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On the optimisation and control of 
Pressure Swing Distillation Unit

Davide Fissore, Antonello A. Barresi

Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, 
Politecnico di Torino, 

corso Duca degli Abruzzi 24, 10129 Torino (Italy)

CAPE Forum 2005 ROMANIA February 25-26 Cluj-Napoca
Introduction

Recycling of process solvents is receiving a good deal of attention lately as 
engineers and chemists strive to reduce long-term costs and minimize wastes. 
Distillation can be used for handling these recycle streams because it is a 
familiar and robust unit operation and because the required unit equipment 
may already exist on-site. 

The presence of azeotropes, however, may severely limit the use of standard 
distillation. This work deals with the modelling of a Pressure Swing 
Distillation (PSD) Unit for the recovery of ethyl-acetate from a mixture 
containing also ethanol, water and other organic compounds in small amounts, 
being these components responsible for the formation of pressure-sensitive 
azeotropes and of liquid-liquid splits; moreover in a PSD unit the sequence of 
the columns can be readily thermally integrated, thus allowing further savings. 

Pressure Swing Distillation concept
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The control problem

Constraints: Ethyl-acetate recovery > 90 %;
Purity of the ethyl-acetate recovered > 99.5 %
Water concentration in the product < 0.1 %;
Energy integration between the low pressure and the high 
pressure column.

The Disturbances: Feed flow rate and composition are variable with time;
Pressure in the decanter and in the low pressure column may be
variable.

The objective: Minimise the cost of the operation, i.e. the duty in the high 
pressure column

Model Predictive Control is the usual framework for optimising plant performances, but the 
number of the optimised variables may render the on-line optimisation particularly difficult, thus 
requiring the use of simplified model (even black-box model). 

Because of the complexity of the system, a detailed model should be used; this choice allows also 
to use the MPC algorithm on plants of different size or different operating conditions, without the 
need of re-evaluating the parameters of the (simplified or black-box) model.

Process optimisation

The main drawback of working with a detailed model in a MPC algorithm 
is the complexity of the on-line optimisation; as a consequence steady-
state optimisation was used to point out the influence on the objective 
function of the variables that can be manipulated, showing that the 
optimisation of one variable properly chosen may be enough, being poor 
the effect of the others on the plant optimisation.

Sensitivity analysis
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In order to point out the role of the various manipulated variables on the cost
function we compare the results obtained when all the variables are optimisated
and when just one is optimisated in presence of various disturbances.
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The optimisation of the reflux ratio of the high pressure column is
enough to fulfill the constraints and to minimise the cost function

Process optimisation

Influence of the parameters of the MPC algorithm
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Case study: step disturbance (-20%) in the 
feed flow rate

Control horizon = 2
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Influence of the parameters of the MPC algorithm

Case study: step disturbance (-20%) in the 
feed flow rate

Prediction horizon = 2
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Model Predictive Control Algorithm
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Constraints handling: penalty functions
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Model error handling:

Model Predictive Control Algorithm

    min
u

set

i

h

y i y i
p















2

1

min (  ( )) ( ( ))
( ).... ( )u k u k h

y y

j k

k h

u

i k

k h

c

p p

e j u i
 

 





 

 








1

2

1

2

1

  

Constraints handling: penalty functions
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Model error handling:


