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Recently, Belzunce, Ortega, Pellerey, and Ruiz [3] have obtained stochastic com-

parisons in increasing componentwise convex order sense for vectors of random

sums when the summands and number of summands depend on a common random

environment, which prove how the dependence among the random environmental

parameters influences the variability of vectors of random sums. The main results

presented here generalize the results in Belzunce et al. [3] by considering vectors of

parameters instead of a couple of parameters and the increasing directionally convex

order. Results on stochastic directional convexity of families of random sums under

appropriate conditions on the families of summands and number of summands are

obtained, which lead to the convex comparisons between random sums mentioned

earlier. Different applications in actuarial science, reliability, and population growth

are also provided to illustrate the main results.

© 2008 Cambridge University Press 0269-9648/08 $25.00 1



45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

PES 08-023

2 J. M. Fernández-Ponce, E. M. Ortega, and F. Pellerey

1. INTRODUCTION

Much research has been devoted to study conditions for the increasing convex order

(also known as variability order, second stochastic dominance, or stop-loss order) of

random sums (see Shaked and Shanthikumar [39], Pellerey [28] and [29], Denuit,

Genest, and Marceau [7] or Kulik [17], among others). These results have found a

wide field of applications in actuarial science, reliability, epidemics, economics, or

queuing, where the random sums have been used to describe total claim amounts over

a fixed time, accumulated wear of systems during time in cumulative damage shock

models, number of individuals in a population that grows by means of a branching

process, number of infected individuals in epidemic models, and so forth.

Dependencies between summands and number of summands are common in

applicative problems and several models for such dependence have been studied in

the last few years. In real problems, the random variables in the sum usually depend

on some economical, physical, or geographical random environment. Recently, the

impact of dependencies among the random environments on variability comparisons

of multivariate vectors of random sums has been studied in Belzunce, Ortega, Pellerey

and Ruiz [3] and Frostig and Denuit [12]. In addition, stochastic comparisons of

random sums involving Bernoulli random variables have become of growing in interest

and have been applied in insurance, engineering, and medicine (see Lefèvre and Utev

[18], Hu and Wu [14], Frostig [11], or Hu and Ruan [13]).

In the literature, there are different multivariate extensions of the convex order

from several extensions of convexity: in particular, the multivariate convex order, the

componentwise convex order, and the directionally convex order (see the monograph

by Shaked and Shanthikumar [39]). The directional convexity takes into account

the order structure on the space, which the usual notion of convexity does not. The

directionally convex order was introduced by Shaked and Shanthikumar [38] and

has been proved to be useful in problems involving dependence in several contexts

of applied probability (see, e.g., Meester and Shanthikumar [23,24]), Bäuerle and

Rolski [2], Li and Xu [19], or Rüschendorf [35]). This order is strictly weaker than

the supermodular order, which compares only dependence structure of vectors with

fixed equal marginals. The directionally convex order tells about the dependence and

variability of the marginals, which are not necessarily equal.

Belzunce et al. [3] have studied variability comparisons by means of the increasing

componentwise convex order for two vectors of random sums. In that work, the sum-

mands and the number of summands are dependent by means of a couple of random

parameters, which represent some environmental conditions. They have considered

random sums defined by

Zi(θ1, θ2) =

Ni(θ1)∑

k=1

Xk,i(θ2) (1.1)

for i = 1, 2, . . . , m, where (θ1, θ2) ∈ T ⊆ R
2 and Xi(θ2) = {Xk,i(θ2), k ∈ N},

i = 1, . . . , m, is a sequence of nonnegative random variables, (N1(θ1), . . . , Nm(θ1))
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is a vector of integer-valued random variables, and X1(θ2), . . . , Xm(θ2) and

N1(θ1), . . . , Nm(θ1) are mutually independent.

In this article, we extend the above setting by considering dependence by means

of a multivariate random vector of parameters. A main motivation for introducing

multivariate random environments is clear from a practical point of view. For example,

severity and number of claims in insurance for nature catastrophes such as hurricanes

or earthquakes depend on geography as well as some other physical factors; in motor

third-party liability insurance, there are several factors influencing the driving abilities

(see Denuit, Dhaene, Goovaerts, and Kaas [6] for other examples).

Formally, let T ⊆ R
n1 and L ⊆ R

n2 be two sublattices in R
n1 and R

n2 , respectively,

and let θ = (θ1, . . . , θn1
) ∈ T andλ = (λ1, . . . , λn2

) ∈ L. Consider the sums defined by

Zi(θ , λ) =

Ni(θ)∑

k=1

Xk,i(λ) (1.2)

for i = 1, 2, . . . , m, where X1,1(λ), X2,1(λ), . . . , X1,m(λ), X2,m(λ), . . . and N1(θ), . . . ,

Nm(θ) are mutually independent.

Now, let (�, �) = (�1, . . . , �n1
, �1, . . . , �n2

) be a random vector taking on val-

ues in T × L. We are interested in stochastic comparisons of vectors of random sums

given by

Z(�, �) = (Z1(�, �), . . . , Zm(�, �)). (1.3)

Here, the random sum

Zi(�, �) =

Ni(�)∑

k=1

Xk,i(�) (1.4)

can be considered as a mixture of {Zi(θ , λ)|(θ , λ) ∈ T × L}, with respect to a vector

(�, �) of random parameters describing the environmental conditions.

Another generalization that we will consider in the article gives rise when some

of the parameters of the random sum appear both in the summands and the number

of summands. The presence of duplicates of parameters is useful in some applicative

contexts (see, e.g., Section 4.3). Formally, let D ⊆ R
n be a sublattice in R

n and let

δ = (δ1, . . . , δn) ∈ D. Consider the sums defined by

Zi(δ) =

Ni(δ)∑

j=1

Xj,i(δ) (1.5)

for i = 1, 2, . . . , m, where Xj,i(δ) ≥ 0 a.s. and X1,1(δ), X2,1(δ), . . ., X1,m(δ), X2,m(δ), . . .

and N1(δ), . . ., Nm(δ) are mutually independent. Note that (1.5) includes, as a particular

case, the case when the Xj,i(δ) or the Ni(δ) are actually parametrized only by a subset

of the parameters δ1, . . . , δn.
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Assuming that

� = (�1, . . . , �n)

is a random vector taking on values in D, it is interesting to study the stochastic

properties of the vector of random sums

Z(�) = (Z1(�), . . . , Zm(�)), (1.6)

where Zi(�) is a mixture of {Zi(δ)|δ ∈ D} with respect to the vector � of random

parameters.

In this article we obtain results on stochastic directional convexity (see Shaked

and Shanthikumar [38]) of families of random sums, under appropriate conditions on

the families of summands and number of summands. From these results, we study how

the dependence among multivariate random environments influences the variability

of random sums and the dependence and variability of vectors of random sums by

means of the increasing directionally convex order, which are the main purposes of

this article; that is, we provide sufficient conditions to model, to compare, and to

bound the variability as well as the strength of dependence between two vectors of

random sums parameterized on multivariate random environments. In this way, this

article completes the study started in Belzunce et al. [3].

The article proceeds as follows. In Section 2 we provide notation and tools on

stochastic comparisons and multivariate stochastic convexity that will be used in the

article. In Section 3 we state and prove the main results mentioned earlier concerning

stochastic comparisons and stochastic directional convexity of families of random

sums. Finally, applications for some models in insurance, reliability, and populations

growth, defined by means of random sums, are dealt with in Section 4.

2. UTILITY NOTIONS AND PRELIMINARIES

In this section we focus on providing notation and mathematical tools for the results in

the article. In particular, we will recall the definitions of some stochastic orders as well

as multivariate notions of stochastic convexity for a family of parameterized random

variables. For that, we will consider different notions of convexity in the multivariate

setting.

Some conventions and notations that are used throughout the article were given

previously. Let ≤ denote the coordinatewise ordering (i.e., for any x, y ∈ R
n, then

x ≤ y if xi ≤ yi for i = 1, 2, . . . , n) and [x, y] ≤ z as shorthand for x ≤ z and y ≤ z.

The operators +, ∨, and ∧ denote respectively the componentwise sum, maximum,

and minimum. The notation =st stands for equality in law and a.s. is shorthand for

almost surely. For any family of parameterized random variables {Xθ |θ ∈ T}, with

T ⊆ R, such that every θ is a value from a random variable �, whose distribu-

tion is concentrated on T, we denote by X(�) the mixture of the family {Xθ |θ ∈ T}

with mixing distribution �. For any random variable (or vector) X and an event A,
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[X|A] denotes a random variable whose distribution is the conditional distribution of

X given A. Also, according to most of the reliability literature, throughout this arti-

cle we write “increasing” instead of “non-decreasing” and “decreasing” instead of

“non-increasing.”

2.1. Univariate Stochastic Orderings

Some of the main results in this article deal with the increasing convex order of

random sums. Let us recall the definition of this ordering, also known as variability

order, second stochastic dominance or stop-loss order, jointly with the stochastic order.

For a comprehensive discussion on these stochastic orders, we refer to Shaked and

Shanthikumar [39] and Müller and Stoyan [26].

DEFINITION 2.1: Let X and Y be two nonnegative random variables, with survival

functions FX and FY , respectively, then X is said to be smaller than Y in the stochastic

(increasing convex) order (denoted by X ≤st(icx) Y) if

E[φ(X)] ≤ E[φ(Y)]

for all increasing (increasing convex) functions φ for which the expectations exist.

Equivalently, X ≤st Y if for all t ≥ 0 it holds that FX(t) ≤ FY (t).

A characterization of the stochastic ordering that will play a crucial role in this

article is recalled now (see Theorem 1.A.1 in Shaked and Shanthikumar [39]). Given

two random variables X and Y , X ≤st Y if and only if there exist two random variables

X̂ and Ŷ , defined on the same probability space, such that X =st X̂ , Y =st Ŷ , and

X̂ ≤ Ŷ , a.s.

The increasing convex order has been applied in several contexts, such as relia-

bility and actuarial science. It allows one to compare the stop-loss transforms of two

insurance policies for a kind of reinsurance contract (see Müller and Stoyan [26] for

applications in risk theory).

2.2. Multivariate Notions of Convexity

Next, we recall the concepts of convex, directionally convex, and supermodular func-

tions. For a complete discussion on convex functions, we refer to the monograph by

Rockafellar [31]. For a definition and properties of directionally convex functions,

see Shaked and Shanthikumar [38] or Meester and Shanthikumar [23]. For a discus-

sion and background on supermodular functions (that are also called superadditive

functions in the literature) we refer to Marshall and Olkin [22].
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DEFINITION 2.2: A real-valued function φ defined on R
n is said to be the following:

(i) Convex (concave) (denoted by φ ∈ cx(cv)) if

φ(αx + (1 − α)y) ≤ (≥) αφ(x) + (1 − α)φ(y)

for all x, y ∈ R
n and α ∈ [0, 1]. If in addition, φ is increasing (decreasing),

[i.e., for all x ≤ y, then φ(x) ≤ (≥) φ( y)], then we say that φ is increasing

(decreasing) and convex (denoted by φ ∈ icx(icv)).

(ii) Increasing componentwise convex (denoted by φ ∈ iccx) if it is increasing

and it is convex in each argument when the others are held fixed.

(iii) Supermodular (denoted by φ ∈ sm) if

φ(x ∨ y) + φ(x ∧ y) ≥ φ(x) + φ(y)

for all x, y ∈ R
n.

(iv) Directionally convex (concave) (denoted by φ ∈ dcx(dcv)) if for any xi ∈ R
n,

i = 1, 2, 3, 4, such that x1 ≤ [x2, x3] ≤ x4 and x1 + x4 = x2 + x3, then

φ(x1) + φ(x4) ≥ (≤) φ(x2) + φ(x3).

If, in addition, φ is increasing (decreasing), then we say that φ is increasing

(decreasing) and directionally convex (denoted by φ ∈ idcx(idcv)).

A function φ : R
n −→ R

m defined by φ(x) = (φ1(x), . . . , φm(x)) is directionally

convex (concave) if each of the coordinate functions φi, i = 1, 2, . . . , m, is directionally

convex (concave).

Directional convexity neither implies nor is implied by usual convexity (see

Shaked and Shanthikumar [38]). The composition of functions preserves increasing

directional convexity (see Lemma 2.4 in Meester and Shanthikumar [23]). In partic-

ular, the composition of an icx function with an idcx function is an idcx function (see

Corollary 2.5 in Meester and Shanthikumar [23]). A useful characterization of dcx

functions is given now (see Proposition 2.1 in Shaked and Shanthikumar [38]). Given

φ : R
n −→ R, φ ∈ dcx if and only if φ is supermodular and coordinatewise convex.

Remark 2.1: We note that φ is a supermodular function if and only if φ is super-

modular in any couple of arguments when the others are held fixed (see Marshall and

Olkin [22]). From this property and the previous characterization, observe that a func-

tion φ : R
n −→ R is increasing and directionally convex in (θ1, . . . , θn) if and only

if φ is increasing, supermodular in any couple (θi, θl), whenever all other arguments

are held fixed, and convex in any θi, whenever all other arguments are held fixed.

LEMMA 2.1: Let T ⊆ R
n and let g : T −→ N be an increasing and directionally

convex function. If {xj, j ∈ N} is any increasing sequence of real numbers, then the

function ψ(θ) :=
∑g(θ)

j=1 xj is increasing and directionally convex.
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PROOF: First, let us write the function ψ as ψ(θ) = Sg(θ), where Sn =
∑n

j=1 xj. Note

that Sn is increasing and convex when {xj, j ∈ N} is an increasing sequence of real

numbers.

Thus, the composition ψ = S ◦ g is increasing and directionally convex by

Corollary 2.5 in Meester and Shanthikumar [23] and the assertion follows. �

2.3. Multivariate Notions of the Increasing Convex Order

The increasing convex order can be extended to the multivariate case in several ways.

Here, we consider three of them. For a survey on these stochastic orderings, we refer

to Shaked and Shanthikumar [39].

DEFINITION 2.3: Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two n-dimensional

random vectors; then X is said to be smaller than Y in the increasing convex

(increasing componentwise convex, increasing directionally convex) order (denoted

by X ≤icx(iccx,idcx) Y) if

E[φ(X)] ≤ E[φ(Y)]

for all increasing convex [increasing componentwise convex, increasing directionally

convex] real-valued functions φ defined on R
n for which the expectations exist.

Increasing (componentwise, directionally) concave orders are defined analo-

gously. Clearly, the iccx order is stronger than the icx order; that is, if X ≤iccx Y ,

then X ≤icx Y . Also, if X ≤iccx Y , then Xi ≤icx Yi.

Stochastic orders defined above by means of functionals take into account vari-

ability. The following dependence order is defined in terms of supermodular functions.

The supermodular order strictly implies the increasing directionally convex order,

although the supermodular order compares only dependence structure of vectors with

fixed equal marginals and the increasing directionally convex order additionally com-

pares the variability of the marginals, which might be different. For a further discussion

on supermodular order of random vectors, see Marshall and Olkin [22], Shaked and

Shanthikumar [40] and Müller and Stoyan [26].

DEFINITION 2.4: Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two

n-dimensional random vectors, with equal marginal distributions; then X is said

to be smaller than Y in the supermodular order (denoted by X ≤sm Y) if

E[φ(X)] ≤ E[φ(Y)],

for every supermodular real-valued function φ defined on R
n for which the expecta-

tions exist.

For n = 2, the supermodular order is equivalent to the well-known positive quad-

rant dependence order (for short, PQD) (see Joe [15]). The supermodular order has

been recently used in several applied contexts (see Shaked and Shanthikumar [40],
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Müller [25], Bäuerle and Müller [1], Denuit et al. [7], Lillo, Pellerey, Semeraro [20],

Frostig [11], Rüschendorf [35], Lillo and Semeraro [21], or Belzunce et al. [3], among

others).

2.4. Multivariate Stochastic Convexity

At this point, we recall some notions of multivariate stochastic convexity for a family

of parameterized random variables. Shaked and Shanthikumar [36,37] introduced

the notion of stochastic convexity. Multivariate stochastic directional convexity was

introduced in Shaked and Shanthikumar [38] and it was also studied in Chang, Chao,

Pinedo, and Shanthikumar [4] and Meester and Shanthikumar [23].

Stochastic directional convexity was generalized to a general space in Meester

and Shanthikumar [24]. Below, we will consider a family of multivariate random

variables X(θ) for θ ∈ T, where T is a sublattice of either R
n or N

n.

DEFINITION 2.5: A family {X(θ), θ ∈ T} of multivariate random variables is said to

be the following:

(i) Stochastically increasing (denoted by {X(θ), θ ∈ T} ∈ SI) if for any θ i ∈ T,

i = 1, 2, θ1 ≤ θ2, then X(θ1) ≤st X(θ2).

(ii) Stochastically increasing and directionally convex (denoted by {X(θ), θ ∈ T}

∈ SI − DCX) if {X(θ), θ ∈ T} ∈ SI and E[φ(X(θ))] is increasing and direc-

tionally convex in θ for any φ ∈ idcx.

(iii) Stochastically increasing and directionally convex in the sample path

sense (denoted by {X(θ), θ ∈ T} ∈ SI − DCX(sp)) if for any four θ i ∈ T,

i = 1, . . . , 4, such that θ1 ≤ [θ2, θ3] ≤ θ4 and θ1 + θ4 = θ2 + θ3, there exist

four random variables Xi, i = 1, . . . , 4, defined on a common probability

space, such that Xi =st X(θ i), i = 1, . . . , 4 and

[X2, X3] ≤ X4, a.s. (2.1)

and

X1 + X4 ≥ X2 + X3, a.s. (2.2)

(iv) Stochastically increasing and directionally linear in the sample path sense

(denoted by {X(θ), θ ∈ T} ∈ SI − DL(sp)) if in (iii) the inequality (2.2) is

replaced by

X1 + X4 = X2 + X3, a.s. (2.3)

In the case that both the parameter and the random variables are univariate, then

we will use the notation SI − CX(sp) instead of SI − DCX(sp).

Note that stochastic directional convexity in the sample path sense strictly

implies stochastic directional convexity (see Counterexample 3.1 in Shaked and

Shanthikumar [38]).
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Stochastic increasing directional convexity and stochastic increasing directional

convexity in sample path sense are closed by composition with idcx functions (see,

e.g., Lemma 2.15 in Meester and Shanthikumar [23]). Also, both notions of stochastic

convexity are closed by conjunction of independent random variables (see Lemma

2.16 in Meester and Shanthikumar [23] or Theorem 3.3 and Theorem 4.4 in Meester

and Shanthikumar [24]).

Some examples of stochastic directional convexity of parameterized families

of random variables can be found in the literature: See Shaked and Shanthikumar

[38], Chang, Shanthikumar and Yao [5] or Meester and Shanthikumar [24]. For

example, the Bernoulli distribution and the Poisson distribution are SI − DL(sp), the

multinomial distribution and the gamma distribution are SI − DCX(sp) and the mul-

tivariate geometric distribution is SD − DCX(sp). Other examples can be obtained

by using above the preservation properties. Also, under appropriate conditions, some

applied stochastic models have stochastic directional convexity properties (see above

references).

3. MAIN RESULTS

In this section we provide results on stochastic directional convexity and stochastic

directional convexity in the sample path sense for a family of parameterized random

sums, under appropriate conditions on the parameterized families of nonnegative

summands and number of summands. From them, we provide results for comparing

two random sums in the increasing convex order and two vectors of random sums in

the increasing directionally convex order sense when the summands and the number

of summands are dependent by means of a multivariate random environment.

THEOREM 3.1: Consider the family of random sums {Z(δ), δ ∈ D} defined by

Z(δ) =

N(δ)∑

j=1

Xj(δ),

where D is a sublattice in R
n. If

(i) all of the families {Xj(δ), δ ∈ D}, j ∈ N, and {N(δ), δ ∈ D} are independent,

(ii) {Xj(δ), δ ∈ D} ∈ SI − DCX(sp) for every fixed j ∈ N,

(iii) {N(δ), δ ∈ D} ∈ SI − DCX(sp),

(iv) {Xj(δ), j ∈ N} ∈ SI for every fixed δ ∈ D, then {Z(δ), δ ∈ D} ∈ SI −

DCX(sp).

PROOF: Let δi, with i = 1, . . . , 4, be such that δ1 ≤ [δ2, δ3] ≤ δ4 and δ1 + δ4 =

δ2 + δ3. By assumptions (i), (ii), and (iii), we can build on the same probability
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space (�, F , P) the random variables X̂j,i =st Xj(δi), j ∈ N, and N̂i =st N(δi), for

i = 1, . . . , 4, such that, almost surely,

X̂j,1 + X̂j,4 ≥ X̂j,2 + X̂j,3 and X̂j,4 ≥ [X̂j,2, X̂j,3]

and

N̂1 + N̂4 ≥ N̂2 + N̂3 and N̂4 ≥ [N̂2, N̂3].

Note that by construction and assumption (i), the random vectors (X̂j,1, X̂j,2, X̂j,3, X̂j,4),

j ∈ N, and (N̂1, N̂2, N̂3, N̂4) can be assumed independent.

Let now

N̂∗
2 =a.s. min{N̂4, N̂1 + N̂4 − N̂3} and N̂∗

1 =a.s. N̂∗
2 + N̂3 − N̂4 = min{N̂1, N̂3}.

Observe that

N̂2 ≤a.s. N̂∗
2 , N̂1 ≥a.s. N̂∗

1

and

N̂∗
1 + N̂4 =a.s. N̂∗

2 + N̂3, N̂∗
1 ≤a.s. [N̂∗

2 , N̂3] ≤a.s. N̂4.

Similarly, for all j ∈ N, let

X̂∗
j,2 =a.s. min{X̂j,4, X̂j,1 + X̂j,4 − X̂j,3} and

X̂∗
j,1 =a.s. X̂∗

j,2 + X̂j,3 − X̂j,4 = min{X̂j,1, X̂j,3}.

As above, it holds that

X̂j,2 ≤a.s. X̂∗
j,2, X̂j,1 ≥a.s. X̂∗

j,1

and

X̂∗
j,1 + X̂j,4 =a.s. X̂∗

j,2 + X̂j,3, X̂∗
j,1 ≤a.s. [X̂∗

j,2, X̂j,3] ≤a.s. X̂j,4.

Also, again by construction and assumption (i), we can assume independence among

all of the random vectors (X̂∗
j,1, X̂∗

j,2, X̂j,3, X̂j,4), j ∈ N, and (N̂∗
1 , N̂∗

2 , N̂3, N̂4).
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Now, let

Ẑi =

N̂i∑

j=1

X̂j,i, i = 1, . . . , 4, (3.1)

and observe that Ẑi =st Z(δi). Also, let

Ẑ∗
i =

N̂∗
i∑

j=1

X̂∗
j,i, i = 1, 2.

For almost all ω ∈ �, we have

Ẑ1 + Ẑ4 ≥ Ẑ∗
1 + Ẑ4

=

N̂∗
1∑

j=1

X̂∗
j,1 +

N̂4∑

j=1

X̂j,4

=

N̂∗
1∑

j=1

(X̂∗
j,1 + X̂j,4) +

N̂4∑

j=N̂∗
1 +1

X̂j,4

≥

N̂∗
1∑

j=1

(X̂∗
j,2 + X̂j,3) +

N̂∗
2∑

j=N̂∗
1 +1

X̂∗
j,2 +

N̂4∑

j=N̂∗
2 +1

X̂j,3

≥

N̂∗
2∑

j=1

X̂∗
j,2 +

N̂∗
1∑

j=1

X̂j,3 +

N̂3∑

j=N̂∗
1 +1

X̂j+N̂∗
2 −N̂∗

1 ,3.

Now, let X̂ ′
j,3 be sampled from the distribution of X̂j,3 but using the uniform random

variable Fj+N̂∗
2 −N̂∗

1 ,3(X̂j+N̂∗
2 −N̂∗

1 ,3); that is, let X̂ ′
j,3 = F−1

j,3 (Fj+N̂∗
2 −N̂∗

1 ,3(X̂j+N̂∗
2 −N̂∗

1 ,3)),

where Fj,i is the cumulative distribution function of X̂j,i and F−1
j,i is its right

continuous inverse. It obviously holds that X̂ ′
j,3 =st X̂j,3 and, by assumption (iv),

X̂ ′
j,3 ≤a.s. X̂j+N̂∗

2 −N̂∗
1 ,3 for all j = N̂∗

1 + 1, . . . , N̂3. Moreover, the variables X̂ ′
j,3, with

j = N̂∗
1 + 1, . . . , N̂3, are independent from the variables X̂j,3, with j = 1, . . . , N̂∗

1

Prosecuting with the above inequalities, with probability 1 we have Q1

Ẑ1 + Ẑ4 ≥

N̂∗
2∑

j=1

X̂∗
j,2 +

N̂∗
1∑

j=1

X̂j,3 +

N̂3∑

j=N̂∗
1 +1

X̂ ′
j,3

= Ẑ∗
2 + Ẑ ′

3,
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where

Ẑ ′
3 =

N̂∗
1∑

j=1

X̂j,3 +

N̂3∑

j=N̂∗
1 +1

X̂ ′
j,3. (3.2)

Finally, observing that Ẑ∗
2 ≥a.s. Ẑ2, we get

Ẑ1 + Ẑ4 ≥a.s. Ẑ2 + Ẑ ′
3, (3.3)

where the Ẑi, i = 1, 2, 4, are defined as in (3.1) and Ẑ ′
3 is defined as in (3.2).

It is not hard to verify that Ẑ ′
3 =st Z(δ3). Moreover, it is easy to verify that with

probability 1, it holds that

Ẑ4 ≥ [̂Z2, Ẑ ′
3]. (3.4)

In fact, for example, we have

Ẑ ′
3 =

N̂∗
1∑

j=1

X̂j,3 +

N̂3∑

j=N̂∗
1 +1

X̂ ′
j,3 ≤a.s.

N̂∗
1∑

j=1

X̂j,3 +

N̂3∑

j=N̂∗
1 +1

X̂j+N̂∗
2 −N̂∗

1 ,3

≤a.s.

N̂∗
1∑

j=1

X̂j,3 +

N̂4−N̂∗
2 +N̂∗

1∑

j=N̂∗
1 +1

X̂j+N̂∗
2 −N̂∗

1 ,3

=

N̂∗
1∑

j=1

X̂j,3 +

N̂4∑

j=N̂∗
2 +1

X̂j,3

≤a.s.

N̂4∑

j=1

X̂j,3 ≤a.s.

N̂4∑

j=1

X̂j,4 = Ẑ4.

Thus, by inequalities (3.3) and (3.4), recalling that Ẑi =st Z(δi) when i = 1, 2, 4 and

Ẑ ′
3 =st Z(δ3), one gets the assertion. �

The following results deal with comparisons of two random sums in terms of

the dependence between the multivariate random environments. For that, consider a

multivariate random vector of parameters � taking on values in D and consider the

family of random sums Z(�) defined as a mixture of {Z(δ)|δ ∈ D} (defined by (1.5)),

with respect to the random vector �.

COROLLARY 3.1: Let � and �
′ be two random vectors taking on values in D. If the

assumptions of Theorem 3.1 hold, then

� ≤idcx �
′

implies

Z(�) ≤icx Z(�′)
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PROOF: Let u be any increasing and convex univariate function.

Since any univariate increasing and convex function u is also increasing and

directionally convex and since SI − DCX(sp) implies SI − DCX, then it follows that

the function h(δ) = E[u(Z(δ))] is increasing and directionally convex.

Now, the assertion follows from Corollary 2.12 in Meester and Shanthikumar [23].

�

Note that Corollary 3.1 does not improve Theorem 3.1 in Belzunce et al. [3]

since in that result, the assumptions on the sequences {Xj(λ), λ ∈ L}, j ∈ N, and {N(θ),

θ ∈ T} are weaker. However, in Corollary 3.1 we get the icx comparison of the random

sums under the weaker idcx comparison among the random parameters.

The following result is a generalization of the previous one to the case of vectors

of random sums.

COROLLARY 3.2: Consider m ∈ N random sums defined by

Zi(δ) =

Ni(δ)∑

j=1

Xj,i(δ), i = 1, . . . , m

that are independent for any fixed value of (δ) ∈ D and let

Z(δ) = (Z1(δ), . . . , Zm(δ)).

If

(i) all of the families {Xj,i(δ), δ ∈ D}, j ∈ N, and {Ni(δ), (δ) ∈ D}, i = 1, . . . , m,

are independent,

(ii) {Xj,i(δ), δ ∈ D} ∈ SI − DCX(sp) for every fixed j ∈ N and i = 1, . . . , m,

(iii) {Ni(δ), δ ∈ D} ∈ SI − DCX(sp) for any i = 1, . . . , m,

(iv) {Xj,i(δ), j ∈ N} ∈ SI for every fixed δ ∈ D and i = 1, . . . , m,

then

� ≤idcx �
′

implies

Z(�) ≤idcx Z(�′).

PROOF: By Theorem 3.1, we have that {Zi(δ), δ ∈ D} is SI − DCX(sp) for all

i = 1, . . . , m. Then, by applying Theorem 4.4 in Meester and Shanthikumar [24],

we have that

{(Z1(δ), . . . , Zn(δ))|δ ∈ D} ∈ SI − DCX(sp)

and, therefore, it is also SI − DCX.
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Let u be any idcx function. Since {(Z1(δ), . . . , Zm(δ))|δ ∈ D} is SI-DCX, then

also the function h defined by

h(δ) = E[u(Z(δ))] = E[u((Z1(δ), . . . , Zm(δ)))]

is increasing and directionally convex. The assertion now follows by Lemma 2.11 in

Meester and Shanthikumar [23]. �

In the two results presented above, sample path stochastic convexity properties are

assumed for the families of nonnegative summands and random number of summands.

In the following two results, the weaker regular stochastic convexity is assumed and

proved.

In the first one of them, we make use of a different notation for the parameters,

since here different parameters for the summands and the number of summands should

be assumed. However, in the subsequent result some common parameters are allowed.

THEOREM 3.2: Consider the family of random sums {Z(θ , λ), (θ , λ) ∈ T × L}

defined by

Z(θ , λ) =

N(θ)∑

j=1

Xj(λ).

If

(i) all of the families {Xj(λ), λ ∈ L}, j ∈ N, and {N(θ), θ ∈ T} are independent,

(ii) {Xj(λ), λ ∈ L} ∈ SI − DCX for every fixed j ∈ N,

(iii) {N(θ), θ ∈ T} ∈ SI − DCX,

(iv) {Xj(λ), j ∈ N} ∈ SI for every fixed λ ∈ L,

then {Z(θ , λ), (θ , λ) ∈ T × L} ∈ SI − DCX.

PROOF: First, observe that since the families {Xj(λ), λ ∈ L} and {N(θ), θ ∈ T} are SI

by assumptions (ii) and (iii), respectively, then the family {Z(θ , λ), (θ , λ) ∈ T × L} is

clearly SI. Thus, in order to prove the result, it is enough to prove that the function

h(θ , λ) = E[u(Z(θ , λ))]

is increasing and directionally convex whenever u is any increasing and convex real

function. For that, by Remark 2.1 we will prove that h(θ , λ) is increasing and super-

modular in any couple of arguments whenever all other arguments are held fixed, and

convex in any argument whenever all other arguments are held fixed.

Let us see now that hλ(θ) = h(θ , λ) is increasing and directionally convex

in θ for every fixed value λ ∈ L. To prove this, fix λ ∈ L and consider the sum

Sn =
∑N(θ)

j=1 Xj(λ). By Example 5.3.11 in Chang et al. [5], the family {Sn, n ∈ N} is

SI-DCX(sp), thus also SI-CX. Now, by Theorem 8.E.1 in Shaked and Shanthikumar
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[39] and by assumption (iii), it follows that {SN(θ), θ ∈ T} is SI-DCX. Thus, by the

definition of SI-DCX, the function hλ(θ) = E[u(SN(θ))] is increasing and direction-

ally convex for every function u (and, in particular, if u is univariate icx). Thus, from

Remark 2.1, hλ(θ) is increasing and supermodular in any couple (θi, θl) whenever all

other arguments are held fixed, and convex in any θi whenever all other arguments are

held fixed.

Next, let us see that hθ (λ) = h(θ , λ) is increasing and directionally convex in

λ for every fixed value of θ . For that, fix a value θ and consider

hθ (λ) = h(θ , λ)

= E


u




N(θ)∑

j=1

Xj(λ)







= E


E


u




N(θ)∑

j=1

Xj(λ)


 |N(θ)







=

∞∑

n=0

φn(λ)P [N(θ) = n] ,

where φn(λ) = E
[
ψ̃n(Xn(λ))

]
, with Xn(λ) = (X1(λ), . . . , Xn(λ)) and ψ̃n(x) =

u(
∑n

i=1 xi) (here x = (x1, x2, . . . , xn) is any nonnegative real vector).

It is easy to see that ψ̃n(x) is increasing and directionally convex in x for every

n ∈ N.

Thus, since {Xn(λ) = (X1(λ), . . . , Xn(λ)), λ ∈ L} ∈ SI − DCX for every n ∈ N

(by Theorem 3.3 in Meester and Shanthikumar [23] and assumptions (i) and (ii)), we

get that φn(λ) is increasing and directionally convex in λ for every n ∈ N. Thus, also

hθ (λ) = E[φN(θ)(λ)] is increasing and directionally convex in λ.

As above, from Remark 2.1 it follows that for any fixed θ , hθ (λ) is increasing and

supermodular in any couple (λi, λl) whenever all other arguments are held fixed, and

convex in any λi whenever all other arguments are held fixed.

Note also that h is supermodular in any couple of arguments (θi, λl) whenever

all other parameters are held fixed. In fact, this assertion can be proved by the same

arguments as in the proof of Theorem 2.1 in Belzunce et al. [3] by taking into in

account by assumption (iii) that the family N(θ) is stochastically increasing in θi and,

analogously, from assumption (ii) that the families Xj(λ), j ∈ N, are stochastically

increasing in λl.

Thus, the function h(θ , λ) is supermodular and convex in any argument whenever

all other arguments are held fixed. Moreover, the function h(θ , λ) is clearly increasing.

Hence, from Proposition 2.1 in Shaked and Shanthikumar [38], it is increasing and

directionally convex and the assertion follows. �

As immediate consequence of Theorem 3.2, we can easily get the following

conditions for the icx comparison of random sums in random environments.
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COROLLARY 3.3: Consider the family of random sums {Z(θ , λ, δ), (θ , λ, δ) ∈

T × L × D} defined by

Z(θ , λ, δ) =

N(θ ,δ)∑

j=1

Xj(λ, δ).

If

(i) all of the families {Xj(λ, δ), (λ, δ) ∈ L × D}, j ∈ N, and {N(θ , δ), (θ , δ) ∈

T × D} are independent,

(ii) {Xj(λ, δ), (λ, δ) ∈ L × D} ∈ SI − DCX for every j ∈ N,

(iii) {N(θ , δ), (θ , δ) ∈ T × D} ∈ SI − DCX,

(iv) {Xj(λ, δ), j ∈ N} ∈ SI for every fixed (λ, δ) ∈ L × D,

then

(�, �, �) ≤idcx (�′, �′, �′)

implies

Z(�, �, �) ≤icx Z(�′, �′, �′)

PROOF: First, we will prove that for any two random vectors (�1, �1, �1) and

(�2, �2, �2),

(�1, �1, �1) ≤idcx (�2, �2, �2) ⇒ ((�1, �1), (�1, �1)) ≤idcx ((�2, �2), (�2, �2)).

(3.5)

For it, note that if g((θ , δ1), (λ, δ2)) is idcx, then also the function φ(θ , λ, δ) =

g((θ , δ), (λ, δ)) is idcx. Therefore, if (�1, �1, �1) ≤idcx (�2, �2, �2), then for any

idcx function g we have that

E[g((�1, �1), (�1, �1))] = E[φ(�1, �1, �1)]

≤ E[φ(�2, �2, �2)]

= E[g((�2, �2), (�2, �2))],

and this proves (3.5).

We will denote Z̃(θ , λ, δ1, δ2) =
∑N(θ ,δ1)

j=1 Xj(λ, δ2) and observe that Z(�, �, �) =st

Z̃(�, �, �, �).



705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

PES 08-023

CONVEX COMPARISONS FOR RANDOM SUMS 17

Now, let u be any increasing and convex function and let h be defined as in

Theorem 3.2. Then, by Theorem 3.2 and inequality (3.5) we get

E[u(Z(�, �, �))] = E[u(Z̃(�, �, �, �))]

= E[E[u(Z̃(�, �, �, �))|(�, �, �, �)]]

= E[h((�, �), (�, �))]

≤ E[h((�′, �′), (�′, �′))]

= E[E[u(Z̃(�′, �′, �′, �′))|(�′, �′, �′, �′)]]

= E[u(Z̃(�′, �′, �′, �′))]

= E[u(Z(�′, �′, �′))]

(i.e., the assertion). �

Note that the above result can be generalized to a vector of random sum like for

Corollary 3.2. In fact, the proof of the following corollary is similar to the proof of

Corollary 3.2, but here we use Theorem 3.3 in Meester and Shanthikumar [24] instead

of Theorem 4.4 in Meester and Shanthikumar [24].

COROLLARY 3.4: Consider m ∈ N random sums defined by

Zi(θ , λ, δ) =

Ni(θ ,δ)∑

j=1

Xj,i(λ, δ), i = 1, . . . , m,

that are independent for any fixed value of (θ , λ, δ) ∈ T × L × D and let

Z(θ , λ, δ) = (Z1(θ , λ, δ), . . . , Zm(θ , λ, δ)).

If

(i) all of the families {Xj,i(λ, δ), (λ, δ) ∈ L × D}, j ∈ N, and {Ni(θ , δ),

(θ , δ) ∈ T × D}, i = 1, . . . , m, are independent,

(ii) {Xj,i(λ, δ), (λ, δ) ∈ L × D} ∈ SI − DCX for every j ∈ N and i = 1, . . . , m,

(iii) {Ni(θ , δ), (θ , δ) ∈ T × D} ∈ SI − DCX for any i = 1, . . . , m,

(iv) the sequence {Xj,i(λ, δ), j ∈ N} ∈ SI for every fixed (λ, δ) ∈ L × D and

i = 1, . . . , m,

then

(�, �, �) ≤idcx (�′, �′, �′)

implies

Z(�, �, �) ≤idcx Z(�′, �′, �′)
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4. APPLICATIONS

In this section we provide some examples to illustrate how the main results can be

applied.

4.1. Collective Risk Models in Actuarial Sciences

Consider an homogeneous portfolio of n risks over a single period of time and assume

that during that period, each policyholder i can have a nonnegative claim Xi with

probability θi ∈ [0, 1] ⊆ R. Then the total claim amount S(θ1, . . . , θn) during that

time can be represented as

S(θ1, . . . , θn) =

n∑

i=1

Ii(θi)Xi,

where Ii(θi) denotes a Bernoulli random variable with parameter θi.

As it is pointed out, for example, in Frostig [10], assumption of independence

among the Bernoulli random variables Ii(θi), i = 1, . . . , n, is not suitable to describe

real contexts, since their distributions might actually depend on some common random

environment. Thus, one can replace the vector of real parameters (θ1, . . . , θn) by a

random vector � = (�1, . . . , �n), with values in [0, 1]n ⊆ R
n and describing both

the random environment for occurrences of claims and the dependence among them.

Some known results in the literature deal with stochastic comparisons of random sums

involving Bernoulli random variables (see Lefèvre and Utev [18], Hu and Wu [14],

Frostig [10], or Hu and Ruan [13]).

Here, we state conditions for the stochastic comparison, in the increasing convex

sense, of two total claim amounts defined as above.

PROPOSITION 4.1: Let I(θ) = (I1(θ1), . . . , In(θn)), where the Ii(θi) are indepen-

dent Bernoulli random variables with parameters θi, i = 1, . . . , n. Consider

N(θ1, . . . , θn) =
∑n

i=1 Ii(θi). Then {N(θ1, . . . , θn), (θ1, . . . , θn) ∈ [0, 1]n ⊆ R
n} ∈

SI − DCX(sp).

PROOF: First, note that {N(θ1, . . . , θn), (θ1, . . . , θn) ∈ [0, 1]n ⊆ R
n} is clearly stochas-

tically increasing.

Now, consider a family of Bernoulli random variables {Iθ : θ ∈ [0, 1]}. It is easy

to see that this family is SI-DL(sp) (see, e.g., Example 5.3.8 in Chang et al. [5]).

Therefore, for any fixed θi,k(k = 1, . . . , 4, i = 1, . . . , n) such that θi,1 ≤ [θi,2, θi,3] ≤

θi,4 and θi,1 + θi,4 = θi,2 + θi,3, we can build, on the same probability space, random

variables Îi(θk) =st Ii(θk) for k = 1, . . . , 4 and i = 1, . . . , n, such that

[
Îi(θi,2), Îi(θi,3)

]
≤ Îi(θi,4), a.s.

and

Îi(θi,1) + Îi(θi,4) = Îi(θi,2) + Îi(θi,3), a.s.
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Note that, by independence, we can build all of the variables Îi(θi,k), for all i = 1, . . . , n,

on the same probability space.

Now, consider the random variables N̂k =
∑n

i=1 Îi(θi,k). We observe that

[N̂2, N̂3] ≤ N̂4, a.s.

and

N̂1 + N̂4 = N̂2 + N̂3, a.s.

Then {N(θ1, . . . , θn), (θ1, . . . , θn) ∈ [0, 1]n ⊆ R
n} ∈ SI − DL(sp), since

(θ1,1, . . . , θn,1) ≤ [(θ1,2, . . . , θn,2), (θ1,3, . . . , θn,3)] ≤ (θ1,4, . . . , θn,4), a.s.

(θ1,1, . . . , θn,1) + (θ1,4, . . . , θn,4) = (θ1,2, . . . , θn,2) + (θ1,3, . . . , θn,3), a.s.

and N̂k =st N(θ1,k , . . . , θn,k), for k = 1, . . . , 4. The assertion follows observing that

SI − DL(sp) implies SI − DCX(sp). �

As immediate consequence, we get the following result.

COROLLARY 4.1: Let X1, . . . , Xn be independent and identically distributed nonneg-

ative random variables and let I1(θ1), . . . , In(θn) be independent Bernoulli random

variables with parameters θ1, . . . , θn, respectively, and independent of Xi, i = 1, . . . , n.

Consider the total claim amounts S(θ1, . . . , θn) =
∑n

i=1 Ii(θi)Xi. Then

(�1, . . . , �n) ≤idcx (�′
1, . . . , �′

n)

implies

S(�1, . . . , �n) ≤icx S(�′
1, . . . , �′

n).

PROOF: Observe that since the claims Xi are assumed to be independent, then

S(θ1, . . . , θn) =st

N(θ1,...,θn)∑

i=1

Xi.

The assertion now follows from Proposition 4.1 and Corollary 3.1. �

4.2. Population Growth Models

Branching processes have been considered an appropriate mathematical model for the

description of populations’ growth, where individuals produce offsprings according

to some stochastic laws. Several applications involve medicine, molecular and cel-

lular biology, human evolution, physics or actuarial science (see Rolski, Schmidli,

Schmidt, and Teugeis [32], Ross [33], or Kimmel and Axelrod [16]). In this subsec-

tion, we provide a result dealing with stochastic comparisons between two branching
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processes defined on random environments, which is closely related to Theorem 2.2

in Pellerey [30].

The branching processes on random environments that we consider here are

defined as follows. Let θ = {θ0, θ1, . . . , } be a sequence of values in T describing

the evolutions of the environment, and define, recursively, the stochastic process

Z(θ) = {Zn(θ0, . . . , θn), n ∈ N} by

Z0(θ0) = X1,0(θ0)

and

Zn(θ0, . . . , θn) =

Zn−1(θ0 ,...,θn−1)∑

j=1

Xj,n(θn), n ≥ 1. (4.1)

In order to deal with random evolutions of the environment, we consider a

sequence � = (�0, �1, . . .) of random variables taking on values in T and we consider

the stochastic process Z(�) = {Zn(�0, . . . , �n), n ∈ N} defined by

Z0(�0) = X1,0(�0)

and

Zn(�0, . . . , �n) =

Zn−1(�0 ,...,�n−1)∑

j=1

Xj,n(�n), n ≥ 1, (4.2)

where, for every j, k ∈ N, Xj,k(�k) is a nonnegative random variable such that

[Xj,k(�k)|�k = θ ] =st Xj,k(θ).

First, we prove the SI-DCX(sp) property of such parameterized families of

branching processes.

PROPOSITION 4.2: Let θ = (θ0, θ1, . . .) be a sequence of values in T ⊆ R and consider

the stochastic process defined by (4.1). If

(i) the variables {Xj,k(θk)}, j ∈ N and k ∈ N are all mutually independent,

(ii) {Xj,k(θk), θk ∈ T} ∈ SI − CX(sp) for every fixed j ∈ N and k ∈ N,

(iii) {Xj,k(θk), j ∈ N} ∈ SI for every fixed θk ∈ T and k ∈ N,

then {Zn(θ0, . . . , θn), (θ0, . . . , θn) ∈ T
n+1} ∈ SI − DCX(sp) for every n ∈ N.

PROOF: We will proceed by induction. First, observe that, trivially we have that

{Z1(θ0), (θ0) ∈ T} is SI − CX(sp) and, thus, SI − DCX(sp). Now, assume that asser-

tion is true for n − 1; that is, assume that {Zn−1(θ0, . . . , θn−1), (θ0, . . . , θn−1) ∈ T
n} is

SI − DCX(sp).

Then, by Theorem 3.1 and the inductive hypothesis, it follows that

Zn(θ0, . . . , θn) =

Zn−1(θ0 ,...,θn−1)∑

j=1

Xj,n(θn) (4.3)

is SI − DCX(sp) in (θ0, . . . , θn) ∈ T
n+1 and, thus, the assertion follows. �
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From the previous result, we can easily get the following comparison result for

two branching processes defined on two different random environments (see Pellerey

[30] for further details)).

COROLLARY 4.2: Consider the stochastic processes Z(θ) = {Zn(θ0, . . . , θn), n ∈ N}

and Z(�) = {Zn(�0, . . . , �n), n ∈ N} defined by (4.1) and (4.2), respectively. If the

assumptions of Proposition 4.2 hold, then

(�1, . . . , �n) ≤idcx (�′
1, . . . , �′

n)

implies

Zn(�1, . . . , �n) ≤icx Zn(�
′
1, . . . , �′

n).

4.3. Cumulative Damage Shock Models

Shock models are of great interest in the context of reliability theory since they are

commonly used to describe the lifetime or the reliability of systems or items subjected

to shocks. In this context, compound Poisson processes are used to describe the wear

accumulated by systems during time. Assume that a system is subjected to shocks

arriving according to a Poisson process Nθ having rate θ > 0 and that the ith shock

causes a nonnegative damage Xi, where the damages accumulate additively. Then the

total wear accumulated up to time t ≥ 0 by the system is given by (see Esary, Marshall,

and Proschan [9])

Wθ (t) =

Nθ (t)∑

i=1

Xi, (4.4)

with Wθ (t) = 0 in the case Nθ (t) = 0.

If the system fails when the accumulated wear exceeds a fixed threshold, then

some properties of the distribution of the system lifetime can be obtained from

stochastic properties of the process Wθ = {Wθ (t), t ∈ R}.

In literature there are many articles dealing with stochastic comparisons among

accumulated wear processes defined as in (4.4). However, almost all of them assume

independence among all damages Xi and also independence between the damages

and the counting process Nθ (see, e.g., Esary et al. [9], Ross and Schechner [34], or

Pellerey [27]). Here, we provide a generalization of these results under conditional

independence among damages and the shock arrival process.

For it, assume that the system is subjected to shocks arriving according to a Pois-

son process Nθ . Let Xj(θ , λ) denote the damage caused by the jth shock, parameterized

by the same parameter θ of the process Nθ and a generic environmental parameter λ

that is common for all damages. Then the total wear accumulated up to time t ≥ 0 by
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the system is given by

Wθ ,λ(t) =

Nθ (t)∑

j=1

Xj(θ , λ) (4.5)

(where
∑Nθ (t)

j=1 Xj(θ , λ) = 0 in the case Nθ (t) = 0).

Now, assume that the parameters are given by random environmental factors (i.e.,

by a random vector (�, �)), and consider the wear process

W�,�(t) =

N�(t)∑

j=1

Xj(�, �), (4.6)

defined as a mixture of the families Wθ ,λ with respect to the vector (�, �). Then by

Corollary 3.1 and since Poisson random variables are SI − DL(sp), we obtain the

following comparison criterion.

COROLLARY 4.3: Consider the stochastic processes Wθ ,λ and W�,� defined by (4.5)

and (4.6), respectively. If

(i) Xj(θ , λ) are independent for all j ∈ N for any fixed values of (θ , λ),

(ii) {Xj(θ , λ), (θ , λ) ∈ R
+ × R

+} ∈ SI − DCX(sp) for any j ∈ N,

(iii) the families {Xj(θ , λ), (θ , λ) ∈ R
+ × R

+} and {Nθ , θ ∈ R
+} are independent,

(iv) {Xj(θ , λ), j ∈ N} ∈ SI for any (θ , λ) ∈ R
+ × R

+,

then

(�, �) ≤idcx (�′, �′)

implies

W�,�(t) ≤icx W�′,�′(t) ∀t ≥ 0.

Similar results can be stated in case the damages do not accumulate additively.

For example, assume that the damage caused by the ith shock is given by a function

of the previously accumulated damage and the intensity Xi of the ith shock. For

that, consider a cumulative damage discrete-time process W(λ) = {Wn(λ1, . . . , λn),

n ∈ N, λi ∈ R
+, i = 1, . . . , n} defined recursively as

W1(λ1) = X1(λ1)

and

Wn(λ1, . . . , λn) = Wn−1(λ1, . . . , λn−1) + g(Wn−1(λ1, . . . , λn−1), Xn(λn)), n > 1.

Now, consider two processes defined as above but with parameters given by

realizations of two vectors (�1, . . . , �n) and (�′
1, . . . , �′

n) describing different envi-

ronmental conditions. Proceeding by induction and using arguments similar to those
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in the previous proof and Lemma 2.4 in Meester and Shanthikumar [23], one can

easily prove the following result.

COROLLARY 4.4: Consider Wn(λ1, . . . , λn), n ∈ N, λi ∈ R
+, i = 1, . . . , n defined as

above. If

(i) the families {Xi(λi), λi ∈ R
+}, with i = 1, . . . , n, are independent,

(ii) {Xi(λi), λi ∈ R
+} ∈ SI − CX(sp), for every fixed value i = 1, . . . , n,

(iii) {Xi(λi), i = 1, . . . , n} ∈ SI, for every fixed value λi ∈ R
+,

then

(�1, . . . , �n) ≤idcx (�′
1, . . . , �′

n) ∀n ∈ N

implies

Wn(�1, . . . , �n) ≤icx Wn(�
′
1, . . . , �′

n) ∀n ∈ N

whenever the function g(w, x) is increasing and directionally convex.

Acknowledgment

We sincerely thank Professor Moshe Shaked for useful comments and suggestions regarding the proof

of Theorem 3.1. F. Pellerey is supported by the Italian PRIN-Cofin 2006 “Metodologie a supporto di

problemi di ottimizzazione e di valutazione e copertura di derivati finanziari.” J. M. Fernández-Ponce is

supported by Consejeria de Innovacion, Ciencia y Empresa of Junta de Andalucia under grant Ayuda a

la Investigación (resol. 19 de septiembre de 2005). E. M. Ortega is supported by Operations Research

Center in University Miguel Hernandez and Ministerio de Ciencia y Tecnología under grant BFM2003-

02947.

References

1. Bäuerle, N. & Müller,A. (1998). Modeling and comparing dependencies in multivariate risk portfolios.

Astin Bulletin 28: 59–76.

2. Bäuerle, N. & Rolski, T. (1998). A monotonicity result for the work-load in Markov-modulates queues.

Journal of Applied Probability 35: 741–747.

3. Belzunce, F., Ortega, E.M., Pellerey, F., & Ruiz, J.M. (2006). Variability of total claim amounts under

dependence between claims severity and number of events. Insurance: Mathematics and Economics

38: 460–468.

4. Chang, C.-S., Chao, X.L., Pinedo, M., & Shanthikumar, J.G. (1991). Stochastic convexity

for multidimensional processes and applications. IEEE Transactions on Automated Control 36:

1347–1355.

5. Chang, C.-S., Shanthikumar, J.G., & Yao, D.D. (1994). Stochastic convexity and stochastic majoriza-

tion. In D.D. Yao (ed.), Stochastic modeling and analysis of manufacturing systems. New York:

Springer-Verlag.

6. Denuit, M., Dhaene, J., Goovaerts, M., & Kaas, R. (2005). Actuarial theory for dependent risks.

Measures, orders and models. Chichester, UK: Wiley.

7. Denuit, M., Genest, C., & Marceau, E. (2002). Criteria for the stochastic ordering of random sums,

with acturial applications. Scandinavian Actuarial Journal 1: 3–16.

8. Denuit, M. & Müller, A. (2002). Smooth generators of integral stochastic orders. Annals of Applied Q2

Probability 12: 1174–1184.



1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

PES 08-023

24 J. M. Fernández-Ponce, E. M. Ortega, and F. Pellerey

9. Esary, J.D., Marshall, A.W., & Proschan, F. (1973). Shock models and wear processes. The Annals of

Probability 1: 627–649.

10. Frostig, E. (2001). Comparison of portfolios which depend on multivariate Bernoulli random variables

with fixed marginals. Insurance: Mathematics and Economics 29: 319–331.

11. Frostig, E. (2003). Ordering ruin probabilities for dependent claim streams. Insurance: Mathematics

and Economics 32: 93–114.

12. Frostig, E. & Denuit, M. (2006). Monotonicity results for portfolios with heterogeneous claims arrivals

processes. Insurance: Mathematics and Economics 38: 484–494.

13. Hu, T. & Ruan, L. (2004). A note on multivariate stochastic comparinsons of Bernoulli random

variables. Journal of Statistical Planning and Inference 126: 281–288.

14. Hu, T. & Wu, Z. (1999). On dependence of risks and stop-loss premiums. Insurance: Mathematics and

Economics 24: 323–332.

15. Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.

16. Kimmel, M. & Axelrod, D.E. (2002). Branching processes in biology. New York: Springer-Verlag.

17. Kulik, R. (2003). Stochastic comparison of multivariate random sums. Applicationes Mathematicae

30: 379–387.

18. Lefèvre, C. & Utev, S. (1996). Comparing sums of exchangeable Bernoulli random variables. Journal

of Applied Probability 33: 285–310.

19. Li, H. & Xu, S. (2001). Directionally convex comparison of correlated first passage times. Methodology

and Computing in Applied Probability 3: 365–378.

20. Lillo, R.E., Pellerey, F., Semeraro, P., & Shaked, M. (2003). On the preservation of the supermodular

order under multivariate claim models. Ricerche di Matematica 52: 73–81.

21. Lillo, R.E. & Semeraro, P., (2004). Stochastic bounds for discrete-time claim processes with correlated

risks. Scandinavian Actuarial Journal 1: 1–13.

22. Marshall, A.W. & Olkin, I. (1979). Inequalities: Theory of majorization and its Applications. New

York: Academic Press.

23. Meester, L.E. & Shanthikumar, J.G. (1993). Regularity of stochastic processes. A theory based on

directional convexity. Probability in the Engineering and Informational Sciences 7: 343–360.

24. Meester, L.E. & Shanthikumar, J.G. (1999). Stochastic convexity on general space. Mathematics of

Operations Research 24: 472–494.

25. Müller, A. (1997). Stop-loss order for portfolios of dependent risks. Insurance: Mathematics and

Economics 21: 219–223.

26. Müller, A. & Stoyan, D. (2002). Comparison methods for stochastic models and risks, Chichester, UK:

Wiley.

27. Pellerey, F. (1993). Partial orderings under cumulative damage shock models. Advances in Applied

Probability 25: 939–946.

28. Pellerey, F. (1997). Some new conditions for the increasing convex comparison of risks. Scandinavian

Actuarial Journal 97: 38–47.

29. Pellerey, F. (1999). Stochastic comparisons for multivariate shock models. Journal of Multivariate

Analysis 71: 42–55.

30. Pellerey, F. (2006). Comparison results for branching processes in random environments. Rapporto

interno 9, Dipartimento di Matematica, Politecnico di Torino, Torino.

31. Rockafellar, R.T. (1970). Convex analysis. Princeton, NJ: Princeton University Press. Q3

32. Rolski, T., Schmidli, H., Schmidt, V., & Teugels, J. (1999). Stochastic processes for insurance and

finance. New York: Wiley.

33. Ross, S.M. (1992). Applied probability models with optimization applications. New York: Dover.

34. Ross, S.M. & Schechner, Z. (1983). Some reliability applications of the variability ordering. Operations

Research 32: 679–687.

35. Rüschendorf, L. (2004). Comparison of multivariate risks and positive dependence. Advances in

Applied Probability 41: 391–406.

36. Shaked, M. & Shanthikumar, J.G. (1988). Stochastic convexity and its applications. Advances in

Applied Probability 20: 427–446.



1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

PES 08-023

CONVEX COMPARISONS FOR RANDOM SUMS 25

37. Shaked, M. & Shanthikumar, J.G. (1988). Temporal stochastic convexity and concavity. Stochastic

Processes and Their Applications 27: 1–20.

38. Shaked, M. & Shanthikumar, J.G. (1990). Parametric stochastic convexity and concavity of stochastic

processes. Annals of the Institute of Statistical Mathematics 42: 509–531.

39. Shaked, M. & Shanthikumar, J.G. (2007). Stochastic orders. New-York: Springer.

40. Shaked, M. & Shanthikumar, J.G. (1997). Supermodular stochastic orders and positive dependence of

random vectors. Journal of Multivariate Analysis 61: 86–101.


