

Espacenet

Bibliographic data: US2012055449 (A1) - 2012-03-08

HYSTERESIS-TYPE ELECTRONIC CONTROLLING DEVICE FOR FUEL INJECTORS AND ASSOCIATED METHOD

Inventor(s):	LUCANO MASSIMO [IT]; BOTTO GIANLUCA [IT]; CHIABERGE MARCELLO [IT]; DEGIUSEPPE MIRKO [IT] \pm	
Applicant(s):	GM GLOBAL TECH OPERATIONS INC [US] \pm	
Classification:	- international:	F02M51/00
	- European:	F02D41/20
Application number:	US201013320426 20100327	
Priority number(s):	GB20090008262 20090514; WO2010EP01956 20100327	
Also published as:	<u>GB2470211 (A)</u> <u>WO2010130320</u> (A)	(A1) <u>CN102422003</u>

Abstract of US2012055449 (A1)

A hysteresis-type electronic controlling device is provided for fuel injectors that includes, but is not limited to a power driving unit for driving the fuel injectors with an electric signal, a control stage connected to the power driving unit and a sensing stage fed by the power driving unit and feeding the control stage, the device has a feedback frequency control stage for measuring a waveform period of the signal feeding the fuel injectors; the feedback

frequency control stage is fed by the control stage with an electric signal. A fuel injector control method is also provided that includes, but is not limited to driving fuel injectors with an electric signal coming from a power driving unit fed by a control stage, sensing the signal with a sensing stage, and measuring a waveform period of the signal through the feedback frequency control stage.