Metadata, citation and similar papers at core.ac.uk

Provided by PORTO Publications Open Repository TOrino

Lattice Boltzmann equation for microscale gas flows of binary

mixture

Zhaoli Guo,"* Pietro Asinari,> and Chuguang Zheng!

I National Laboratory of Coal Combustion,
Huazhong University of Science and Technology, Wuhan 430074, P. R. China
“Department of Energetics, Politecnico di Torino Corso
Duca degli Abruzzi 24, Zip Code 10129, Torino, Italy
(Dated: January 18, 2009)

Abstract

Modeling and simulating gas flows in/around micro-devices are a challenging task in both science
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I. INTRODUCTION

As an efficient mesoscopic method, the lattice Boltzmann equation (LBE) method has
gained much success in simulating complex fluid systems such as the hydrodynamics of
multi-phase/multi-component fluids, magneto-hydrodynamics, colloidal suspensions, chem-
ical reactions, flows in porous media, etc. [1-3], where the application of other methods
may be difficult or impractical. Recently there have been some attempts to apply the LBE
method to gaseous microscale flows with non-continuum effects [4-18]. For such flows, the
mean-free-path of the gas (A\) may be comparable to the typical device dimension (h), and
consequently the flow is far from the thermodynamical equilibrium and the hydrodynamic
models such as the classical Navier-Stokes equations for continuum flows are no longer valid.
On the other hand, the Boltzmann equation is valid for gas flows with any Knudsen numbers
Kn = A\/h [19], and therefore the LBE, which is a discrete scheme of the Boltzmann equation
20, 21}, is believed to have the potential for simulating microscale gas flows.

Although a number of works have shown that the LBE is capable of simulating gas
flows with a finite Knudsen number, most of the available models are designed for single-
component gases, and much less attentions have been paid to gas mixtures. As far as the
authors know, there are very limited works reporting the applications of LBE to micro flows
of binary mixtures [22-24]. In Ref. [22], the authors developed a LBE model based on a
kinetic model similar to that of Hamel [26], and applied the model to the micro Couette flow
to investigate the relationship between the slip coefficients and the species concentration of
a binary mixture. It was found that although the tendency of slip coefficient is in good
agreement with the kinetic theory and direct simulation Monte Carlo (DSMC) results, the
implementation details such as the boundary condition and the specification of relaxation
time, were not provided in that paper. Szalmas made a theoretical analysis of a similar
LBE model, and proposed a boundary condition for the LBE based on the solution of the
half-space Kramers problem [24]. In Ref. [23], Joshi et al. studied the Knudsen diffusion
of a ternary mixture in a microchannel using a LBE based on the Sirovich model [27]. The
Knudsen diffusivity is incorporated into LBE heuristically by matching the LBE results
to those of the dusty gas model (DGM). Although the LBE was shown to be able to give
good predictions for non-continuum diffusion with this correlation, the method needs further

validations.



Although the above mentioned works have shown that the LBE can capture some in-
teresting phenomena in gas mixtures, the LBE models utilized there were all based on the
BGK approximation to the Boltzmann equation. As revealed in some recent studies [14-16],
the lattice BGK (LBGK) model is exposed to some disadvantages in treating micro flows
even for a single gas, while the LBE with multiple relaxation times (MRT-LBE) can over-
come these limitations. Therefore, it is expected that a MRT-LBE model would have better
properties in modeling micro gas mixtures than LBGK models.

The first MRT-LBE model for binary mixtures was proposed in Ref. [25]. In comparison
with other models, this LBE model has two distinct features, (i) the model uses a multi-
relaxation-time collision operator where the self-collision and cross-collision among species
are both incorporated, (ii) the model has a consistent baroclinic coupling between the species
dynamics and the mixture, and satisfies the indifferentiability principle, both of which have
not been adequately addressed in previous models. The original version of this LBE model
is primarily designed for continuum mixtures. In this work, we will generalize this model
to micro flows of binary mixtures. The extension includes two parts. First, a relationship
between the relaxation times and the mean-free-paths of the species and mixture is proposed,
and second a boundary condition for modeling gas-wall interaction is developed to capture
the velocity slip occurring at a wall.

The remainder of this paper is organized as follows. In Sec. Il we present a brief intro-
duction of the MRT-LBE model proposed in Ref. [25]. In Sec. III we extend the LBE model
for micro flows, where a relationship between the relaxation parameters and the individual
and mixture mean-free-paths is derived, and a boundary condition for gas-wall interaction
is proposed. Finally, we present some numerical simulations to validate the proposed model

in Sec. IV.

II. MRT-LBE FOR BINNARY MIXTURES

The LBE model with multiple relaxation times for a binary mixture proposed in [25] can

be written as
foi(x + cids, t +6;) — foi(x,t) = Qoi(f), (1)

fori =0,1,---,q¢—1 (¢ is the number of discrete velocities) and 0 = a and b, where f,;(x,t)

is the distribution function for species o associated with the gas molecules moving with the



discrete velocity ¢; at position & and time ¢, Q,;(f) is the discrete collision operator defined
by
Qi = =D (MTISM)[fo; = f357); (2)

J

where M is a ¢ x ¢ transform matrix projecting f,; onto the moment space m, = Mf,, where
fo = (foo, for, " s foq1)"; S = diag(my, 71, -+ ,7,-1)"" is a non-negative diagonal matrix
with 7; being the relaxation time for the i-th moment. As 7; = 7, the MRT model reduces
to the BGK model. It is noted that the transform matrix M and the relaxation matrix
S are identical for both species in the original model proposed in [25], which can also be
generalized to have different components for different species.

The equilibrium distribution function in Eq. (1) depends on the gas density, velocity,
and temperature:

ci-u  (c-u)?  u?

c2 + 2¢4 _2—037 (3)

S

f(SQ) = WPy | Uy, +

where ay; is a parameter dependent on the molecular mass m, and the velocity ¢;, ¢ = RT
is a model-dependent parameter, where R = kg/m, with kg being the Boltzmann constant,
m, = min (m,, my) the reference mass, and 7' the temperature. For an isothermal system,
¢s is related to the lattice speed ¢ = §,/d;, where ¢, and ¢§; are the lattice spacing and time
step, respectively. The mass density p and velocity w of the mixture and those of the species

(po and u,,) are defined respectively as

27, — 1 i
p:;;f‘”’ pu:;;Ciﬁﬂ'? pa:;faia PolUs = T;Td Zcifai‘l‘pzT’:. (4)

Obviously, p = p, + pp» and pu = p,u, + ppup. The number density of the species and
mixture are n, = p,/m, and n = n, + ny, respectively. It is noted that in the original LBE
model [25], the o-species velocity is defined as p,u, = > . ¢;fy;. This definition neglects
discrete effects of the diffusion force [28]. Actually, this can be seen more clearly from the

difference between u, and u,:

B Po(Uy, —u) O
Sty —u,) =P8 Y
Po(Us = Uo) = =57 2P

where p is the total pressure and d, is the diffusion force which will be defined later. This

neglect may yield some additional errors in the macroscopical momentum equation as shown

in Ref. [28], while the definition in Eq. (4) can avoid such discrete anomalies. Similar
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approach was also proposed and discussed in [29], and Ref. [30] proposed a systematic way
for defining a consistent velocity by means of variable transformation.

It is noted that the collision term in the LBE (1) includes the effects of both self and
mutual collision among gas molecules of identical and different species because the equilibria
fc(jq) uses the barycentric velocity w of the mixture instead of the individual velocity u,. It
is easy to verify that the LBE model of (1) also satisfies another important thermodynamic
requirement, i.e. the indifferentiability principle [31], which means that the LBE (1) for the
mixture collapses to the equation for a pure species if two species are identical.

In this work we consider the two-dimensional nine-velocity (D2Q9) LBE model where
the discrete velocities ¢; are defined by ¢y = 0, ¢, = —¢3 = ¢(0,1), 2 = —¢4 = ¢(1,0),
c; = —c; = c¢(1,1), and ¢g = —cg = ¢(—1,1); The weights in the equilibrium distribution
functions are wy = 4/9, wy = we = wy = wy = 1/9, and ws = wg = wy; = wg = 1/36;
Api = So = my./m, for i # 0 and a,9 = (9 — 5s,)/4, and ¢ = VRT = c/+/3. With out loss
of generality, we shall take ¢ as the velocity unit in the present work. Then, the transform

matrix M is given by

1 1 1 1 1 1 1 1 1
—4 -1 -1 -1 -1 2 2 2 2
4 -2 -2 -2 -2 1 1 1 1
0 1 0-1 0 1-1-1 1
M=] 0-2 0 2 0 1 -1-1 1 (5)
0o 0 1 0-1 1 1-1-1
0 0-2 0 2 1 1 -1-1
0 1 -1 1-1 0 0 0 0
O 0 0 0 0 1 -1 1-1

The corresponding discrete velocity moments of the distribution functions are

My = (/)cr, €o, o) jowv oz .jcrya Qva Poza, powy)T- (6>

These moments have clear physical significance: m,q = p, is the density, m,, = e, is related
to the total energy, m,s = &, is a function of energy square, (Mmy3, Mo5) = (Jou, Joy) =
> i Cifyi are relevant to the momentum components, (Mg, Mys) = (Gow, ¢oy) depend on

the heat flux, and m,7 = pyye and mys = Pogy correspond to the diagonal and off-diagonal



components of the stress tensor, respectively. The relaxation matrix corresponding to the
nine moments is

S = diag(Tpa7_677_@TdaTand>Tq>7—saTs)_1> (7)

where 7, can take any value since p, is a conserved variable, while the other relaxation times
should be chosen according to the transport coefficients.
The hydrodynamic equations for the LBE (1) can be derived using the asymptotic anal-

ysis. The mass and momentum equations for each species are as follows,
atpa +V- (paua) =0, (8&)

8t(poucr) +V. (pcruu) = _vpo +V.5 — WdPoWgq, (8b>

where p, = ¢?s,p, = nykpT is the partial pressure, w, is the friction force between specifies

due to velocity difference,

w, =y —u=Z(u, —u), <+#o, (9)

and wg = 1/(14 — 0.5)d;; S7 is a stress-tensor-like term defined by
Sgﬁ =V [aa(pouﬁ) + aﬁ(paua)] + (o — V)V (pau)daﬁ (10)
where v and (, are the shear and bulk viscosities, respectively:
2 1 2 1
v=c T g 0, (o =0c5(2—s4) T 0. (11)

Based on the species equations (8), we can obtain the mass and momentum equations

for the mixture:

Op+V - (pu) =0, (12a)
Ohpu)+u-V-(pu)=-Vp+V-8S, (12Db)

where p = p, + p, = nkpgT is the total pressure, and S is the total stress given by
Sap = v [Dalpus) + 0(pua)] + Y (G = 1)V - (pstt)dag (13)
For near incompressible flows,
Sap & 1 [Oatip + Ipia]
where p = prv is the dynamic viscosity of the mixture.
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In the diffusive scale where 9; ~ €2, V ~ ¢, and u ~ ¢, the leading order of Eq. (8b) gives

that
wy—u— -2 D Vg, (14)
WdPo
where
2 " 1
D, = Csda _ ?s4 (Td — —) Oy (15)
Wy 2

is the self-diffusivity. From Eq. (14), we can obtain the velocity difference between the

individual species (o and ¢),

Vp, V
waty —ug) = ——Lo y Y PP g4 (16)
Po Ps PoPs
where d,, is the diffusion force,
d, =V, — (Yo — 2,)Vinp = —d, (17)
in which y, = p,/p and x, = n,/n. By definition of mutual diffusivity,
ToT(Uy — u) = —Dyed,y,
we have
kT , 1
Dy = Pl TP 2 <Td——)5t. (18)
WaMeMn MeMn 2

It can be verified that
)
P
Dy = ——— D, .
’ MaMyn? ZU: 4

Based on Egs. (11) and (18) the Schmidt number of the mixture can then be expressed as

v mempn 7s — 0.5

Sc = (19)

D, mep 74— 0.5
It is seen that the relaxation times 7, 7., and 7, are completely determined by the
transport coefficients, and the others can be chosen with much freedom in order to enhance

numerical stability [32].

III. EXTENSION OF THE MRT-LBE TO MICRO FLOWS

In order to simulate micro flows of gas mixture using the MRT LBE (1), we must first
address two fundamental problems: (i) how to incorporate the Knudsen effect into the LBE,
and (ii) how to model the gas-wall interactions through a suitable boundary condition. These

two topics will be discussed in order.



A. Relationship between relaxation times and mean-free-paths

From the Chapman-Enskog analysis of the Boltzmann equation, it is known that the

dynamic viscosity and mutual diffusivity of a binary mixture can be expressed as [33]:

_ 22R,+ xRy + xR, _ 3E (20)
H= 2R/ pha + TRy /1y + xoty Rap’ b onmeg’
where my = m, + my, and
2 m E 4A
R,=-+—7A, R,=T,+T,, Ryp= , 21
37 m, o = e Tl e e | 3EM, (21)
with
O N VA 1Y
2,u0 3 i

The parameter A and F depend on the inter-molecular potential. For instances, for a binary
mixture of hard-sphere molecules [33],

2 2kpTmy L

5 wM,M, 8d2,
where dg, = (d, + dp)/2 with d, being the diameter of molecules of species o. It is evident
from Eq. (20) that the viscosity and diffusivity of the mixture are both complicated functions
of the individual viscosities and concentrations.

On the other hand, it is known from the kinetic theory that the mean-free-path A, of the

single gas o can be determined from the dynamic viscosity . as [19],

A — Mo 71-]{;B,—r
7 pe Vo 2m,

(22)

The above expression can be generalized to a binary mixture (e.g., [34, 35]),
1% 7Tk’BT
A== . 23
o\ o (23)

For the D2Q9 LBE model described in the above section, the viscosity of the mixture is

where m, = p/n = x,m, + Tmy.

related to the relaxation times 7,5, and therefore we can obtain the following 7, — A relation-

o [Tmy _1 [Ty _1
A= QkBTCS (T 2) 5t = er (TS 2) (St, (24)

ship,
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FIG. 1: (Color online) Schematic of the flow geometry and lattice arrangement.

where we have used the fact that ¢ = kgT/m, = 1/3 for the D2Q9 model. The relaxation
time 74 can also be related to the mean-free-path. For instance, for a binary mixture of hard
sphere gases, the mean-free-path of each species is

1
B \/§ni7mi2 ’

The mutual diffusivity of the mixture can then be expressed as

3E 3 [mokgT [ 1 177
Da — = — -+ . 26
b 2nm0 2 memy |: V xa)\a \% .Z'b)\b:| ( )

Therefore, according to Eq. (18) the relaxation time 7,4 can be determined from D, as

1 3 [3momams 1 1 172
— 2] == + ) 27
(Td 2) ‘T2 {wma mAb] 27)

It should be noted that 7, and 74 can also be recast in terms of the Knudsen numbers of the

Ao o=a,b. (25)

mixture and/or species since Kn; = \;/h.

B. Kinetic boundary condition for the MRT LBE

Suitable boundary conditions must be supplied for the MRT LBE (1) in practical appli-
cations. Some schemes, such as the discrete Maxwell’s diffuse-reflection (DMDR) scheme
and the combined bounce-back/specular-reflection (BSR) scheme, have been proposed for
MRT-LBE in the case of single gas [15]. It was shown that for single component flows these
two schemes are actually identical in a parametric range where both are applicable, and both
contain some discrete effects [15] that should be corrected. In this work we will concentrate

on the BSR scheme since its applicable range is wider than the DMDR one.
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For simplicity we consider a flat surface as sketched in Fig. 1. The lattice is arranged so
that the solid wall locates at j = 1/2, where j is the index of the grid line at y; = (j —0.5)0,.
After the streaming step,

foilx + cidp, t +0y) = fgi(w, t),

where fm-(ac, t) = fyi(x,t)+Q0(x, t) is the post-collision distribution function, we can obtain

the new distribution functions at all nodes of j > 1. But for nodes at j = 1, only f1,, fL,
1

a3

1., and fl; can be determined in the streaming step, while the remaining distribution
functions, fl,, fl, and fl, must be specified according to the kinetic boundary conditions

at the wall. For the BSR scheme, these unknown distribution functions are given by

1 ~1 2
o = fou+2ropsca - uy /5,

05 = Tof;7 ( 7’0).]?;8 + 21r,p5C5 ’U/w/Cga

f016 - Tafalés + (1 - Ta)fal7 + QTJPUCG : ’U:w/C§, (28)

where 0 < r, <1 is the portion of the bounce-back part. Note that r, may be different for
different species.

Now we analysis the hydrodynamic behavior of the LBE (1) under the boundary condition
of (28). The method employed here is similar to that used in previous studies [12, 14]. To
simplify the analysis, we consider the half space shear flow over a stationary wall (Kramers’
problem, [19]) where the wall located at y = 0 and the gas in the y > 0 region is sheared by
imposing a fixed velocity gradient at y = oo. The flow is assumed to be unidirectional and

satisfy the following condition,

0¢ 99

— =0, p,=const, v,=1us =0, v=u,=0, o

where ¢ is an arbitrary flow variable. Under such conditions, by expanding the left-hand

side of the LBE (1) into a Taylor series in d; up to second-order, we can obtain that
0
Oy o+ 564,05 foi = V), (30)

where €, = M~1S'M[f, — f*¥] with §' = S/d,. Multiplying both hand sides of Eq. (30) by

the transform matrix M, we can get the following equations for the moments:

Oy 9 | 20510 Gox Po (ﬂa - u)
o —_— | =, 1
ayp y 8 { 3 + 3 s (3 a)

10



5t 2poacr Yoz Jox + Poll
O, Pony + L2 oo | _ oz T Dot 31b
ypﬁzy{?) 3 7.0, (31b)
2p0a0 Qo 5t 2 Pox
0 — — Doy = — 31
yls +3}+2ypy 7.0, (31c)

where

_ . po' uo’ —Uu _
Polle = Joz = Pollo + ﬁ, pu = Zpaua = Zpaum

Equations (31a) and (31b) give that
Ty
Qow = —Pot + — Po(lo — u), (32)
Td

while Egs. (31a) and (31c) give that (neglecting terms of O(67))

1 1
1 - oxy — — — < Po _0' - 9
< 27_8> OyPouy 7_d(;tp (Uy — u) (33a)
2paﬂo Qo 1 - 1
e — o o _ = — oxy b
Oy [ 3 + 5 2po (u u)] 7_Sétp y (33b)
from which we can obtain

9 B Ta+T7,—3/2 Po (g — )
e — —_— = — 4
I/ay [pgua + Td pa(ua U) Tdat ) (3 )

where v = (7, — 0.5)d;. Taking summation of Eq. (34) over o leads to

O2u =0, (35)

y
which means that the LBE (1) is actually a second-order scheme for this equation. The
solution of Eq. (35) is

U= us + 7YY, (36)

where ug is the slip velocity of the mixture velocity dependent on the boundary condition,

and vy is the specified velocity gradient at y = co. Equations (34) and (35) indicate that

y (zfd - ;) 5,02 (1 — ) = Ty — u, (37)
or
3
1% (2Td + Tq — 5) 5t8§(u0 — u) = Uy — U, (38)
whose solution is
3 —1/2
Uy = U+ l,e" + ke PV, B = {V <2Td Ty~ 5) 64 (#9)
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where [, and k, are two constants depends on the boundary condition of the species velocity.

Since Jyu, is finite as y — 00, [, must be zero, and thus the velocity of species o is
Uy = Uy + Yy + k e BY. (40)

Because pu = p,u, + pcuc, the parameter k, must satisfy p,k, + p.k. = 0. Substituting u,
and u into Eq. (33b) we can obtain that

TsO0t 21, —1 _B
o = — 2% 1y (2 k,Be Y| . 41
Poay 3p{7 <+ﬁm—1) € ] (41)

In order to determine the slip velocity u, and the constant k,, we now turn to the bound-
ary condition given by Eq. (28). First, based on the relationship between the distribution

functions f, and the moments m,, we have

1. 1 1
F506 = f05 - faﬁ = g]ax + BQUQC + §paxya (42)
and
o r3 ~ 1~ 1~
F87 = fUS - fa? = §]Ux + EQJJL‘ - §paxy> (43)

where the post-collision moments are given by

1

jax - ja:c - _(jax - ,OJU), (44&)
Td

- 1

oz = Qox — T_(QM + Pau), (44b)

q

- 1
pUZ‘y - (1 - 7__) po':cy- (44C)

s

With the aids of Egs. (36), (40), and (41), we can obtain that

FS(y) = %” (s — (75 — 0.5)007 + Aykye B196,] (45)
Fg@(yl) = % [us + (75 — 0.5)dy + A2koe_By1fy§t] , (46)

where y; = §,./2 is the first grid point, and

Ay 27+ (41q + 27, — 3) 70, B  Arg 27, —6— (41g + 27, — 3) (1, — 1)0,B

A A
! 274 — 1 e 274 — 1 ’
(47)
It is noted that the BSR scheme given by Eq. (28) gives that
F(yn) = (1= 2r5) Fg (1), (48)
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which can be written explicitly as

1 1
Talls = 5 [(1=2r)As — Ay] e P02k = — (1 — ro)17, (49a)

CS

1 —B6,/2 1
TplUs + 3 [(1—2rp)Ag — Ay] e %%k = g(l — )17, (49Db)
where k is an unknown parameter such that k, = y,k and k, = —y,k. The solution of this

system is
1—2(r, o)Ay — A
us — [ (71 yb + Tby )] 2 1 _ g’ (50&)
(TaYa + 16Ys — 27a70) Mo — (Ta¥a + oY) M1 Cs
2 " — Béy/2

b — (rqg —mp)e vy (50D)

(Ta¥a + rots — 2r475) Ao — (Ta¥a + Toys) Mt 0_37

It is interesting to notice that in the special case of r, = r, = r, we have

(1—r)vy
rooc’

Ug =

k=0, (51)

which means that the species and mixture velocities are identical and the profile is linear.
Particularly, us = 0 as r = 1, i.e. the pure bounce-back gives the no-slip boundary condition.
In general cases, however, k is nonzero and the velocity of each species will deviate from the

linear profile in a region near the wall.

C. Realization of slip boundary condition

In the slip regime, the effects of gas-wall interaction on the bulk flow can be modeled by

a slip boundary condition. The slip velocity at a flat wall can be expressed as [19, 36, 37/,
Us = Cp Y, (52)

where ¢, is called as velocity slip coefficient (VSC). Based on the solution of the linearized

Boltzmann equation for binary mixtures, Ivchenko et al. obtained an expression for the

VSC [36],

1/2
Cmp = pM 5% |i(2 — Oég)l’gbg (Kl + %Kg)} 5 (53)
H My

o

where 0 < a, < 1 is the accommodation coefficient of the gas-wall interaction for o species,
and M = m,/mog; b, is related to the intermolecular potential of the gases [33, 38],

To o + 2T

by = ,
Pl R,/ e + TRy /)ty + Ty Rap)

(54)
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where the notations can be found in Eq. (21), and K; and K, are given by

2o(2=00)toby L b (55)

B >0 O‘afEaM;/z b L A(waba + xpby)  Ap

It is clear that the VSC ¢, is a function of the species concentration, viscosities, intermolec-

K

ular potentials, and gas-wall interactions.
Comparing Eq. (53) with Eq. (50a), we can see that in order to realized the velocity
boundary condition (52) in the MRT-LBE (1), the control parameter r, in the BSR scheme

must be chosen such that

{ [1 = 2(rays + 1ya)] A2 — Ay _ 1} v
(Ta¥a + 1oyp — 2ra75) Ao — (Tala + Toys) Mt 2

Y (56)

Cs

There are many choices for r, satisfying this condition, and the simplest one is to take

rqe = 1 = 1; In this case, we can obtain from the above condition that r should be chosen as

-1 -1
7’:{1+C—m mw] :[1+cm ”mz} , (57)

3\ 2ksT 6m
where we have made use of kgT/m, = 1/3 for the D2Q9 model. In the limiting case
of a single gas (m, = my), the above result is consistent with the result obtained in a
previous study [15]. It is noted that other choices of r, and r, satisfying Eq. (56) are also
possible. For example, it is shown that in the case of a single gas r, is related to the physical
accommodation coefficient o, [14, 15], i.e.

1—r, 2 —a,

Y
TO’ aJ

where Y is a constant dependent on the LBE model. Therefore, we can provide the following
supplement constraint for Eq. (56):

Ta _ g apF X(2 — )

o, X(2—ag)

This constraints ensures that r, # oy if o, # «p, which is more reasonable. However, r,
and 7, would be much complicated in this case. Since different choices of r, and r, influence
the species slip only but have no effects on the mixture slip, in this work we shall use the

simplest formulation, i.e. Eq. (57).

IV. NUMERICAL RESULTS

We first validate the analytical results presented in the above section. The MRT-LBE

(1) is applied to the Kramers problem of a binary mixture with different molecular mass

14
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FIG. 2: (Color online) Velocity distributions of each species and mixture. Dashed lines: analytical

results given by Eq. (40); symbols: MRT-LBE results.

ratios and concentrations. The mean-free-path of the mixture is set to be the length unit
(A = 1.0), and the outer boundary is put at y = 10\ where nonslip boundary condition
is applied. The relaxation time 7, is determined from A according to Eq. (24), 74 is then
chosen as 75 = 0.5+ (mgmp/m,m,Sc)(7s —0.5), and 7, is set to be identical to 74; the other
relaxation times are chosen as follows: 7, = 1.0, 7. = 1.1, and 7. = 1.2. It is found in
our simulations that the choice of the last three relaxation times has little effects on the
numerical results. The simulations are carried out on a mesh of size N, x N, = 4 x 100,
which means there are about 10 grid points in the Knudsen layer whose size is of order .
Periodic boundary conditions are applied to the two boundaries at z = 0 and = = 4, while
the BSR scheme is applied to the solid wall with different values of r, and r;. It is assumed
that m, < my so that m, = m, in all of our simulations.

The velocity distributions of the species and mixture predicted by the MRT-LBE with

different parameters are measured and compared with the theoretical results given by Eq.
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FIG. 3: (Color online) Slip length as a function of r, with n, = 0.7, ny = 0.3, mg = 1, my = 2,

Sc = 0.8. Solid lines: analytical results given by Eq. (50a); symbols: MRT-LBE results.

(40), where us and k, are determined by Eq. (50). The molecular masses are set to be
mg = 1 and my, = 2, respectively, and the number density is assumed to be n, = 0.7 and
ny = 0.3. Figure (2) shows the result with Sc = 0.6 and 1.2 at different values of r, and
rp. It is clearly seen from these figures that the numerical results are in excellent with the
theoretical ones. Results with other parameters are also obtained (not shown here), and
excellent agreement is again observed. The dependence of slip velocity of the mixture, u,
on the control parameters r, and 7, in the BSR boundary scheme are also measured. In
Fig. (3) the slip length predicted by the LBE are presented together with the theoretical
result given by Eq. (40). Again, excellent agreement between the numerical and theoretical
results are demonstrated.

The LBE model together with the BSR boundary condition is also applied to the Kramers
problem of several binary mixtures composed of practical gases (Ar, CO,, Ho, He, and Nj).
The gases are all modeled as hard-sphere molecules. At standard temperature and pressure,
the diameters of Ar, COs, Hy, He, and Ny are 3.659, 4.643, 2.745, 2.193, and 3.784 in unit
of r A, respectively, and the molecular masses of these gases are 39.944, 44.011, 2.016, 4.003,

and 28.013, respectively [33]. In the simulations, we take the properties of species a as
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FIG. 4: (Color online) Velocity slip coefficient as a function of concentration of species a when
a, = ap = 1.0. Solid lines are LBE results and symbols (x) are results of linearized Boltzmann

equation (Ref. [36])

reference units, i.e. m, = 1, n, = 1, and d, = 1, and the corresponding properties of
species b are obtained according to the ratios of physical values. With these parameters, the
viscosities and mean-free-paths of species and mixtures, and the mutual diffusivity, can be
obtained as described in Sec. III. The relaxation times 7, and 74 can then be determined
from Eqgs. (24) and (27), respectively. The control parameters r, and r, in the BSR scheme
are set to be identical, i.e. r, = 1, = 7 where r is specified according to Eq. (57), with ¢,
given by Eq. (53).

In Fig. 4, the simulated velocity slip coefficients of several binary mixtures are shown
as a function of the mole fraction of species a when the accommodation coefficients of both
species are taken to be o, = a = 1. The results are also compared with those of the
linearized Boltzmann equation presented in Ref. [36] where the Lennard-Jones potential is
used to model the gases. It is clearly observed that in each case the simulated VSC is in good
agreement with the results of the Boltzmann equation, and the nonlinear dependence on the
mole concentration is clearly shown. The discrepancies between the LBE predictions and the
data in Ref. [36] are due to the different treatments of the intermolecular interactions in the
two methods: in the present work, hard-sphere potential is used to model the interaction,
while the Lennard-Jones potential is used in Ref. [36]. Despite of these discrepancies, the

overall agreement between the results of these two methods is rather good.
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V. SUMMARY

In the present work we have developed a LBE model for microscale flows of binary
gas mixtures. The model utilizes a collision operator with multiple relaxation times so
that it has good numerical stability and can be applied to mixtures with tunable Schmidt
number. A kinetic boundary condition (BSR scheme) that combines the bounce-back and
specular-reflection schemes are proposed to model the gas-wall interactions. The scheme
was analyzed based on the Kramers problem. It is shown that the velocity of the mixture
is a linear function of the distance to the wall, while the species velocities are nonlinear in
a region near the wall, each of which decreases or increases exponentially to the mixture
velocity. It is also shown that the slip behavior of a binary mixture is influenced by the
relaxation times, the Schmidt number, the control parameters in the BSR scheme, and the
compositions of the species. A strategy for realizing a slip boundary condition using the
BSR scheme was also proposed.

Some numerical simulations were carried out to validate the theoretical results of the
proposed LBE and boundary condition. It is shown that the numerical results are in excellent
agreement with the analytical results. The LBE is also applied to slip flows of several
practical binary mixtures. The simulated VSCs as a function of species concentration is
compared with those of linearized Boltzmann equation, and good agreement is observed. In
the present work we have concentrated on velocity slip of binary mixtures. Slip behaviors

due to concentration and/or temperature gradients will be investigated in future works.
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