
 
 

 

  

Abstract— This paper proposes a new and very flexible data 
model, called Gene Expression Graph (GEG), for genes 
expression analysis and classification. Three features 
differentiate GEGs from other available microarray data 
representation structures: (i) the memory occupation of a GEG 
is independent of the number of samples used to built it; (ii) a 
GEG more clearly expresses relationships among expressed 
and non expressed genes in both healthy and diseased tissues 
experiments; (iii) GEGs allow to easily implement very efficient 
classifiers. The paper also presents a simple classifier for 
sample-based classification to show the flexibility and user-
friendliness of the proposed data structure. 

I. INTRODUCTION 
icroarray technology has evolved since the 1980s. A 
DNA microarray is a collection of microscopic DNA 

spots, usually representing single genes, regularly arranged 
on a solid support, such as a glass microscope slide, and 
covalently attached via a chemical matrix. Tens of thousands 
of DNA probes can be attached to a single slide, and the 
genes they represent can all be analyzed in a single 
experiment. Microarrays provide simultaneous expression 
measurements for thousands of genes and facilitate the 
analysis of the complex relations among them. This new 
technology is being used to address several goals in 
bioinformatics [1][2].  

Among the different applications of microarrays, a 
challenging research problem is how to use genes expression 
data to classify diseases on a molecular level. It involves 
designing expression-based classifiers to discriminate 
differences in cells state, such as one type of cancer or 
another. An expression-based microarray phenotype 
classifier takes a vector of gene expression levels as input 
and outputs a class label to predict the class (phenotype) the 
input vector belongs to [3]. Classifiers design involves 
assessing expression levels from different microarrays 
experiments, determining spots/genes whose expression is 
relevant, and then applying a rule to design the classifier 
from the sampled microarray data.  

The main problem in this type of classification is the huge 
disparity between the number of potential gene expressions 
(thousands) and the number of samples (usually less than a 
hundred). This extreme disparity impacts the major aspects 
of the classifier design: the classification rule, the error 
estimation, and the feature selection. 
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Many machine-learning techniques have been applied to 
classify microarray data. These techniques include artificial 
neural networks [4], [5], [6] and [7], Bayesian approaches 
[8] and [9], support vector machines [10], [11] and [12], 
decision trees [13] and [14], and k nearest neighbors [15].  

Evolutionary techniques have also been used to analyze 
gene expression data. Genetic algorithms and genetic 
programming are mainly used in gene selection [23][24], 
optimal gene sets finding [25], disease prediction [26], and 
classification [27] [28] [29] [30]. Approaches that combine 
multiple classifiers have also received much attention in the 
past decade, and this is now a standard approach to 
improving classification performance in machine-learning. 
[31][32][33][34][35][36] 

While the proposed solutions mainly focus on the 
definition of very efficient classification algorithms, one 
issue that has not been widely addressed is the definition of 
flexible data structures that can be used to represent classes 
of phenotypes and features relationships.  

This paper proposes a new and very flexible data model 
for gene expression analysis and classification called Gene 
Expression Graph (GEG). Three features differentiate GEGs 
from other available microarray data representation 
structures, and in particular from Gene Expression Matrices 
[16]: (i) the memory occupation of a GEG is independent of 
the number of samples used to built it; (ii) a GEG more 
clearly expresses relationships among expressed and non 
expressed genes in both healthy and diseased tissues 
experiments; (iii) GEGs allow to easily locate potential 
informative genes, i.e. genes whose expression levels 
strongly correlate with a particular phenotype. 

We believe that this new data model is able to intrinsically 
express very useful information about microarray 
experiments that can support the development of new and 
very efficient feature extraction and classification 
algorithms. Although the goal of this paper is to introduce 
the new data model, to demonstrate the usability of the 
proposed representation, the paper also presents a simple 
classifier for sample-based classification and its applications 
on a set of microarray experiments for three well known 
diseases: Diffuse Large B-Cell Lymphoma, Lymphocytic 
Leukemia Watch&Wait and Lymphocytic Leukemia. 

The paper is organized as follows: Section II describes 
how to build a Gene Expression Graph starting from a set of 
experiments, and Section III proposes a simple example of 
classifier based on GEGs. Section IV presents some 
experimental results and Sections V concludes the paper 
suggesting future activities. 
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II. BUILDING GENE EXPRESSION GRAPHS 
A microarray experiment typically assesses a large 

number of DNA sequences (genes, cDNA clones, or 
expressed sequence tags ESTs) under multiple conditions. 
These conditions may be a collection of different tissue 
samples (e.g., normal versus cancerous tissues).  

The result of a microarray experiment is a gene expression 
dataset usually represented in the form of a real-valued 
expression matrix, called Gene Expression Matrix (GEM) 
[16][17]. A Gene Expression Matrix M defined for a set of m 
samples, each involving n genes is defined as: 

 

€ 

M = {wi, j |1≤ i ≤ n,1≤ j ≤ m} (1) 
 
where: 

• Each row   

€ 

 g i  (

€ 

1≤ i ≤ n ) is associated to a gene. It 
identifies the expression pattern of gene i over m 
samples; 

• Each column 
  

€ 

 s j  (

€ 

1≤ j ≤ m ) is associated to a 
sample. It represents the genes expression profile 
of the sample; 

• Each element 

€ 

wi, j ∈ M  measures the expression 
of gene i in sample j. 

 
The original GEM obtained from the scanning process of 

a set of microarrays usually contains noise, missing values, 
and systematic variations arising from the experimental 
procedure. This row data is therefore usually pre-processed 
before performing any type of analysis. Examples of pre-
processing techniques (out of the scope of this paper) can be 
found in [18][19][20]. 

A Gene Expression Graph modeling a microarray 
experiment can be easily built starting from one or more 
GEMs. A GEG elaborates the information contained in the 
GEMs in order to clearly highlight those genes considered 
“expressed”.  

Since gene expression levels (

€ 

wi, j ) in a GEM are 
represented as real numbers in a continuous interval of valid 
values, it is clear that, in order to discriminate between 
expressed and non-expressed genes, it is necessary to define 
an expression threshold T able to remove the biological and 
experimental noise. This is one of the most critical 
parameters affecting the quality of the resulting GEG. 

A Gene Expression Graph built over a GEM M is a non-
oriented weighted graph 

€ 

GEG = (V ,E)  where: 

• V is the set of vertices. The vertex 

€ 

vi ∈ V  is 
associated with gene i of M;  

• 

€ 

E = (u,v) | u,v ∈ V{ } is the set of edges 
connecting vertices (genes). Two vertices u and v 
are connected by an edge iff the corresponding 
genes are both expressed in the same sample 

  

€ 

 s j ∈ M .  

If n genes are expressed in the same sample 
  

€ 

 s j ∈ M , 
each corresponding vertex is connected to the other n-1 in 
the graph. Therefore, genes expressed in the same sample 
constitute a clique in the graph.  

Each edge 

€ 

(u,v)∈ E  is finally weighted with a weight 

€ 

Wu,w  that counts the number of times the genes associated 
with vertexes u and v are simultaneously expressed in the 
same sample over the m samples included in M. In a graph 
representing a single sample (microarray), each edge will be 
weighted as 1. Adding additional experiments will modify 
the graph by introducing additional edges and/or by 
modifying the weight of existing ones.  Implicitly, this 
representation takes also into account non-expressed genes. 
Missing vertexes correspond to non-expressed genes 
relationships. 

Algorithm 1 summarizes, using a pseudo-code formalism, 
the steps required to build a GEG starting from a Gene 
Expression Matrix. 

Since differential analysis between healthy and diseased 
tissues is widely used in gene expression analysis, to 
represent a complete microarray experiment we would need 
two graphs, one for the healthy tissue (green dye in c-DNA 
microarrays) and one for diseased one (red dye in c-DNA 
microarrays). Since both experiments share the same set of 
genes, we can compact the two resulting GEGs into a single 
graph 

€ 

GEG = (V ,Ed ,Eh ) with two sets of edges: 

• Diseased edges (

€ 

Ed ): representing the genes 
expression relationships in the diseased tissues; 

• Healthy edges (

€ 

Eh ): representing the genes 
expression relationships in the healthy tissue. 

Finally, each vertex v of a GEG is also labeled with a set 
of additional information that may in turn be useful for 
future elaborations: 

• The Name and UnigeneID [21] of the corresponding 
gene; 

• The Total Expression Intensity (TEI) for both the 
healthy and the diseased tissues over the different 
samples. The TEI is computed as the sum of the 
expression intensities of the same gene in the different 
samples; 

• The Expression Counts (EC) of the gene, i.e., the 
number of times the gene is expressed in the healthy and 
the diseased samples. 
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Fig. 1 shows an example of GEG construction from a set 

of six samples already filtered with the threshold T in order 
to identify expressed and not expressed genes. Mh and Md 
are the two GEMs corresponding to the healthy and diseased 
tissue experiments used for creating the final graph. The 
label of each vertex in the graph reports the gene name, and 
the two expressions counts. 

 

 
If new samples become available from new experiments 

referring to the same pathology, the related information can 
be easily added to the corresponding GEG at anytime. Since 
GEGs store information about both expressed and non-
expressed genes, by simply changing the expression 
thresholds T it is possible to drastically reduce the number of 
significant genes to be used for clustering or signature 
extraction, and also to precisely target the set of genes to be 
investigated in future experiments. Finally, the memory 
occupation of a GEG is independent of the number of 
samples in the initial dataset. 

A. Gene Expression Graphs Representation 
To efficiently represent a GEG, we use a modified 

ADjacency Matrix (ADM). A standard ADM for a non-
oriented graph 

€ 

G = (V ,E)  is a 

€ 

n × n  symmetrical matrix 

€ 

ADM = {ci, j |1≤ i ≤ n,1≤ j ≤ n}  (with n equal to the 
number of vertices of G) where each cell 

€ 

ci, j  stores the 
weight of the edge connecting vertex i to the vertex j.  

The GEGADM uses the two halves of the matrix to 
represent the weights of the healthy edges (upper right half) 
and the diseased edges, respectively. In this way we are able 
to keep all the necessary information regarding the 
experiment on the same type of pathology in one very 
compact data structure. Fig.  2 shows the GEGADM for the 
example of Fig. 1. 

The more experiments are available, the more information 
the matrix will store. The memory occupancy of this 
structure is independent of the number of experiments. 

 

 

€ 

Mh =

A
B
C
D

0 0 0 0 0 0
1 1 1 1 1 1
0 0 1 0 1 1
0 0 0 1 1 0

 

 

 
 
 
 

 

 

 
 
 
 

 

€ 

Md =

A
B
C
D

1 1 1 1 1 1
0 0 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

 

  

 
 

Fig. 1.  GEG Construction Example 
 

Algorithm 1: GEG Construction 
 
1.   – GEM filtering using the threshold T 
2.    for each 

€ 

wi, j ∈ Mdo  

3.         if  

€ 

wi, j > T  then 

4.              

€ 

wi, j ←1 
5.         else 
6.              

€ 

wi, j ← 0  
7.         end if 
8.     end for 
9.   – GEM construction begins 
10. 

€ 

V ←∅ 
11. 

€ 

E←∅ 
12. for   

€ 

i←1…m  do   
13.     for   

€ 

j←1…n −1 do 
14.           if  

€ 

w j,i ==1 then 

15.                 if 

€ 

v j ∉ V  then add 

€ 

v j  to V 

16.                 for   

€ 

k← j +1…n  do 
17.                      if  

€ 

wk,i ==1 then 
18.                           if 

€ 

vk ∉ V  then add 

€ 

vk  to V 
19.                           if 

€ 

(v j ,vk )∉ E  then  

20.                               add 

€ 

(v j ,vk )  to E 

21.                              

€ 

Wv j ,vk
← 0  

22.                           end if 
23.                          

€ 

Wv j ,vk
←Wv j ,vk

+1 

24.                      end if 
25.                 end for 
26.           end if 
27.     end for 
28. end for 
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B. Informative Genes 
Besides using GEGs as data structures for the definition of 

efficient classifiers, they also allow deriving useful 
information about gene expression characteristics that can be 
used to understand the meaningfulness of a gene and its 
correlation with the informative genes describing a given 
pathology. If built from a dataset representing a well-defined 
phenotype, a GEG will start displaying clusters of edges 
with very high weights that show a very strong relationship 
in the expression of the genes corresponding to the vertices 
connected in the cluster. These clusters can be used to select 
the informative genes that represent the considered 
phenotype. 

III. CLASSIFIER 
To show the flexibility of the proposed data model we 

designed a simple classifier able to provide a Proximity 
Measure between a GEG representing a given phenotype 
(GEGpat), and a GEG generated from a single microarray 
sample (GEGexp).  

The classification rule is in fact implemented as a 
weighted comparison between the two graphs. GEGexp, is 
characterized by having all edges weighted with 1; 
moreover, it is by construction, a clique. GEGpat, extracted 
from the dataset as described in the beginning of the 
previous section, contains edges weighted from the 
expression information of the considered phenotype.  

We basically have four possible matching situations (Fig. 
3): 

1) Perfect match: GEGexp and GEGpat perfectly match. For 
each edge in GEGexp there is a corresponding edge in 
GEGpat with weight greater then zero, and viceversa. 
Consequently, in this case, the set of expressed genes 
in GEGexp and in GEGpat exactly match; 

2) Partial Match: GEGexp and GEGpat partially match. 
There are three possible sub cases: 

a) The set of vertices in GEGexp and the set of vertices 
in GEGpat share some element, i.e., some of the 
genes expressed in GEGexp (not all) are also 
expressed in GEGpat, and viceversa; 

b) GEGexp is a subset of GEGpat. All genes expressed 
in GEGexp are also expressed in GEGpat, but not 
viceversa; 

c) GEGpat is a subset of GEGexp. All genes expressed 
in GEGpat are also expressed in GEGexp, but not 
viceversa. 

 
The proximity measure defined in our classifier is 

computed multiplying two values: (i) a Matching Score 
(MS) providing a measure of how many edges in GEGexp 
cover informative edges (edges with a high weight) in 
GEGpat; and (ii) a Confidence Score (CS), that can be 
considered as an error estimation. It measures the quality of 
the match, taking into account how much of GEGexp actually 
matches GEGpat, and how much of it is left out because it is 
expressing genes that are not even present in the phenotype 
it is compared with. 

CS is ranged between 0 and 1. Depending on the four 
matching situations of Fig. 3, we should expect the behavior 
reported in Table 1. 

 

 
To compute the MS and CS we have first to introduce 
additional measures: 

• The Sample Signature Weight (SSW) as the sum of all 
the weights of the arcs of GEGexp: 

€ 

SSW = Wi, j
(i, j )∈EGEGexp

∑  (2) 

• The Perfect Match Distance (PMD) as the distance of 
the matching portion of GEGpat from the optimal 
situation of matching with a complete clique with all the 
edges with maximum weight (equal to the number of 
samples #DS in the dataset): 
 

TABLE I 
MS AND CS BEHAVIOR 

 CS 

Perfect match 1 
Partial Match-a 0÷1 
Partial Match-b 1 
Partial Match-c 0÷1 

 
 

 
 

Fig. 3.  GEGpat and GEGexp possible matches 
 

€ 

GEGADM =

0 0 3 4
0 0 0 0
0 3 0 2
0 2 1 0

 

 

 
 
 
 

 

 

 
 
 
 

 

 
Fig. 2.  GEG Adjacency Matrix 
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€ 

PMD = #DS −Wi, jGEGpat
(i, j )∈EGEGexp

∑  (3) 

The better is the match; the higher is PMD, which in case 
of a perfect match would tend to ∞; 

 

• The Sample Matching Weight (SMW) as the sum of the 
weights of all the edges in GEGexp that have a matching 
arc in GEGpat (or, since the weights of GEGexp are all 
equal to 1, SMW corresponds to the number of matching 
arcs): 

€ 

SMW = WijGEGpat
∑ |∃(i, j) in EGEGexp

  (4) 

 

• The GEG Matching Weight (GMW) as the sum of the 
weights of all the edges in GEGpat that have a 
corresponding edge in GEGexp.  

€ 

GMW = Wij∑ GEGexp
|∃(i, j) in EGEGpat

  (5) 

 
The Matching Score (MS) can now be defined as: 
 

€ 

MS =GMW PMD
  (6) 

 
The Confidence Score (CS) of the disease sample 

compared with the dataset graph is defined as: 
 

€ 

CS = SMW SSW
  (7) 

 
Finally, the Proximity Measure (PM) is computed as: 
 

€ 

PM = CS ⋅ MS   (8) 

IV. EXPERIMENTAL RESULTS 
Before discussing the experimental results, it is important 

to analyze the data sources we used to generate our test 
GEGs. Each used dataset comes from cDNA Stanford’s 
Microarray database [22]. The problem with this data is that 
in many cases it refers to old experiments done on first 
generations of microarrays affected by probe sensing 
problems, reduced gene-set, and lack of UnigeneID [21] for 
many spots. Moreover, since old microarrays often used to 
duplicate spots in order to have more reliable results, in our 
GEG generation procedure we considered as “expressed” a 
gene expressed in at least one of its copies on the 
microarray. Also, we had to discard all information 
concerning spots that did not have a valid UniGeneID. 

Even if the model allows to use and combine together data 
coming from different types of microarrays embedding 
different genes, in this set of experiments we used samples 
that have the same microarray’s technology and genes set. 

A. Data source and Dataset 
The Stanford’s collection catalogs a huge number of 

experiments using the cDNA chip technology. cDNA chips 
use two colors to distinguish tissues: green for the healthy 

tissue (wavelength of 635nm) and red for the diseased one 
(wavelength of 532 nm). 

Besides the microarray image, each experiment is 
associated with the corresponding microarray’s image and a 
text file in CSV (Comma Separated Values) format in which 
each line describes a spot. From the set of CSV files we 
derived a Gene Expression Matrix for each considered 
dataset.  

We created three datasets: B-Cell, Lymphocytic Leukemia 
Watch&Wait and Lymphocytic Leukemia. The first dataset 
used to create the graph is a group of 53 microarrays related 
to Diffuse Large B-Cell Lymphoma (that is a non-Hodgkin 
Lymphoma disease). From parsing the corresponding CSV 
files we obtained a GEG of 6826 correctly named (using 
UniGeneID) vertices. The second dataset is a group of 22 
microarrays focusing on Lymphocytic Leukemia 
Watch&Wait. From this set we extracted valid information 
for 7628 genes. Finally, the third dataset targeting 
Lymphocytic Leukemia is a group of 12 experiments from 
which we were able to extract valid information for 6826 
genes. 

To select the expressed nodes, we analyzed the expression 
levels distribution of the spots on all datasets and we 
performed various experiments using different values of T. 
As a result of this analysis we decided to adopt a threshold 
equal T=3000 (the expression ranges between 0 and 25,000) 
that seems (in our case) able to keep enough information 
about expressed genes. 

B. Classifier 
To verify the usability of the proposed model for sample-

based classification algorithms, we applied the classification 
procedure described in Section II.B using, as samples, 6 
different sets of microarrays data downloaded from Stanford 
Microarray’s Database. Each set contains 11 distinct 
experiments. We used the three datasets described in Section 
IV.A as classes in which to classify the samples. 

Each sample set is targeting a different phenotype: 

1. Lymphocytic Leukemia W&W (watch and wait); 

2. Lymphoma Normal Subset – non specific lymphoma 
subset; 

3. Lymphocytic Leukemia  - non specific subset; 

4. Diffuse Large B-cell Lymphoma – Subset of B-cell 
sample not used during the graph creation and used 
here as cross-validation of the B-cell dataset; 

5. Tumor: Brain – solid tumor; 

6. Tumor: Ovarian – solid tumor. 

We divided the 8 sample sets into four main groups.  The 
first group contains pathologies #5 and #6, which are both 
referred to as solid tumors and therefore highly different 
from the lymphoma. We expect a strong difference from all 
datasets. The second group includes pathology #2, 
characterized by a slight affinity with the dataset. The third 
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group, including phenotypes #1 and #3, is very important 
because each sample represents a subset of very similar 
tissues. The idea is to observe if their unspecificity is evident 
in a sufficient distance from the specific B-Cell signature of 
the dataset. Finally, the fourth group contains the sample #4, 
a non-folded subset of the B-cell disease. This is the same 
pathology than the one used to generate the Dataset and it is 
used as cross-reference check for the classifier. 

Fig. 4-5-6-7 report the Proximity Distances results 
computed by the classifier for pathologies 1 to 4. For the last 
two, the classifier correctly returned a null match with the 
three datasets. 

Fig. 4 shows how the classifier correctly puts the 
Lymphocytic Leukemia W&W in the W&W dataset. The 
same happens for the Diffuse Large B-Cell Lymphoma 
classified in the B-Cell dataset of Fig. 7. 

Fig. 5 shows how the classifier is able to classify the 
sample to all three classes. This is important since we do not 
have a dataset for that particular type of Lymphoma. 
Nevertheless, the classifier correctly recognizes the disease 
as a Lymphoma. 

Fig. 6 is also very important because as expected the 
classifier recognizes that the sample (Lymphocytic) is not a 
Diffuse Large B-cell Lymphoma; it correctly classifies the 
sample in both the remaining datasets.  

 

V. CONCLUSIONS AND FUTURE WORKS 
In this paper we presented a new data structure designed 

for the analysis of gene expression data in microarrays 
experiments. The proposed model is essentially based on a 
graph representing meaningful expression relationships 
between spots. Gene Expression Graphs have many 
advantages over other known standards, as Gene Expression 
Matrices, in particular in terms of memory occupation and 
identification of the most informative genes and genes 
relationships. The full potential of this new data model is 
still under investigation, but it is believed to be able to 
provide a very useful ground for the development of new 
gene expression analysis algorithms. 

To demonstrate the flexibility of the approach we also 
implemented a very simple classifier. The results 
demonstrate how the topological information extracted from 
the GEGs allows a very easy classification.  

A lot of work is under way on GEGs. One of the first 
problems we encountered is the choice of the optimal 
threshold to use when building the graph. The results 
obtained so far showed that the efficiency of the 
classification algorithm is too sensitive to the choice of the 
threshold. We are therefore modifying the GEG generation 
algorithm, avoiding to base it on absolute expression values, 
but considering instead the differential expression between 
healthy and diseased samples. This new approach is 
guaranteeing a significant increase in the robustness of the 
data structure and a consequent reduction of the sensitivity 
of the classification algorithms to the expression threshold. 

Also, we are working on the development of more 
detailed and complete supervised and unsupervised analysis 
algorithms able to fully exploit the information stored in a 
GEG. 
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Fig. 5.  Classifier results: Lymphoma Hematopoietic 
  
 

 
Fig. 4.  Classifier results: Chronic Lymphocytic Leukemia (CLL) Watch & Wait 
  
 

81



 
 

 

 
Fig. 7.  Classifier results: Diffuse Large B-cell Lymphoma 
  
 

 
Fig. 6.  Classifier results: Lymphocytic Leukemia (LL) – no specific subset 
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