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A comparison of software platforms for Wireless

Sensor Networks: MANTIS, TinyOS and ZigBee

Mohammad Mostafizur Rahman Mozumdar, Luciano Lavagno

Politecnico Di Torino

and

Laura Vanzago

STMicroelectronics

Wireless sensor networks are characterized by very tight code size and power constraints, and by

a lack of well-established standard software development platforms such as Posix. In this paper,

we present a comparative study between a few fairly different such platforms, namely MANTIS,

TinyOS and ZigBee, when considering them from the application developer’s perspective, i.e.

by focusing mostly on functional aspects, rather than on performance or code size. In other

words, we compare both the tasking model used by these platforms and the API libraries they

offer. Sensor network applications are basically event based, so most of the software platforms are

also built on considering event handling mechanism, however some use a more traditional thread

based model. In this paper, we consider implementations of a simple generic application in MAN-

TIS, TinyOS and the Ember ZigBee development framework, with the goal of depicting major

differences between these platforms, and suggesting a programming style aimed at maximizing
portability between them.

Categories and Subject Descriptors: D.4.7 [Operating systems]: Organization and Design

General Terms: TinyOS, MANTIS, ZigBee

Additional Key Words and Phrases: Wireless sensor networks, Software platform, Application

porting

1. INTRODUCTION

Recent advancements in microelectro-mechanical systems and wireless communica-
tions motivated the development of small and low power sensors and radio equipped
modules that are replacing traditional wired sensor systems. These modules can
communicate with each other by radio to receive and transmit data and form a wire-
less sensor network (WSN). A WSN application developer currently has two broad
options: freely available academic operating systems (such as TinyOS[Levis et al.
2004], MANTIS[Bhatti et al. 2005], Contiki [Dunkels et al. 2004], FreeRTOS[Barry
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2003], etc), or commercial implementations of the ZigBee standard [ZigBee 2002].
However, ZigBee only defines some layers of the protocol stack, but it does not

cover the more traditional OS level, including for example how to model concurrency
and synchronization. Hence ZigBee implementations actually use a non-standard
OS layer. Ember [Ember 2001] provides one which has been used in this paper,
while TI [Texas 1996], Freescale[BeeKit 2004] and Jennic [BOS 2006] provide other
implementations, with slightly different tasking models. However, we claim that the
three kinds of platforms considered in this paper are representative of the available
alternatives.

In this paper, we outline the main features of three platforms, namely MANTIS,
TinyOS and the Ember ZigBee implementation, from the functional point of view,
i.e. by considering aspects such as breaking up an application into tasks, threads,
event handlers and so on. We do not look at issues such as performance or power
consumption, since they would require a very different methodology and could
not use a simple application as a paradigmatic example. In addition, we make
suggestions on the coding style, aimed at improving the code portability among
those platforms, by adopting an FSM style to develop the user application.

When developing an application on a platform such as those described above,
one must consider the services that it provides, in particular:

—the tasking and synchronization models,

—the libraries implementing frequently used functions.

If we consider the first aspect, TinyOS and the ZigBee implementation by Ember
are reasonably similar, because they do not provide a preemptive task abstraction.
Hence lengthy library calls cannot be implemented synchronously (by calling and
blocking), but must be implemented asynchronously, by splitting them into a re-
quest and a response. This splitting allows one to write extremely efficient code,
since context swapping can be implemented simply by the interrupt handling hard-
ware. However, writing code in this style is more tedious, since it forces one to
save and restore permanent state information by hand. MANTIS on the other
hand offers a more traditional multi-tasking (to be more precise, multi-threading)
environment, which is more familiar and friendly to programmers, but heavier to
implement in terms of both code size, execution time and interrupt response time.

On the library side, ZigBee implementations clearly provide the richest and most
powerful set of network management and utility functions, followed by TinyOS
(which has both the advantages and the problems of an open-source programming
environment), while MANTIS offers the smallest set of reusable functionality.

The contribution of this paper is two-fold:

(1) on the tutorial side, we identified key coding style differences that make porting
of an application to a different WSN platform more difficult than needed, and
we illustrate by means of code and graphics those differences.

(2) on the design method side, we identified a coding style that is the “least common
denominator” between the requirements of these WSN platforms, and which
enables easy porting.

In order to write portable code with different tasking models, we had to resort
to a “reentrant” Finite State Machine-like programming paradigm, where the user

ACM Transactions on Computational Logic, Vol. V, No. N, February 2008.



A comparison of software platforms for Wireless Sensor Networks · 3

code for a given piece of functionality is written as a single switch-based function,
which can be called and return as part of each “reaction” handling and/or posting
events, without ever blocking waiting for a response which may take time.

In terms of ease of writing, understanding and maintaining, this coding style
is in the middle between traditional procedural code with blocking function calls,
and the split-phase callback-based code required by both TinyOS and Ember, which
forces the programmer to distribute a single piece of functionality over several small
handlers for individual events.

Moreover, this programming paradigm is supported by code generation tools for
synchronous reactive models [Halbwachs 1993], which:

—provide the programmer with a procedural abstraction giving the illusion of sev-
eral concurrent threads of code, all running synchronously with respect to each
other and hence all fully deterministic,

—generate a reentrant state machine code that can be run in a non-preemptive
environment.

Initially, sensor network research concentrated on the development of customized
protocols targeted to specific hardware or application domains. Recently, researchers
realize that the protocol-centric methodology does not suffice with rapid applica-
tion development demand in sensor networks [Bakshi et al. 2002], [Mannion et al.
2005], [Bakshi and Prasanna 2004]. Higher levels of abstraction in WSN application
modeling are proposed in [Abdelzaher et al. 2004] ,[Gummadi et al. 2005],[Newton
and Welsh 2004], [Bakshi et al. 2005]. Most of these approaches use functional
or macro programming and introduce new programming languages to model the
application at higher levels, while we advocate either to use a specific programming
style in standard C or C++, or to use an existing well-known graphical language
(Stateflow, but the same result can be obtained from any synchronous reactive
language [Halbwachs 1993]) to generate code following that style. Although the
approaches listed above introduce higher level abstractions, they did not propose
a methodology to generate application code for multiple software platforms (all of
these approaches generate application code only for TinyOS). In this paper, we
identified a single programming style that is compatible with most kinds of WSN
software platforms (e.g. MANTIS, TinyOS and Zigbee). This idea has also been
demonstrated in Mozumdar et al. [2008; 2008], by using Stateflow [SF 2008] for ap-
plication modeling and Real Time Workshop [RTW 2008] for multi-platform code
generation targeting MANTIS and TinyOS.

Data-centric approaches such as TinyDB[Madden et al. 2005], Cougar[Fung et al.
2002] and SINA[Jaikaeo et al. 2000] also use domain-specific languages created for
databases to describe some specific classes of WSN applications at a higher abstrac-
tion level. All these systems treat the sensor network as a distributed database and
data is requested from the network by formulating abstract queries. These requests
are then translated into distributed queries with while optimizing cost/performance
goals such as minimization of energy consumption or communication. Since these
approaches are mostly query based, they do not provide sufficient flexibility to
model all sorts of applications needed in the WSN domain.

In the following section we describe a simple WSN application and show its
implementation by using Stateflow and ANSI C. Section 3, 4 and 5 describe how
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     Init/
     entry:
     tNextRX=getRandTimeStamp();
     tNextTX=getRandTimeStamp();
     packetCount=0;

   Sleep/

   CLK

   Transmit_Pkt/
   entry:
   payload[0]=1;
   sendPacket(payload);

    Done/
    led_on(0);
    led_on(1);
    led_on(2);

 Receive_Pkt/
    on PKT:
      getPktData(payload);
      processData();
    on CLK:
      temp+=1;

[tNextTX==0]
{led_toggle(1)}

[packetCount>5]

[tNextRX==0 ]
{ led_toggle(0);
  temp=0;
  receivePacket(30); }

CLK [ tNextTX>0 &&
tNextRX>0 ]
{tNextTX--;
 tNextRX--;}

{tNextTX=getRandTimeStamp();
led_toggle(1);}

[temp==3]
{tNextRX=getRandTimeStamp();
led_toggle(0);}

function  processData()

[payload[0]==1]{
packetCount++;
led_toggle(2)}

function   incoming_pkt_event()

{CLK}

function   clock_event()

{CLK}

Fig. 1. Stateflow of the Simple Application

the simple application can be ported to MANTIS, TinyOS and ZigBee respectively,
both by using the FSM-style code and by natively writing it for the specific platform.
Finally in section 6, we summarize our contributions.

2. SIMPLE APPLICATION

In this section we will describe a simple WSN application to illustrate the ap-
plication development in MANTIS, TinyOS and ZigBee. This simple application
contains most typical ingredients of sensor network applications such as transmit-
ting, receiving, processing of packets and also sleeping. In this application example,
we do not include a sensing task, but the corresponding development problems are
covered by other functionalities such as incoming events, processing data (which are
included in our simple application). The application transmits and receives packets
randomly until it receives six packets, then it stops communications and turns on
all LEDs of the node. The Stateflow modeling of the application is shown in figure
11.

PKT and CLK are external inputs of the algorithm. The PKT event is gener-
ated after receiving a packet and the CLK event is generated when the periodic
timer expires. Here the periodic timer is set to generate a CLK event every 10
milliseconds. The application starts by initializing the next receiving (tNextRX)
and transmitting (tNextTX) timestamps. To set these timestamps, it calls a li-
brary function getRandNumber which returns a random number. Then it sets the
number of received packets to zero. At the next CLK event, the application moves

1As we mentioned above, we use StateFlow only for convenience. The same programming style
can be used when coding by hand.

ACM Transactions on Computational Logic, Vol. V, No. N, February 2008.



A comparison of software platforms for Wireless Sensor Networks · 5

to the Sleep state from the Init state. In the Sleep state, the receiving and transmit-
ting timestamps will be decremented by one at every occurrence of the CLK event.
At the expiration of the transmit time-stamp, the algorithm will make a transition
to the Transmit Pkt state and toggle led 1. In this state, it sets the first byte of
the payload to 1 and sends the packet by calling library function sendPacket. Af-
ter transmitting the packet, the application makes a transition to the Sleep state,
sets the next transmission time-stamp and toggles led 1. In the same way, when
the receiving time-stamp expires, the algorithm makes a transition from the Sleep
state to Receive Pkt state and it calls the receivePacket function to configure the
radio in receiving mode for a specified duration (in this case 30 milliseconds). In
the Receive Pkt state, the algorithm waits for the PKT and CLK events. After
receiving a PKT event, it calls library function getPktData which copies the packet
data field into a local variable (payload). Now the algorithm calls a local function
processData where it checks the first byte of the packet data and if it is equal to 1,
then it increases the received packet counter and toggles led 2 to give us a visual
indication of successful reception of a packet. After expiration of the receiving time
slot, the algorithm makes a transition to the Sleep state from the Receive Pkt state.
While making the transition it sets the next receiving time-stamp and toggles led
0.

Example 1: C code generated by Real Time Workshop for the state machine of figure 1

void state_machine(void)

{If (for_the_first_time) {

current_state = IN_Init; // Storing the current state

tNextRX = getRandNumber(); // Generic function to get random number

tNextTX = getRandNumber();

packetCount = 0;

}else{

switch(current_state) {

case IN_Init:

if(incoming_event== event_CLK) // Handling CLK event

current_state = IN_Sleep;

break;

case IN_Sleep:

if((incoming_event== event_CLK) && ((tNextTX > 0) && (tNextRX > 0))){

tNextTX--;tNextRX--;

current_state = IN_Sleep;

}else if (tNextRX == 0) {

led_toggle(0); temp=0; // Generic function to toggle led

receivePacket(30); // Generic function to receive packets

current_state = IN_Receive_pkt;

}else if(packetCount > 5) {

current_state = IN_done;

led_on(0);led_on(1);led_on(2);

}else if (tNextTX == 0)){

led_toggle(1);

current_state = IN_Transmit_pkt;

payload[0] = 1;

sendPacket(payload); // Generic function to send packet

}

break;

case IN_Receive_pkt:

if(temp == 3){

tNextRX = getRandNumber();

led_toggle(0);

current_state = IN_Sleep;

}else {

if(incoming_event== event_PKT) { // Handling PKT event

getPktData(payload); // Generic function to get packet content

process_data();}

if(incoming_event== event_CLK) // Handling CLK event

temp++;

}

break;

case IN_Transmit_pkt:

tNextTX = getRandNumber();

led_toggle(1);

current_state= IN_Sleep;

break;

case IN_done:

break;

default:

current_state = IN_NO_ACTIVE_CHILD;

ACM Transactions on Computational Logic, Vol. V, No. N, February 2008.
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break;

}

}

}

In this manner, the algorithm makes transitions between the Sleep, Transmit Pkt
and Receive Pkt states until in the Sleep state it notices that the number of received
packets is greater than five. Then it makes the final transition to the Done state
where it turns on all three LEDs and stops all communications to the external world.
This simple application, just like many protocol components and WSN applications,
can be conveniently modeled as a state machine, either written directly in C/C++
or generated (by Real Time Workshop) from the Stateflow model as shown in
example 1.

In the following sections, we will address how to integrate this C code in MANTIS,
TinyOS and ZigBee. We will show that the FSM programming style, albeit tedious
to use by hand, provides a convenient least common denominator that can be easily
ported to the different programming models of the various platforms. We will also
show native implementations of the same application using the native programming
and tasking paradigm of each platform, in order to give a better idea of how each
platform can be programmed more efficiently but less portably. The programming
languages of MANTIS, TinyOS and the Ember based development framework are
either C or extensions of C. In the state machine, the incoming events are CLK and
PKT and outgoing actions are sending packet (sendPacket), setting the radio for
receiving mode for certain amount of time (receivePacket) and switching the LEDs
on the board (led toggle, led on). Handling these incoming events and outgoing
actions depends on the underlying software and hardware platforms, and in our
approach are handled by a simple platform-independent API layer, while rest of
the implementation of the code remains the same.

3. MANTIS

MANTIS is a light-weight operating system that is capable of multi-threading on
energy constrained distributed sensor networks. The scheduler of MANTIS sup-
ports thread preemption, hence the responsiveness to critical events can be faster
than in TinyOS, which is non-preemptive. The scheduler of MANTIS is priority-
based with round robin. The kernel ensures that all low priority threads execute
after the higher priority threads. When there is no thread scheduled for execution,
the system moves to sleep mode by executing the idle-thread. The kernel and APIs
of MANTIS are written in standard C.

3.1 Application Development in MANTIS

MANTIS provides a convenient environment to develop WSN applications. All ap-
plications begin with a start which is similar to main in C programming. One can
spawn new threads by calling mos thread new. MANTIS 1.0 supports a comprehen-
sive set of APIs for sensor network application development. The most frequently
used ones are listed below.

—Scheduler : mos thread new, mos thread sleep

—Networking : com send, com recv, com recv timed, com ioct, com mode

ACM Transactions on Computational Logic, Vol. V, No. N, February 2008.
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Proc: start

mos_thread_new(..)
Proc: application_thead

while (1)

  mos_thread_sleep(10)

  state_machine()

spawn thread

every 10ms call state

machine with  CLK event

Proc: sendPacket

com_send(..)

Proc: receivePacket

com_recv_timed(..)

if (pkt_rev_within_time_frame)

  send PKT event to state machine

PKT

Proc: led_toggle

mos_led_toggle(..)

CLK

Main thread User thread

Proc: state_machine

Algorithm of the WSN

application

MANTIS Kernel

MANTIS

Kernel

start

app.

sleep for 10 ms

send packet

toggle  leds

receive packet for specific time frame

Fig. 2. Flow diagram of the FSM code integrated in MANTIS

—Visual Feedback (Leds) : mos led on, mos led off, mos led toggle

—On board sensors (e.g. ADC) : dev write, dev read

Figure 2 illustrates the interactions between the various threads that implement
the simple application and the services it uses in MANTIS (the actual code skeleton
is shown in Appendix A). A new thread is spawned from the start procedure and
inside this thread, the state machine is called every 10 milliseconds, as required in
the algorithm. Here the CLK is implemented by calling mos thread sleep(10). For
receiving packets, one could use com recv which waits until a successful reception
of a packet by blocking the thread. However our application needs to be in the
receiving state only for a limited amount of time. This can be done by calling
com recv timed, which turns on the radio in receiving mode for a given amount of
time. When it receives a packet, it calls the state machine with the incoming packet
event (PKT event of the state machine). Implementation of other outgoing actions
such as sending a packet and switching the LEDs is also easy, by calling com send,
mos led toggle and led on APIs.

If we manually implement the same application, the flow diagram will be similar
to what is shown in figure 3 (the actual code skeleton is shown in Appendix B).
The application thread computes the next transmit and receive times at random,
then it goes to sleep for the smallest among them. After sending a packet, it sets
the next transmit time and after receiving a packet (listening for 30 milliseconds),
it sets the next receive time.

4. TINYOS

The programming model of TinyOS is based on components. In TinyOS, a concep-
tual entity is represented by two types of components, Module and Configuration.
A component implements interfaces. The interface declares the signature of the

ACM Transactions on Computational Logic, Vol. V, No. N, February 2008.
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User thread

Proc: application_thead

tNextRX= next receiving time

tNextTX= next transmission time

packetCount=0

packetCount<=5

Done:

Turn on leds

YesNo

tNextRX>=tNextTX

Yes

No

 mos_thread_sleep(tNextRX)

 recv_pkt=com_recv_timed(..)      // receive packet

  ....

 if  (recv_pkt=NULL )     // if packet received

   packetCount++ // increase packet count

 ....

tNextRX= next receiving time
tNextTX-=tNextRX

mos_thread_sleep(tNextTX)

com_send(..)        // send packet

tNextTX= next transmission time

tNextRX-=tNextTX

Proc: start

mos_thread_new(..)

Main threadMANTIS Kernel

MANTIS

Kernel

start

app.

spawn thread

Leds on

receive packet for

specific time frame

sleep for  tNextRX  ms

sleep for  tNextTX ms

send packet

Fig. 3. Flow diagram of the non-portable code integrated MANTIS

commands and events which must be implemented by the provider and user of the
interface respectively. Events are the software abstraction of hardware events such
as reception of packet, completion of sensor sampling, etc. On the other hand, com-
mands are used to trigger an operation such as to start sensor reading or to start
the radio for receiving or transmitting etc. TinyOS uses a split-phase mechanism,
meaning that when a client component calls a command of a server component,
this returns immediately, and the server issues a callback event to the client when
it completes. This approach is called split-phase because it splits invocation and
completion into two separate phases of execution. The scheduler of TinyOS is based
on an event-driven paradigm where events have the highest priority, run to comple-
tion (i.e. interrupts cannot be nested) and can preempt and schedule tasks. Tasks
contain the main computation of an application. TinyOS applications are written
in nesC which is an extension of the C language.

4.1 Application Development in TinyOS

In TinyOS, application coding uses several interfaces. The flow diagram of the
FSM-like code is shown in figure 4 (the actual code skeleton is shown in Appendix
C). Module simpleAppM uses interfaces Boot, Timer. When an application module
uses an interface then it can issue the commands provided by that interface and it
should also implement all the events that could be generated from the interface. For
example, the Boot.booted event of the Boot interface is implemented in the module
simpleAppM. Among the several interfaces available in the library of TinyOS 2.0,
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proc: receivePacket
start radio in receiving mode
start RXwindowTimer for 30ms

event : Boot.booted

start CLKtimer (periodically)

fired

simpleAppM

Timer

AMSend

Boot

SplitControl

Receive

….

InterfacesModule

uses

start app

event : CLKtimer.fired
post task state_machine
with CLK event

task : state_machine

Algorithm of the WSN app.

CLK

proc: sendPacket
start radio in sending mode

proc: led_toggle
toggle Led

event:  radio.startDone
if pkt_in_send_queue
 send pkt by calling  AMSend.send

event: AMSend.sendDone
stop the radio

event : RXwindowTimer .fired
stop the radio

start

event : Receive.receive
send PKT event to state
machine

PKT

Binding of Interfaces

Algorithmic flow

event: radio. stopDone

start timer

Boot

Timer

(CLKtimer)

start timer

Radio start

started

AMSend

send

done

Radio

stop

done

packet received by radio

Timer
(RXwindowTimer )

fired

Radio

stop

doneSystem

interfaces
Application

components

System

interfaces

Fig. 4. Flow diagram of the FSM code integrated in TinyOS

we listed those most frequently used for constructing simple applications.

—Initialization: Init, Boot, Timer

—Networking: Send, Receive, AMSend, SplitControl, Packet, AMPacket

—Visual Feedback (Leds): Leds

Details of the TinyOS operating system can be found at [Levis et al. 2004]. To
implement the simple application, a periodic timer (CLKtimer.startPeriodic) is ini-
tialized from the Boot.booted event handler. The period of the timer is set to 10
milliseconds as required in the algorithm. After initialization has been done, a
timer event is generated (which is CLKtimer.fired). Inside this event handler, the
state machine is called as a task (implementing the CLK event of the state ma-
chine). The algorithm needs to be in receiving mode for a given amount of time (30
milliseconds). Hence in the receivePacket method we need to set a one shot timer
(for 30 milliseconds) and at the same time start the radio. After expiration of this
timer the radio needs to be stopped (in the event handler RXwindowTimer.fired).
When TinyOS receives a packet it generates an event (Receive.receive). Inside its
event handler, we post the task of the state machine with the incoming packet event
(implementing the PKT event of the state machine). We used the LowPowerLis-
tening interface to control the radio explicitly in receiving or transmitting mode.
For handling outgoing actions from the state machine, such as to send packet, the

ACM Transactions on Computational Logic, Vol. V, No. N, February 2008.
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event : Boot.booted

packetCount=0

start TXtimer (random time)

start RXtimer  (random time)
start

simpleAppM

Timer

AMSend

Boot

SplitControl

Receive

….

InterfacesModule

uses

event :  TXtimer.fired
start radio in transmit mode

event:  radio.startDone
if transmit mode
   send pkt by calling  AMSend.send
 else

start RXwindowTimer for 30ms

event: AMSend.sendDone
stop the radio

done

send pkt

event :  RXwindowTimer .fired
stop the radio

start

Binding of Interfaces

Algorithmic flow

stop
event: radio. stopDone
if packetCount <=5
   if radio was in transmit mode

      reconfigure TXtimer (random time)

   else if radio was in receiving mode
      reconfigure RXtimer (random time)

event :  RXtimer.fired
start radio in receiving mode

start

start

event :  Receive.receive
packetCount++

start app
Boot

Timer

fired

fired

Radio

start

AMSend

done

Radio

stop

done

Timer

Radio

done

packet received
 by radio

Timer

fired

Radio

done

System

interfaces

Application

components

System

interfaces

Fig. 5. Flow diagram of the non-portable code integrated in TinyOS

state machine calls the sendPacket method. Inside this method, at first we set the
radio in transmit mode and then start it. When the radio is started (it generates
the Radio.StartDone event), the method checks whether the radio is turned on for
sending packet or not. If so, we use the AMSend.send command of the AMSend
interface to send the packet. When the packet is sent then TinyOS generates a
call back event AMSend.sendDone which provides the status of the sending pro-
cessing. Inside this event handler, we stop the radio. There are some commands
in TinyOS which are called async and do not generate callback events. We used
async commands for switching the LEDs from the state machine.

The flow diagram of the manual implementation of the same application in
TinyOS is shown in figure 5 (the actual code skeleton is shown in Appendix D).
The split phase mechanism of TinyOS results in significant differences with the
MANTIS-specific code. In the Boot.booted event handler, two timers are scheduled
for transmit and receive (having random values for both timers). After expiration
of each timer, the application starts the radio and sets the radio in a specific mode
(receive or transmit). After sending the packet, it stops the radio and when the
radio is stopped it sets the timer for the next transmission. In the same way, after
receiving for 30 ms, it sets the timer for next reception.
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ZigBee Applications
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Silicon
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PHY(IEEE 802.15.4)

2.4GHz 868/915MHz

Fig. 6. ZigBee architecture

5. ZIGBEE

ZigBee is a specification that enables reliable, cost effective, low power, wirelessly
networked, monitoring and control products based on an open global standard.
ZigBee is targeted at the WSN domain because it supports low data rate, long
battery life and secure networking. At the physical and MAC layers, ZigBee adopted
the IEEE 802.15.4 standard. It includes mechanisms for forming and joining a
network, a CSMA mechanism for devices to listen for a clear channel, as well
as retries and acknowledgment of messages for reliable communication between
adjacent devices. These underlying mechanisms are used by the ZigBee network
layer to provide reliable end to end communications in the network. The 802.15.4
standard is available from [IEEE 2003].

At the network layer, ZigBee supports different kinds of network topologies such
as Star, Tree and Mesh. The ZigBee specification supports networks with one
coordinator, multiple routers, and multiple end devices. A ZigBee coordinator is
responsible for forming the network. Router devices provide routing services, and
can also serve as end devices. End devices communicate only with their parent
router nodes and cannot relay messages intended for other nodes. Details of the
ZigBee specification can be found at [ZigBee 2002].

The whole ZigBee architecture is shown in figure 6. The operating system is not
part of the ZigBee specification, hence each ZigBee implementer (such as TI, Jennic,
Freescale) developed a thin operating system abstraction layer. ZigBee application
code as well as the ZigBee stack itself is built on top of it. For example, Jennic
states that their ZigBee stack is implemented on the top of BOS (Basic Operating
System)[BOS 2006]. BOS has a simple non-preemptive task scheduler, where tasks
run to completion and each task has the same level of priority.

The TI implementation of ZigBee introduces OSAL (Operating System Abstrac-
tion Layer) [Texas 1996] under both the application and the ZigBee stack. The
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components of the ZigBee stack are implemented as separate tasks and information
is passed inside the stack using the OSAL messaging system. Task scheduling is
done with a sequential traversal of all registered tasks. There is no task priority and
traversal restarts after a pending event is found. In Freescale, their ZigBee MAC
2.01 based applications run under the control of a priority based, non-preemptive,
event-driven task scheduler [Freescale 2008]. Interestingly, all of these task sched-
ulers are non-preemptive and in most cases (e.g. TI, Jennic) does not even support
priorities, but uses an event based FIFO scheduler like TinyOS. The major duties
of the operating system abstraction layer are task handling, inter-task message han-
dling, task synchronization, timer services, interrupt handling, memory allocation,
etc.

5.1 Application Development in ZigBee

Several implementations of the ZigBee stack are available on the market (such as
from Texas Instruments, Ember Corporation, Freescale, etc.). We will describe our
simple application by using the Ember ZigBee implementation (version 3.0.0). The
main source file of a ZigBee application must begin by defining some parameters
involving endpoints, callbacks and global variables. Endpoints are required to send
and receive messages, so any device (except a basic network relay device) will
need at least one of these. Just like C, an application starts from main. The
initialization and event loop phases of a ZigBee application are shortly described
below and depicted in figure 7.

Start

Initialization

Rejoin Network

Reset Watchdog

emberTick()

Network State

Form, Join or

Rejoin network

applicationTick()

Set state

Indicators

Joined network

Not joined network

optional

Enter event loop

Fig. 7. Main Loop of the Ember ZigBee application

Among the initialization tasks, serial ports (SPI, UART, debug or virtual) need
to be initialized. It is also important to call emberInit which initializes the radio
and the ZigBee stack. Prior to calling emberInit, it needs to initialize the Hardware
Abstraction Layer (HAL) and also to turn on interrupts. After calling emberInit,
the device rejoins the network if previously connected, sets the security key, initial-
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proc: receivePacket
emberStackPowerUp(..)
RXwindowTimer  for 30ms

proc : main

initialize Ember stack

while (true)
// static calls to stack

   applicationTick

start

CLK

proc: sendPacket
emberStackPowerUp(..)
emberSendUnicast (..)

proc: led_toggle
toggle specified Led

event: emberMessageSentHandler
emberStackPowerDown(..)

event : RXwindowTimerHandler
emberStackPowerDown(..)

event :  emberIncomingMessageHandler
if  receiving mode
    send PKT event to state machine

PKT

proc : applicationTick
if  time_interval > 10
 CLK event to state machine

proc : state_machine

Algorithm of the WSN app.

ZigBee

Stack

send pkt

pkt sent

stop radio

start radio

called when a packet is received

ZigBee

implementation

Application

Operating System Abstraction Layer

Timer

(Event Control)

start

fired

Hardware abstraction

layer

Toggle leds

Fig. 8. Flow diagram of the FSM code integrated in Ember ZigBee

izes the application state and also sets any status or state indicators to the initial
state.

The network state is checked once during each cycle of the event loop. If the state
indicates that the network has been joined (in case of router and end device) or
formed (for the coordinator), then the applicationTick function is executed. Inside
this function the developer will put the application code. Otherwise, the node will
try to join or form the network.

The flow diagram of the FSM-like code in ZigBee is shown in figure 8 (the actual
code skeleton is shown in Appendix E). Here, the state machine is called from the
applicationTick. The state machine is called at 10 millisecond intervals, which im-
plements the CLK of the state machine. When the receivePacket method is called
from the state machine, we start the radio by calling the emberStackPowerUp API
and then schedule an event (RXwindowTimer) which will generate a callback event
after expiration of the timer (30ms). When this callback event (RXwindowTimer-
Handler) occurs, we stop the radio. In this time frame, if a packet is received by the
ZigBee stack, it calls an incoming message handler function emberIncomingMessage-
Handler. Inside this function, the state machine is called with the incoming packet
event (PKT event of the state machine). When the sendPacket method is called
from the state machine, again we start the radio and send the packet by calling the
emberSendUnicast API which afterward calls back the emberMessageSentHandler
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Operating System Abstraction Layer

proc : main

initialize Ember stack

tNextRX= next receiving time

tNextTX= next transmission time

packetCount=0

while (true)

// static calls
   applicationTick

start

// sleep for tNextTX ms
halIdleForMilliseconds(tNextTX)
emberStackPowerUp(..)
// send packet
emberSendUnicast (..)

event:emberIncomingMessageHandler
if  receiving
   packetCount++

event :  RXwindowTimerHandler
receiving=FALSE
tNextRX= Next receiving time
tNextTX-=tNextRX   // Adjust transmission time
Disable RXwindowTimer
emberStackPowerDown(..)

proc : applicationTick

packetCount<=5No

Done:

Turn on leds
tNextRX>=tNextTX

Yes

No

event :  emberMessageSentHandler
emberStackPowerDown(..)
tNextTX= Next transmission time
 // Adjust receiving time
tNextRX-=tNextTX;

// sleep for tNextRX ms
halIdleForMilliseconds(tNextRX)
receiving=TRUE

emberStackPowerUp(..)
RXwindowTimer  for 30ms

Yes

ZigBee

Stack

Timer

(Event Control)

start

fired

called when a packet is received

stop radio

start radio

send pkt

pkt sent

ZigBee

implementation
Application

Hardware abstraction

layer

Idle for tNextRX ms

Idle for tNextTX ms

Fig. 9. Flow diagram of the non-portable code integrated in Ember ZigBee

function. Inside this event handler, we stop the radio. Implementations of led toggle
and led on methods are simple like in MANTIS and TinyOS.

A manual implementation of the same algorithm is shown in figure 9 (the actual
code skeleton is shown in Appendix F). In the main procedure, we compute the
next receive and transmit times. The rest of the functionality is implemented in
applicationTick. First, we check which time is earlier among tNextTX and tNextRX,
and go into power-saving idle mode using halIdleForMilliseconds. After sending a
packet, the algorithm again sets the next transmit time inside the emberMessage-
SentHandler. For receiving packets, we initialize a timer event (RXwindowTimer)
and schedule it for 30 milliseconds. In this time frame, if a packet is received, the
packet count is incremented. When this event fires, we set the next receiving time
and also deactivate the timer (RXwindowTimer).

A ZigBee application implementation depends on the node type. For example,
the coordinator needs to form the network, while a router or end device needs to
join in the network (figure 8 and figure 9 show the skeleton for the coordinator
code). The main advantage of the ZigBee platform is that users need not think
about network formation algorithms or MAC layer protocols, but can concentrate
only on application development.

In summary, TinyOS and ZigBee share some common programming styles (such
as event handling mechanism). In ZigBee and TinyOS, an external or internal
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event activates some handler coded as a separate function, whereas MANTIS is
thread-based and blocks the thread if it is waiting for specific events.

6. CONCLUSION

We examined two kinds of software platforms for wireless sensor networks: free
academic operating systems, and proprietary network stack implementations. We
compared the programming models imposed by the different platforms, and noted
that there are two main paradigms: conventional multi-threaded or multi-tasking
(embodied by MANTIS OS) and split-phase non-preemptive request/response pro-
gramming (embodied by TinyOS and the Ember ZigBee implementation). While
discussing differences, we also identified a single code writing style, namely state
machine-like, that can be ported easily across different platforms by just creating
an API abstraction layer for sensors, actuators and non-blocking OS calls.

In addition we observed that, of course, academic platforms only provide bare-
bones functionality, leaving most of the protocol stack writing to the application
developer (note that a ZigBee implementation on top of TinyOS is under way).
They are thus suitable only when requirements are very different, e.g. with respect
to MAC or routing strategy, from what ZigBee or ZigBee Plus provide.

This FSM-like code can be written by hand or generated from different StateChart-
like or Synchronous Language models, which also makes the generation of the adap-
tation layer to each platform easier.

Ideally, one would also like to generate automatically such code from procedural
ANSI C code (with suitable restrictions, such as absence of recursion, and annota-
tions about which blocking calls must be split). This code would be written using
a standardized common WSN-specific API (similar in spirit to the Posix standard,
but customized for the WSN application domain, and without assuming an under-
lying tasking semantics), and then customized by means of splitting across blocking
calls. It is not clear at this stage how much this approach would lose in terms of
code size and performance with respect to natively coding with a platform and task-
ing semantics in mind. Experience from the automotive software world suggests
that it can be kept under a few percent, and in the end it may be the only option
to preserve at least some platform independence, until a single unified standard
(including API and computation model) will emerge for the WSN domain as well.
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7. APPENDIX
Appendix A: MANTIS (FSM-like portable code)
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#include .... // All required system includes

....

void state_machine() // Algorithm of the simple application

{.. code shown in the example 1.. }

void clock_event(void) { incoming_event = event_CLK; state_machine(); }

void incoming_pkt_event(void) { incoming_event = event_PKT; state_machine(); }

void receivePacket(uint16_t receivingTimeStamp) // Called from state machine

{ // to receive packet for specific time frame

....

recv_pkt = com_recv_timed(IFACE_RADIO,receivingTimeStamp);

if (recv_pkt!= NULL)

{ .... incoming_pkt_event(); ... } // Passing PKT event to state machine for the next transition

}

void sendPacket( uint8_t *packet_payload ) // Called from state machine

{ // to send a packet

// construct the packet

com_send(IFACE_RADIO, &send_pkt); // Sending packet

}

void led_toggle (uint8_t ledN) // Called from state machine toggle Leds

{ mos_led_toggle(ledN); }

void application_thread()

{

while(1) {

mos_thread_sleep(10); // Implementation of virtual CLK

clock_event(); } // Passing CLK event to state machine for the next transition

}

Appendix B: MANTIS (hand written non-portable code)

#include .... // All required system includes

void application_thread(){

tNextRX=getRandNumber();

tNextTX=getRandNumber();

packetCount=0;

while (packetCount<=5) {

if (tNextRX>=tNextTX){ // Check which timestamp is smaller

mos_thread_sleep(tNextTX); // Sleep until transmit time expires

com_send(..); // Sending packet

tNextTX=getRandNumber(); // Next transmission time

tNextRX-=tNextTX; // Adjusting the receiving time

} else{

mos_thread_sleep(tNextRX); // Sleep until receive time expires

recv_pkt=com_recv_timed(IFACE_RADIO,30); // Receive packets for 30ms

....

if (recv_pkt=NULL ) // If a packet is received

packetCount++; // Increase packet count

....

tNextRX=getRandNumber(); // Next receiving time

tNextTX-=tNextRX; // Adjusting the transmission time

}

}

// Received 6 packets.

// Turn on all the leds

}

void start (void)

{ ....

mos_thread_new (application_thread, 128, PRIORITY_NORMAL);

}

Appendix C: TinyOS (FSM-like portable code)

module simpleAppM

{ uses interface Boot; // It boots the application

uses interface Timer<TMilli> as CLKtimer; // Provides timing functions

// uses all required interfaces

}

implementation{

event void Boot.booted () { call CLKtimer.startPeriodic(10);}

task void state_Machine()

{.. code shown in the example 1 .. }

void clock_event() {incoming_event = event_CLK; post state_Machine();}

void incoming_pkt_event() {incoming_event = event_PKT; post state_Machine();}

event void CLKtimer.fired()

{ clock_event(); } // Passing CLK event to State Machine for the next transition

void receivePacket(uint16_t receivingTimeStamp){

call LPL.setLocalDutyCycle(...); // Tune the radio in receive mode

call Radio.start(); // Start the radio

call RXwindowTimer.startOneShot(receivingTimeStamp); // 30ms for packet receiving

}
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event void RXwindowTimer.fired() // Receiving time expires (30 ms)

{ call Radio.stop(); } // Stop the radio

event message_t* Receive.receive(...)

{ incoming_pkt_event(); } // Passing PKT event to State Machine for the next transition

void sendPacket( uint8_t* packet_payload ){

// Copy the sending packet data

call LPL.setLocalDutyCycle(...); // Tune the radio in transmit mode

call Radio.start();

}

event void Radio.startDone(...) { // Radio is turned on

if (pkt_in_send_queue) {

// Construct the packet

call AMSend.send(..)} // Send the packet

}

event void AMSend.sendDone(...) // Packet sending complete

{ call Radio.stop(); } // Stop the radio

void led_toggle(uint8_t ledN){ // Toggling the leds

switch (ledN) {

case 0: call Leds.led0Toggle();

break;

....

}

}

}

Appendix D: TinyOS (hand written non-portable code)

module simpleAppM

{ uses interface ...}

implementation

{

event void Boot.booted(){ ...

tNextRX=getRandNumber();

tNextTX=getRandNumber();

packetCount=0;

call RXtimer.startOneShot(tNextRX);

call TXtimer.startOneShot(tNextTX);

}

event void TXtimer.fired(){

state=1; // Transmitting state

call LowPowerListening.setLocalDutyCycle(); // Setting the radio totally in transmit mode

call Radio.start(); // Start the radio (activating the SplitControl)

}

event void RXtimer.fired(){

state=2; // Receiving state

call LowPowerListening.setLocalDutyCycle(); // Setting the radio totally in receive mode

call Radio.start(); // Start the radio(activating the SplitControl)

}

event void Radio.startDone(error_t err) {

if (state==1) call AMSend.send(..) // Sending the packet

if (state==2) call RXwindowTimer.startOneShot(30); // Set the time frame for receiving

}

event void RXwindowTimer.fired()

{call Radio.stop(); } // Receiving time frame expires, so stop the radio

event void AMSend.sendDone(..)

{call Radio.stop(); } // Sending packet is done, so stop the radio

event void Radio.stopDone(..){ // Radio is stopped

if (packetCount<=5) {

if (state==1){

tNextTX=getRandNumber();// Next transmission time

call TXtimer.startOneShot(tNextTX);

}else if (state==2){

tNextRX=getRandNumber(); // Next receiving time

call RXtimer.startOneShot(tNextRX);}

}else{

// Received 6 packets.

// Turn on all the leds

}

}

event message_t* Receive.receive(..) { // This event is generated when a packet is received

...

packetCount++; // Increase the packet count

}

}

Appendix E: ZigBee (FSM-like portable code)

#include .... // All required system includes
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EmberEventControl RXwindowTimer; // Timer object

int main(void)

{

halInit(); INTERRUPTS_ON(); emberInit(); // Initialization tasks

while(TRUE) { // Event Loop

halResetWatchdog(); emberTick(); // Static API calls in the event loop

if (formed_network) applicationTick(); // Procedure that contains main logic

else formNetwork(); // Only done by the coordinator, other nodes will join

} // in the network

}

void state_Machine(){.. code shown in the example 1.. }

void clock_event(void) { incoming_event = event_CLK; state_Machine(); }

void incoming_pkt_event(void) { incoming_event = event_PKT; state_Machine(); }

void emberIncomingMessageHandler(...) // Call back function for message handling

{...

switch (Message_Type) {

...

case MSG_DATA:

incoming_pkt_event(); // Passing PKT event to State Machine for the next transition

break; }

}

void receivePacket(int16t receivingTimeStamp){

emberStackPowerUp(); // Start the radio

emberEventControlSetDelayMS(RXwindowTimer, receivingTimeStamp); // Setting an event generator for 30 ms

}

void RXwindowTimerHandler(void) // Event handler of RXwindowTimer

{ emberStackPowerDown() ; // Receiving time expires, stop the radio

emberEventControlSetInactive(RXwindowTimer); // Disable the event generator

}

void emberMessageSentHandler(...)

{ emberStackPowerDown() ;} // Call back function after sending a message Stop the radio

void sendPacket (int8u* packet_payload ){

emberStackPowerUp(); // Start the radio

// Construct the packet

emberSendUnicast (...) // Sending packet

}

void led_toggle(int8t ledN) { halToggleLed(..) } // Toggling the leds

static void applicationTick(void) {

if ( duration_of_lastCLKTime > 10){

clock_event(); } // Passing CLK event to State Machine for the next transition

}

Appendix F: ZigBee (hand written non-portable code)

EmberEventControl RXwindowTimer;

...

int main(void)

{ // Initialization code, same as Appendix E

tNextRX=getRandNumber();

tNextTX=getRandNumber();

packetCount=0;

while(TRUE) {// same as Appendix E }

}

void emberIncomingMessageHandler(...)

{ // same as Appendix E

case MSG_DATA:

if (receiving)

packetCount++;

break;

}

static void applicationTick(void) {

while (packetCount<=5)

{ if (tNextRX>=tNextTX){

halIdleForMilliseconds(tNextTX); // Sleep until transmit time expires

send_packet(..); // Sending packet

}else {

halIdleForMilliseconds(tNextRX); // Sleep until receive time expires

receiving=TRUE;

emberEventControlSetDelayMS(RXwindowTimer, 30); // setting an event RXwindowTimer

}

}

// Received 6 packets. Turn on all the leds

}

void send_packet()

{ ....emberSendUnicast(..); }

void emberMessageSentHandler(..) // Call back function from emberSendUnicast
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{ tNextTX=getRandNumber(); // Next transmission time

tNextRX-=tNextTX; // Adjusting the receiving time

}

void RXwindowTimerHandler(void) // Event handler of RXwindowTimer

{ receiving=FALSE;

tNextRX=getRandNumber(); // Next receiving time

tNextTX-=tNextRX; // Adjusting the transmission time

emberEventControlSetInactive(RXwindowTimer); //Disable this event until its next use.

}
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