ⊂ SO(4, 4) in [Bry06], and they are
linked to so-called Fefferman constructions. Now, the action of SO0(1, 2) on S1,2 = SO(2, 3)/P
is not transitive. In fact, transitivity would imply that so(2, 3) = so(1, 2) + p which is a
contradiction to so(1, 2)∩ p 6= {0} and dim p = 7. Hence, SO0(1, 2) ⊂ SO(2, 3) does not define
a conformal Cartan reduction, but we do not know if this already excludes it as an irreducible
conformal holonomy. To clarify this question lies beyond the scope of this paper and will be
subject to further studies.

Our proof of Theorem 1 is based on the Theorem of Karpelevich and Mostow.

Theorem 2. (Karpelevich [Kar53], Mostow [Mos55], also [DSO07]) Let M = Iso(M)/K
be a Riemannian symmetric space of non-compact type. Then any connected and semisimple
subgroup G of the full isometry group Iso(M) has a totally geodesic orbit G · p ⊂M .

We will apply this theorem to a connected subgroup G of SO(2, n) that acts irreducibly
on R2,n and to the Riemannian symmetric spaces that are related to SO(2, n): the complex
hyperbolic space CHn = SU(1, n)/U(n) and the Grassmannian of negative definite planes in
R2,n given as SO0(2, n)SO(2) · SO(n) and as SO(2, n)/SO(2) · SO(n) if one considers oriented
negative planes. The latter has two connected components and can be realised in CPn+1 as the
submanifold of negative definite lines in C2,n. Its connected component is called Lie ball. In
applying Karpelevich’s Theorem we have to deal with two difficulties that are related to each
other: First, we cannot assume that G is semisimple, and secondly, if T is a totally geodesic
orbit with isometry group H = Iso(T ) our group G in question can be the product of H with
the group I(T ) that is defined as

I(T ) := {A ∈ G | A|T = IdT }.

I(T ) is a normal subgroup in Iso(T ). We know that G is reductive but it may be that its
semisimple part does not act irreducibly. On the other hand, it might happen that T is the
orbit of a group H that does not act irreducibly but that I(T ) ·H acts irreducibly. Overcoming
these difficulties, our proof will consist of three main steps:

1. Show that if G ⊂ SO0(2, n) acts irreducibly, then it is simple or contained in U(1, n).

2. Classify connected subgroups of U(1, n) acting irreducibly on R2,n using:

(a) G is reductive with possible centre S1,

(b) By Karpelevich’s Theorem applied to CHn, the orbits T of the semisimple part are
isometric to either CHk or to real hyperbolic spaces RHk for k ≤ n.

(c) I(T ) can be calculated.
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3. If G is not in U(1, n), G is simple and we apply Karpelevich’s Theorem to the Lie ball
SO0(2, n)/SO(2) · SO(n). Then we use the classification of totally geodesic orbits in the
complex quadric SO(n+ 2)/SO(2) · SO(n) by [CN77] and [Kle08], transfer it by duality
to the Lie ball and obtain G as isometry group of these orbits. As G is simple, I(T ) can
be ignored.

In the last section we will describe explicitly the inclusions of the totally geodesic submanifolds
of the Lie ball.

2 Algebraic preliminaries

2.1 Irreducible representations of real Lie algebras

In this section we will review some basic results about real representations of real Lie algebras.
To keep the paper self contained we will also explain and prove facts that are well known to
the experts.

Let g be a real Lie algebra and E a real representation. We say that E is of real type if both
E and EC := E ⊗ C are irreducible. If only E is irreducible we say that E is not of real type.
In the latter case there is a splitting of EC as EC = V ⊕ V where V is an irreducible complex
representation and V the conjugate representation w.r.t. the real form E ⊂ EC. Indeed, if V is
a complex invariant subspace of EC, the complex subspaces V + V and V ∩ V are invariant as
well. On the other hand, they are equal to their complex conjugate, and thus, complexifications
of real invariant subspaces. As E is irreducible, we obtain that V ⊕ V = EC. On the other
hand, it is (VR)C = V ⊕V and multiplication with i defines an invariant complex structure J on
VR and by complexification on (VR)C = EC. Hence, EC splits into the invariant eigen spaces of
J given by V and V , respectively. In particular, E ' VR ' V R as real representations inducing
an invariant complex structure J on E.

In the other case, where E is of real type, W := EC considered as a real vector space,
denoted by WR, is reducible, with invariant real form E. This is equivalent to W being self-
conjugate with a conjugation that squares to the identity. In case of a representation of real
type, the invariant real form E then is given as the +1 eigen-space of this conjugation.

After this change of the viewpoint, it is natural to say that a complex irreducible represen-
tation is of real type if it is self-conjugate with a conjugation squaring to one. Otherwise it is
called of non-real type. Examples of representations of real type are complexifications of the
standard representations of so(p, q) on Rp,q. Examples of representations of non-real type are
representations of u(p, q) and su(p, q) on Cp,q and R2p,2q respectively.

For a complex irreducible representation V of g there is a further distinction beyond being
of real type or not. If V is not self-conjugate, then V is called of complex type. If V is self-
conjugate with respect to a conjugation C, then C2 is a C-linear invariant automorphism of V .
By the Schur lemma, it is a multiple of the identity, say C = λ·Id, with λ ∈ R because C is a
conjugation. By scaling C we can assume that λ2 = ±1. In one case, V was of real type, in
the case where C2 = −Id one says that V is of quaternionic type, because C defines another
complex structure that anti-commutes with the multiplication with i. To summarise these
standard facts, a complex irreducible representation is either of real, complex or quaternionic
type. If it is not of real type, then VR is irreducible, if it is of real type, it is the complexification
of an irreducible real representation. These explanations imply the following standard fact:
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Lemma 1. g ⊂ so(p, q) acting irreducibly is not of real type if and only if p and q are even and
g ⊂ u(p/2, q/2).

The following lemma is also known. We prove it here for the sake of being self-contained.

Lemma 2. Let g be a real Lie algebra and V a complex irreducible representation of quater-
nionic type and of complex dimension 2m.

1. If V is symplectic, then g ⊂ sp(p, q) ⊂ u(2p, 2q) with p+ q = m.

2. If V is orthogonal, then g ⊂ so∗(2m) ⊂ u(m,m).

Proof. Let J be the anti-linear invariant automorphism of V with J2 = −1, and let V be of
complex dimension 2m. Assume that ω is an invariant symplectic form on V . First we show
that we can assume the following relation between ω and J :

ω(Jx, Jy) = ω(x, y). (1)

In fact, ω̂ := ω(J., J.) gives another invariant symplectic form on V . By the Schur lemma, they
are a complex multiple of each other, i.e. ω(J., J.) = λω for a λ ∈ C∗, which implies that

ω(J., J.) = λ ω(J2., J2.) = λλω(J., J.),

and thus λ = eiθ ∈ S1. Rescaling ω by e−i
θ
2 enables us to assume equation (1). Now Equation

(1) implies that ω(J., .) = −ω(., J.) yielding an invariant hermitian form 〈., .〉 on V via 〈x, y〉 :=
ω(x, Jy). This is indeed hermitian,

〈y, x〉 = ω(y, Jx) = −ω(Jy, x) = ω(x, Jy) = 〈x, y〉

and compatible with J ,

〈Jx, Jy〉 = −ω(Jx, y) = ω(y, Jx) = −ω(Jy, x) = ω(x, Jy) = 〈x, y〉.

This shows that g ⊂ u(2p, 2q) ∩ sp(m,C) = sp(p, q), with p+ q = m.
Now assume that σ is an invariant symmetric bilinear form on V . By the same argument

as in the symplectic case we get that

σ(Jx, Jy) = σ(x, y) and σ(Jx, y) = −σ(x, Jy).

A hermitian form is now defined by 〈x, y〉 := iσ(x, Jy) that is compatible with J ,

〈Jx, Jy〉 = −iσ(Jx, y) = iσ(x, Jy) = −〈x, y〉,

showing that 〈., .〉 has neutral signature (m,m) and that an orthonormal basis of σ is a light-like
basis of 〈., .〉. A calculation in a basis then shows that g ⊂ u(V, 〈., .〉) ∩ so(2m,C) = so∗(2m),
which is defined as follows

so∗(2m) :=
{(

A B

−Bt A
t

)
| A ∈ so(m,C), B = B

t
}

(see [Hel78, p. 446]).
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We conclude this section by verifying that S1 · SO0(1, n) ⊂ U(1, n) ⊂ SO(2, 2n) acts irre-
ducibly.

Proposition 1. Let g ⊂ so(p, q) act irreducibly on Rp,q. This representation is of real type if
and only if g̃ := ı · R⊕ g acts irreducibly on Cp+q as real representation.

Proof. If the representation of g on Rp,q is of real type then its complexification is still irre-
ducible, and so is the representation of g̃ on Cp+q. But by definition, there is no conjugation
that is invariant under g̃, and thus the representation of g̃ on Cp+q is of complex type, which
means that it is still irreducible as a real representation.

On the other hand assume that Cp+q is irreducible as real and therefore as a complex
representation of g̃. Assume furthermore that the representation of g on Rp,q is not of real
type. By the remarks in the previous section, this is equivalent to the existence of a g-invariant
complex structure J on Rp,q and to the existence of a complex g-invariant subspace V ⊂ Cp+q.
Extending J complex linear gives an invariant complex structure on Cp+q. Note that J 6= ı·Id,
because otherwise g̃ could no longer act irreducibly on Cp,q. Hence, I := ı · J is g̃-invariant,
satisfies I2 = Id and is not a multiple of the identity. Hence, it has non-trivial invariant eigen
spaces to the eigen values ±1. But this again contradicts to the irreducibility of Cp,q under g̃.
Therefore, Rp,q must be of real type for g.

This gives the following conclusion in the case p = 1.

Corollary 2. For n > 1, S1 · SO0(1, n) is an irreducible subgroup of U(1, n) ⊂ SO0(2, n), is
not contained in SU(1, n), and has no further irreducible subgroups.

Proof. From the previous section we know that irreducible representations of non-real type are
unitary, but this is not possible for g ⊂ so(1, n). In fact, there is no proper irreducibly acting
subalgebra of so(1, n), see [DSO01]. But so(1, n) is of real type, and the result follows from the
proposition.

For the minimality assume that g ⊂ ıR⊕ so(1, n) acts irreducibly. But then the projection
of g onto so(1, n) acts irreducibly and thus has to be equal to so(1, n). But this implies
so(1, n) = [g, g] ⊂ g ⊂ ıR · so(1, n). Hence, g = ıR · so(1, n). That S1 × SO(1, n) is not
contained in SU(1, n) is obvious.

2.2 Reduction to simple Lie algebras and consequences

In this section we show that an irreducible subalgebra of so(2, n) is either contained in u(1, n/2)
or simple. Based on the distinction of real representation into those of real and complex type
and on the description of the center in [DLN05] we proved the following:

Proposition 2. Let G ⊂ SO0(p, q) a connected Lie subgroup of SO0(p, q) which acts irreducibly.
If G is not semisimple, then p and q are even and G is a subgroup of U(p/2, q/2) with centre
U(1). In particular, if G ⊂ SO(2, n), then G ⊂ U(1, n/2) or semi-simple.

Here we will strengthen this result for the case G ⊂ SO(2, n) by replacing “semi-simple” by
“simple”. This will be based on the following general fact on complex irreducible representation
of semi-simple complex Lie algebras (for a reference, see for example [Oni04, p. 11]): If g =
g1 ⊕ g2 is a semi-simple Lie algebra decomposing into non-trivial ideals g1 and g2, then V is
a complex irreducible representation of g if and only if V = V1 ⊗ V2 where Vi are irreducible
representations of gi.
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Lemma 3. Let g ⊕ h be semi-simple and W = U ⊗ V an irreducible complex representation.
Then W is self-dual if and only if both, U and V are self-dual. The invariant isomorphisms
are related by ψ = ψ1 ⊗ ψ2.

Proof. The ‘if’-direction is obvious, ψ = ψ1 ⊗ ψ2 defines the required invariant isomorphism.
For the other direction we consider the identification τ : U ' U ⊗ v0 for a fixed v0 ∈ V . τ is
not only an isomorphism of vector spaces but also of representations of g. Let ψ : W 'W ∗ be
the the isomorphism yielding the self-duality of W . This implies that there are u0, û0 ∈ U and
v1 ∈ V such that

[ψ(u0 ⊗ v0)] (û0 ⊗ v1) 6= 0.

Otherwise, u0 ⊗ v0 would be in the kernel of ψ. Hence by defining

[ψ1(u)] (û) := [ψ(u⊗ v0)] (û⊗ v1)

we obtain a g-invariant homomorphism ψ1 : U ' U∗ which is non trivial. By the Schur lemma,
ψ1 is an isomorphism. Obviously, for V one can proceed in the same way. The Schur-lemma
also gives the uniqueness of the invariant structures and the relation between them.

Lemma 4. Let g⊕h be semi-simple and W = U ⊗V an irreducible complex self-dual represen-
tation. Then W is self-conjugate if and only if both, U and V are self-conjugate. The invariant
isomorphisms are related by ψ = ψ1 ⊗ ψ2.

Proof. As W is self-dual, both U and V are self dual. Hence, U ' U
∗

and V ' V
∗
. If

ψ : W ' W ∗ and C : W ' W , analogously as in the proof of the previous lemma, one defines
φ1 : U → U

∗
via

[φ1(u)] (û) := [ψ(u⊗ v0)] (C(û⊗ v1)).

Again, by the Schur lemma, this is an isomorphism, yielding an isomorphism ψ1 : U ' U . All
invariant structures are uniquely defined.

Theorem 3. Let g ⊂ so(2, n) be an irreducibly acting Lie algebra. Then g ⊂ u(1, n/2), n = 2
and g = so(2, 2), or g is simple.

Proof. By Proposition 2 we can suppose that g is semisimple and that the representation of g
on R2,n is of real type. Assume that g = g1 ⊕ g2 is not simple. Then its complexification is
semisimple and not simple, and thus, the complexified representation Cn+2 of R2,n is a tensor
product, Cn+2 = V1⊗V2 of irreducible representations of g1 and g2. As Cn+2 is of real type, the
second lemma implies that V1 and V2 are either both of real type or both of quaternionic type.
Since g ⊂ so(n + 2,C), by the first lemma both are self-dual, defined by either two complex
linear symmetric or symplectic forms.

Assume first that both, V1 and V2 are of real type, i.e. Vi = EC
i where Ei are irreducible

real representations of gi. If gi ⊂ so(Vi), also both Ei are orthogonal, i.e. g1 ⊂ so(p, q) and
g2 ⊂ so(r, s) with 2 = ps + qr. W.l.o.g. this yields two cases: The first is g1 = so(2) and
g2 ⊂ so(1, n/2) acting on R2 ⊗ R1,n2 , or g1 = g2 = so(1, 1). But both cases contradict to the
assumption that g was semisimple.

Now we consider the case where the Vi’s and thus both Ei’s are symplectic representations.
In this case the defining scalar product on R2,n has neutral signature, i.e. g ⊂ so(2, 2), and gi ⊂
sp(1,R) = sl(2,R) acting irreducible. Hence, gi either one-dimensional and therefore Abelian,
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two-dimensional, and thus solvable, or equal to sl(2,R). The first two possibilities are excluded
by the semisimplicity assumption. We obtain that g is equal to sl(2,R)⊕ sl(2,R) = so(2, 2).

Now we have to deal with the case where both representations, V1 and V2 are of quaternionic
type. As g ⊂ so(n+ 2,C), they are either both orthogonal or both symplectic.

Using Lemma 2 we can conclude the proof of the theorem: First consider the case that
g = g1 ⊕ g2 with gi ⊂ sp(pi, qi) ⊂ u(2pi, 2qi). The tensor product of the hermitian forms on
Vi defines a hermitian form of signature (4(p1q2 + p2q1), 4(p1p2 + q1q2)) on V = EC. Since
V is an irreducible representation of g, the space of hermitian forms on V is one-dimensional.
Hence, the defined hermitian form is a multiple of the hermitian form obtained by extending
the signature (2, n) scalar product on E to V . But 2 6= 4(p1q2 + p2q1) which excludes this case.

For the case gi ⊂ so∗(2mi) ⊂ u(mi,mi) we obtain that g ⊂ u(2m1m2, 2m1m2), which
implies mi = 1, Vi = C2 and gi = so∗(2) = so(2) and g is no longer semisimple.

We can now apply Karpelevich’s Theorem 2 to what we have obtained so far.

Theorem 4. Let G & SO0(2, n) be a connected irreducibly acting subgroup. Then G ⊂ U(1, n)
or G is simple and equal to the effectively acting isometry group of a totally geodesic submanifold
in the non-compact symmetric space SO0(2, n)/SO(2)× SO(n).

Proof. Let G ⊂ SO0(2, n) but G 6⊂ U(1, n). From the previous section we know that G is
simple. By Karpelvich’s Theorem 2 it follows that G has a totally geodesic orbit T in the
non-compact symmetric space Ln := SO0(2, n)/SO(2)× SO(n). The subgroup

I(T ) := {A ∈ G | Ap = p for all p ∈ T }

is a normal subgroup in G. As G is simple, I(T ) is trivial and G acts effectively on T . Hence,
T = G/K ⊂ Ln is a non-compact symmetric space with K ⊂ G maximally compact.

In the next section we will determine all irreducibly acting groups G ⊂ U(1, n) by applying
Karpelevich’s theorem to the complex hyperbolic space. In the last section we will then use a
classification of totally geodesic submanifolds in Qn = SO(n + 2)/SO(2) × SO(n) by [CN77]
and [Kle08] and the duality of symmetric spaces in order to determine the remaining G’s.

3 Irreducible subgroups of U(1, n) and complex hyperbolic
space

Using Karpelevich’s Theorem in this section we will proof the following statement.

Theorem 5. Let G ⊂ U(1, n) ⊂ SO(2, 2n) be a connected subgroup that acts irreducibly on
R2,2n. Then SU(1, n) ⊂ G or G = S1 · SO0(1, n).

To this end we consider the complex vector space Cn+1 =: C1,n endowed with the Hermitian
form : Q = −|z0|2 + |z1|2 + |z2|2 + · · · + |zn|2. U(1, n) ⊂ GL(n + 1,C) is the subgroup that
preserves Q. Let N := {p ∈ Cn,1 : Q(p) < 0} be the set of negative points. Notice that N
is a cone preserved by the U(1, n)-action. CHn is the projectivization of N . Thus, by taking
z0 = 1 we see that CHn is identified with the unit ball of Cn,

CHn ∼= {Z ∈ Cn : |Z|2 < 1}.
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It is standard to see that the Hermitian form Q induces on CHn a U(1, n)-invariant Riemannian
metric of constant holomorphic curvature. Indeed, we get CHn ∼= SU(1, n)/U(n) as symmetric
space of rank one. Notice that the U(1, n)-action on CHn is not effective since the matrices
eiθId ∈ U(1, n) leaves invariant any complex line. Recall also that the presentation CHn ∼=
SU(1, n)/U(n) as symmetric quotient is unique. Namely, if CHn ∼= G/K where G is semisimple
and K ⊂ G maximal compact then G = SU(1, n) and K = U(n). The following fact about
totally geodesic submanifolds of CHn can be found in [Gol99, pp. 74], for example.

Proposition 3. Let T ⊂ CHn be a complete totally geodesic submanifold. Then T is either
a totally real submanifold or a complex submanifold. In the totally real case T is isometric
to real hyperbolic space, otherwise T is biholomorphic and isometric to a lower dimensional
complex hyperbolic space. In particular, there exists a real vector subspace V ⊂ Cn,1 such that
T = V

⋂
CHn.

Now we are ready to deduce Theorem 5 from Karpelevich’s Theorem.

Proof of Theorem 5. Let H ⊂ U(1, n) be connected and acting irreducibly on R2,2n then H is
reductive, i.e. H = Z ·S where Z is the centre and S semisimple. From Proposition 2 we know
that the centre Z is trivial or equal to S1. Hence, the semisimple part S cannot be trivial.
Now, according to Karpelevich’s Theorem S has a totally geodesic orbit T of CHn. If T is
a complex submanifold then Proposition 3 implies that S must be transitive on CHn since
otherwise the complex subspace V associated to T is invariant by S and Z = S1. Thus H can
not be irreducible. So S is transitive and we get by the uniqueness of the representation of the
symmetric quotient that SU(1, n) = S.

Assume now that T is not a complex submanifold. Then, the classification of totally geodesic
submanifolds of CHn imply T ∼= RHn. Otherwise T is contained in a proper complex totally
geodesic submanifold of CHn and this imply that H is not irreducible as above. Thus, T is
a totally real totally geodesic submanifold. Without lost of generality we can assume that
T = RHn where RHn = {Z ∈ Rn ⊂ Cn : |Z|2 < 1}. Notice that the Lie algebra of the
group I(T ) is trivial. Indeed, if u ∈ Lie(I(T )) then the tangent space to T at 0 ∈ Rn ⊂ Cn is
contained in the kernel of u. Since T is totally real and u ∈ u(1, n) we get that also the normal
space of T at 0 is contained in the kernel of u. Thus u vanish. Since I(T ) is trivial we get that
S = SO0(1, n) ⊂ SU(1, n). Now the center must be S1 and so H = S1 · SO0(1, n).

4 The Lie ball and its totally geodesic submanifolds

4.1 The projective model of the Lie ball.

Let R2,n the real vector space Rn+2 endowed with the quadratic form

q(X,Y ) := 〈X,Y 〉 := −x0y0 − x1y1 +
n+1∑
j=2

xjyj ,

where X = (x0, · · · , xn+1) and Y = (y0, · · · , yn+1). Let Π ⊂ R2,n be a 2-dimensional subspace.
The 2-plane Π is called negative if q|π is negative definite. Let us define the Lie ball Ln as one
connected component of the set of oriented negative definite 2-planes of R2,n. For more details
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about this model see [Sat80, p. 285, §6] or [Wol72, p. 347]. Note that SO(2, n) acts transitively
on the oriented negative definite 2-planes, and that SO0(2, n) acts transitively on Ln.

Let C2,n be the complexification of the R2,n, i.e. q becomes

q(Z,W ) = −z0w0 − z1w1 +
n+1∑
j=2

zjwj ,

where Z = (z0, · · · , zn+1) and W = (w0, · · · , wn+1). Let Π = spanR{A,B} ⊂ R2,n, A,B ∈
R2,n, be an oriented negative definite 2-plane. We can assume that 〈A,B〉 = 0 and q(A,A) =
q(B,B) < 0. Put Z = A+ iB ∈ C2,n . Then it is immediate that

Z ∈ Q2,n := {Z = (z0, · · · , zn+1) ∈ C2,n | −z2
0 − z2

1 +
n+1∑
j=2

z2
j = 0}

and that q(Z,Z) < 0. Call Q2,n
+ the subset of Q2,n of negative points, i.e.

Q2,n
+ = {Z = (z0, · · · , zn+1) ∈ C2,n | −z2

0 − z2
1 +

n+1∑
j=2

z2
j = 0 and q(Z,Z) < 0}.

It follows that we can identify the Lie ball Ln with a subset of the projective space CPn,1,
namely, with a connected component of the image of the canonical projection π : Cn+2 \ 0 →
CPn,1. Thus, we have homogeneous coordinates [z0 : z1 : · · · : zn+1] to work with the Lie ball
Ln.

Let Π0 = spanR{e0, e1} be the “canonical” negative definite 2-plane. From now on we will
assume that the Lie ball Ln is the connected component of Π0. Then Π0 corresponds to the
point Z0 = e0 + ıe1 = (1, ı, 0, . . . , 0). Thus Π0

∼= [1 : ı : 0 : . . . : 0] ∈ π(Q2,n
+ ) ∼= Ln. The isotropy

group at Π0 is SO(2)× SO(n).

4.2 The complex quadric and its totally geodesic submanifolds

The complex quadric Qn = SO(n + 2)/SO(2) × SO(n) can be viewed in to ways. First, as
the Grassmannian of Z(oriented 2-planes in Rn+2. Secondly, taking into account its complex
nature, one can view it as a complex hypersurface in complex projective space, namely as

Qn :=

{
[z0 : . . . : zn+1] ∈ CPn+1 |

n+1∑
k=0

(zk)2 = 0

}
.

The subgroup of SU(n + 2) acting on Cn+2 and thus on CPn+1 that leaves invariant Qn is
SO(n + 2) with isotropy group SO(2) × SO(n). The correspondence to the Grassmannian is
given by

P = span(x, y) 7→ π(x+ iy) ∈ CPn+1

where π : Cn+2 → CPn+1 is the canonical projection.
Now we will list the totally geodesic submanifolds in Qn and their isometry groups as

classified in [CN77] and [Kle08, Theorem 4.1 and Section 5]. Apart from geodesics, there are
the following types:
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(I1,k) for 1 ≤ k ≤ n/2: This orbit is defined by the following totally geodesic isometric
embedding

CP k 3 [z0 : . . . : zk] 7→ [z0 : . . . : zk : ız0 : . . . : ızk : 0 : . . . : 0] ∈ Qn.

Its image is a maximal totally geodesic submanifolds if 2k = n and n ≥ 4. Its isometry
group is SU(k+ 1) and the totally geodesic submanifold is isometric to SU(k+ 1)/U(k).

(I2,k) for 1 ≤ k ≤ n/2: Here the embedding is give by the restriction of the map for type
(I1,k) to real projective space RP k in CP k. Hence, it is never maximal. Nevertheless, it
will be interesting for our purposes. It is isometric to O(k + 1)/O(k).

(G1,k) for 1 ≤ k ≤ n− 1: This is the embedding of a lower dimensional quadric Qk into Qn,

Qk 3 [z0 : . . . : zk+1] 7→ [z0 : . . . : zk+1 : 0 : . . . : 0] ∈ Qn.

It is maximal for k = n − 1 ≥ 2. Its isometry group is SO(k + 2) and it is isometric to
SO(k + 2)/SO(2)× SO(k).

(G2,k1,k2) for 1 ≤ k1 + k2 ≤ n: This is a totally geodesic isometric embedding of a product
of two spheres with radius 1/

√
2 and of dimension k1 and k2 given by

((x0, . . . , xk1), (y0, . . . , yk2)) 7→ [x0 : . . . : xk1 : ıy0 : . . . : ıyk2 : 0 : . . . : 0] ∈ Qn

This orbit is maximal for k1 + k2 = n ≥ 3. Its isometry group is given by SO(k1 + 1) ×
SO(k2 + 1).

(G3) The quadric Q2 is isometric to CP 1×CP 1 i.e., CP 1×CP 1 ≡ Q2 . Let C = RP 1 ⊂ CP 1

be the trace of a closed geodesic in CP 1. Then the map

CP 1 × C → CP 1 × CP 1 ≡ Q2 → Qn

where the last embedding represents the embedding of type (G1,2) described above. So
the embedding CP 1 × C ↪→ Qm is maximal only for n = 2.

(P1,k) for 1 ≤ k ≤ n. This is given as the embedding of type (G2, k1, k2) for k1 or k2 equal
to zero. Its image is maximal for k = n. The isometry group is given as SO(k + 1).

(P2) This is the embedding of type (G1, k) for k = 1. It is maximal only for n = 2 and its
isometry group is SO(3).

(A) The totally geodesic submanifold is isometric to the 2-sphere of radius
√

10/2. It is max-
imal only for n = 3 and its isometry group is given by SO(3).

4.3 Totally geodesic submanifolds of the Lie ball

We will now use Cartan’s duality and Klein’s classification as listed in the previous section in
order to classify totally geodesic submanifolds in the Lie ball. Cartan’s duality implies that
there is a one-to-one correspondence between totally geodesic submanifolds G/K in the complex
quadric Qn = SO(n + 2)/SO(2) × SO(n) and totally geodesic submanifolds G∗/K in the Lie
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ball SO(2, n)/SO(2)×SO(n). Here G∗ is the non compact dual of G. For details on symmetric
spaces refer to [Hel78] and to [BCO03, Chapter 9] for their totally geodesic submanifolds.

In the following, the immersions u will be equivariant. So they are useful to compute the
corresponding immersion of the group into SO(2, n).

Type (I1,k) Here we have 1 ≤ k ≤ n/2. Let us consider the following map,

u : [z0 : . . . : zk] −→ [z0 : ız0 : . . . : zk : ızk : 0 : . . . : 0].

The image of u is contained in π(Q2,n). In order to see which point is taken by u to Ln it is
enough to see that

−|z0|2 − |ız0|2 +
n+1∑
i=1

(
|zi|2 + |ızi|2

)
= 2

(
−|z0|2 +

n+1∑
i=1

|zi|2
)

Thus, u[z0 : . . . : zk : 0 : . . . : 0] ∈ Ln if and only if −|z0|2 +
∑n+1
i=1 |zi|2 < 0. Hence, u gives an

holomorphic immersion from the complex hyperbolic space CHk into our Lie ball Ln. Namely,
CHk is regarded as the projective submanifold of CP k,1 defined by −|z0|2 +

∑n+1
i=1 |zi|2 < 0.

The group of isometries of CHk is SU(1, k) ⊂ SO(2, n) which acts irreducibly on R2,n only
for k = n/2. To see this it is enough to identify R2,n with C1,n/2 endowed with the quadratic
form −|w0|2 +

∑n/2
i=1 |wi|2. The action of SU(1, n/2) is transitive on the set of negative 2-

planes of C1,n/2 given by complex lines. For example, the complex line generated by the vector
(1, 0, . . . , 0) ∈ C1,n/2 is the negative definite 2-plane Π0 of R2,n. Let w = (w0, . . . , wn/2) ∈ C1,n/2

be a vector. Then the 2-plane generated by w, i.e. the complex line, is given by the homogeneous
coordinates [w0 : ıw0 : . . . : wn/2 : ıwn/2]. This show that the image of our map u is the set
of 2-planes coming from complex lines of C1,n/2. Thus, the image u(CHn/2) is the orbit of
SU(1, n/2) through Π0.

Type (I2,k) Here it is 1 ≤ k ≤ n/2. The map u is the “real form” of the above map:

[x0 : . . . : xk] u→ [x0 : ıx0 : . . . : xk : ıxk : 0 : . . . : 0]

Thus we get an embedding of RHk (in the projective Klein model1) into the Lie ball. Notice
that the subgroup SO(1, k) ⊂ SU(1, n/2) acts reducibly on R2,n, even for k = n/2. In the light
of Theorem 4 we do not get another irreducible subgroup of SO(2, n). But we should point
out that the group I(u(RHk)) i.e. the isometries that fix all points of the image of u is given
as I(u(RHk)) = SO(2) acting diagonally, i.e. SO(2) ∼= ei θId. For k = n/2 this group makes
G = I(u(RHk)) · SO(1, n/2) act irreducibly on R2,n.

Type (G1,k) This is the embedding of a lower dimensional Lie ball. Its isometry group is
given by SO(2, k), which does not act irreducibly on R2,n.

1Here we refer to Felix Klein.



Di Scala and Leistner, Connected subgroups of SO(2, n) acting irreducibly on R2,n 13

Type (G2,k1, k2) In this case 1 ≤ k1 + k2 ≤ n and the map u is given by:

([x0 : . . . : xk1 ], [y0 : . . . : yk2 ]) u7→ [x0 : ıy0 : x1 : . . . : xk1 : ıy1 : . . . : ıyk2 : 0 : . . . : 0]

The image lies in Ln if and only if:

−x2
0 − y2

0 +
k1∑
i=1

x2
i +

k2∑
j=1

y2
j < 0 and − x2

0 + y2
0 +

k1∑
i=1

x2
i −

k2∑
j=1

y2
j = 0.

Since the map is given in homogeneous coordinates we can assume that −x2
0 +

∑k1
i=1 x

2
i =

−y2
0 +
∑k2
j=1 y

2
j which shows that the image of u is in the Lie ball if and only if [x0 : . . . : xk1 ] and

[y0 : . . . : yk2 ] lie in the real hyperbolic spaces of dimensions k1 and k2. Hence, u is an embedding
of RHk1 × RHk2 into the Lie ball. The isometry groups is given by SO(1, k1) × SO(1, k2) ⊂
SO(2, k1 + k2) ⊂ SO(2, n). Thus, the isometry group of this totally geodesic submanifold does
not act irreducibly, since it fixes R1,k1 and R1,k2 .

Type (P1,k) Here it it 1 ≤ k ≤ n and the embedding is given by the one of type (G2, k1,
k2) for k1 or k2 equal to zero. Hence, we can write it as

[x0 : . . . : xk] 7→ [ı : x0 : . . . : xk : 0 . . . : 0]

yielding an immersion from RHk (as in the usual Lorentzian model) into the Lie ball Ln. The
isometry group of the totally geodesic submanifold is SO(1, k) acting reducibly even for k = n
by fixing the first basis vector e0.

Type (P2) This is the embedding of type (G1, k) for k = 1 and thus the isometry group
of the totally geodesic submanifolds is given as SO(2, 1) ⊂ SO(2, n) acting reducibly by fixing
e3, . . . , en+1.

Type (G3) This totally geodesic submanifold is a Riemannian product. Then its isometry
group G is not simple. Thus this case reduces to G ⊂ U(1, n).

Type (A) Here it is n ≥ 3. This is an embedding of 3-dimensional real hyperbolic space into
the Lie ball. The only irreducible acting (simple) subgroup of SO(2, n) which did not appear
as isometry group of a totally geodesic orbit in the Lie ball is SO(1, 2) ⊂ SO(2, 3). Thus we
conclude that this embedding of SO(1, 2) gives the isometry group of a totally geodesic orbit
of type (A) for n = 3. For n > 3 it is reducible, of course.

We conclude that the only irreducibly acting simple proper subgroups of SO(2, n) that
appear as isometry group of a totally geodesic submanifold in the Lie ball are SU(1, n/2) and
SO(1, 2) ⊂ SO(2, 3). Because of the reduction to simple groups in Section 2.2, together with
Theorem 5, this proves our Theorem 1 in the Introduction.
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