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Introduction of Randomness in Deterministic

Descriptions of Reverberation Chambers

Ramiro Serra∗ Flavio Canavero∗

Abstract — The main purpose of this work is to
present some simple yet complete models that are
able to describe the statistical behavior of Rever-
beration Chambers (RC) as well as the influence of
their main factors and their overall functioning. We
start by building a simplified two-dimensional model
which is able to reproduce the statistical behavior of
real RCs without renouncing the advantages of de-
terministic descriptions. The statistical properties
of the fields inside the cavity are introduced either
by varying the width or the relative dielectric con-
stant of a perturbing lossless layer inside a 2D cav-
ity. The field statistics derived with this process
are shown to correspond to the statistics found in
properly functioning RCs in the overmoded regime.
With the use of a suitable coordinate transforma-
tion, we assume our non-homogeneous rectangular
cavity to be a virtual mathematical domain, and find
an analogous homogeneous non-rectangular cavity
as our physical domain. With this simple process
we are able to link our 2D ”dielectric” stirrer with
actual geometrical discontinuities. By means of this
procedure, a novel design for RCs appears as feasi-
ble.

1 INTRODUCTION

Reverberation Chambers (RC) are gaining signifi-

cant confidence in use for radiated emissions and

immunity measurements. RC users need to fully

understand its working principles in order to cor-

rectly interpret the measurement results and to op-

timize the performance for various measurement

tasks.

Reverberation chamber knowledge to date results

from a partial juxtaposition of four different ap-

proaches: the deterministic models, the statisti-

cal models, the empirical techniques, and the com-

puter/numerical methods. It is not possible to leave

one of these approaches behind, as each one of them

behaves as a non-exhaustive, non-excluding part of

a RC description. Furthermore, they mutually col-

laborate to give fairly successful answers in fields

where the other one fails, and viceversa. Therefore,

there is an obvious gap which makes us change our

methodology depending on what kind of result we

seek. In this sense it is to point out that a statis-

tical description is meaningful only if the chamber

is working in an overmoded regime and only on

∗The authors are with the Dipartimento di Elet-

tronica, Politecnico di Torino, C.so Duca degli Abruzzi

24, 10129 Torino, Italy, tel.: +39 011 5644000, fax:

+39 011 5644099. E-mails: ramiro.serra@polito.it -

flavio.canavero@polito.it

special chamber geometries. On the other hand,

a deterministic model’s success is intimately linked

to the specificity of the chamber geometry and it

compels us to pay no attention to the mode stirring

process, which is an essential constituent of the RC

performance. Consequently, a call for filling this

gap and linking the two approximations is needed.

This necessity is supported by the aim of having

a better understanding, to manage a simpler yet

complete model, and to reduce up to a reasonable

minimum the empirical techniques.

2 THE 1D RC MODEL

An attempt at filling this gap was presented in [1],

where a one-dimensional RC model was shown to

have a statistical behavior equal to real RCs. It

simulates the electromagnetic field distribution in-

side a theoretical vacuum-filled 1D segment with

the presence of a 1D ”stirrer” (a perturbing loss-

less dielectric layer) and of losses in the walls. In

this model, the statistically uniform field can be ob-

tained by means of different stirring processes, each

one of them finding a strong analogy with real RCs.

2.1 Size stirring and dielectric stirring re-

sults

For reference, we show the results of 500 indepen-

dent calculations of different stirrer sizes (e.g., ”size

stirring”) and different relative dielectric constants

(e.g., ”dielectric stirring”). The electromagnetic

field was calculated at a fixed position inside the

test volume. Histograms of the real and imaginary

parts of the electric field with their fitted normal

distributions for every stirring process are shown

in Fig. 1.

The Anderson-Darling Normality Test (A-D) [2]

was applied to these values to determine whether

the data of the sample are nonnormal. The re-

sults largely justify the hypothesis that they fol-

low the normal distribution as reported in [1], thus

reproducing the literature findings, i.e., that the

field-components distributions match the probabil-

ity density functions ([3], [4]).

3 THE 2D RC MODEL

We will next start the description of the 2D RC

inspired by [1] and conceived as a 2D simple exten-

sion of the basic configuration of its analogous 1D
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Figure 1: Probability distribution of the real and

imaginary parts of the electric field measured at a

given position after 500 iterations of the stirrer size

and of the relative dielectric constant with their

fitted normal distributions.

model, and afterwards some statistical results will

be shown.

3.1 The 2D Cavity Model

The description of our chamber (see Fig. 2 for a

schematic diagram) starts as a 2D cavity including

a layer of a perturbing medium with relative dielec-

tric constant κ inside the vacuum-filled space and

a continuous-wave source located at (x0, y0). The

dimensions of the chamber are a and b.
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Figure 2: Definition of the two-dimensional cavity

under study.

The electromagnetic field inside this chamber

obeys the wave equation:

∇2 �E(x, y) + κ(x, y)k2 �E(x, y) = g(x, y) , (1)

where

κ(x, y) =

{
1 0 ≤ x < x1 and x2 ≤ x ≤ a
κ x1 ≤ x < x2

and k = ω
√
με is the free-space wavenumber; μ, ε

are the free-space permeability and permittivity,

respectively. The e−jωt time dependence is sup-

pressed. One possible set of eigensolutions ([7], [8])

is:
�Emn(x, y) = Amnψm(x)sin

(nπ
b
y
)
, (2)

where Amn and ψm(x) are found by means of the

process described in [1] and subindexes m,n are

the modal indexes. The proposed solution auto-

matically satisfies the boundary conditions at the

walls of the chamber at x = 0, a and y = 0, b.
Losses in the walls are introduced according to

the method described in [7] and shown in [1].

Figure 3 shows the modification of the field distri-

bution inside the chamber, due to a change of the κ
value in the dielectric region, assumed to maintain

a constant ratio t/a = 0.1, being t = x2 − x1 the

width of the stirrer. From the observation of Fig.

3, where the real part of the electric field inside the

chamber for κ = 1 (i.e., absence of dielectric) and

κ = 1.2, it is evident that the main effect of the di-

electric layer inside the chamber is to appreciably

change the field distribution inside the ”Test Vol-

ume” region. Thus, an analogy with the stirrer in

real RCs can be established. This result matches

what was shown in [1].

Figure 3: The real part of electric field E inside the

2D cavity model for κ = 1 (top panel) and κ = 1.2
(bottom panel).

3.2 The 2D Reverberation Chamber Model

Up to now, we have not been solving an RC but a

cavity resonator. As shown previously, and in co-

herence with ergodicity, we can reproduce the sta-
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tistical behavior of an RC if we randomly vary some

selected parameters (in this work, the stirrer size

and the stirrer relative dielectric constant).

The results of 500 independent calculations of the

electromagnetic field at a fixed measurement posi-

tion inside the test volume are shown in Fig. 4, that

presents the histograms of the real and imaginary

parts of the electric field with their fitted normal

distributions for every stirring process.
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Figure 4: Probability distribution of the real and

imaginary parts of the electric field calculated at

position (x, y) = (8.5, 2.5) m after 500 iterations for

size stirring and dielectric stirring with their fitted

normal distributions.

The A-D Test again justified the hypothesis of

normality giving p-values of 0.462 and 0.092 for the

real and imaginary part of the electric field for size

stirring and 0.069 and 0.058 for dielectric stirring,

respectively. Even though the p-value of 0.462 is

largely better than the other three, all of them are

above the commonly accepted level of significance

of 0.05.

3.3 Validity of the Physical Analogy of the

Dielectric Stirrers
A question arises: what is the link and the cor-

relation between real stirrers and our virtual ”di-

electric” stirrers? Different interpretations could

be given to explain the influence of our dielectric

stirrer inside the chamber:

The effect of placing a material with a consider-

able dielectric constant inside an electric field as in

our cavity is mainly to change the configuration of

the eigenvalues. It is analogous to adding a capac-

itance to a circuit, or a reactive load into a trans-

mission line. As we are assuming that no losses

are into the dielectric, what happens is that this

new material inserted has stored some energy from

the system. This would result in a particular field

configuration. It is then intuitively easy to imagine

that a little change in size or in its relative dielec-

tric constant, could generate a fairly different dis-

tribution of the field. The present analogy could be

justified by the fact that usually, ”complex-shaped”

stirrers outperforms simpler ones (i.e., see [5], [6]).

Nevertheless, it is true that real stirrers do not

”store” energy and so the problem remains unan-

swered in a closed manner. A conformal mapping

technique will be presented in the next section to

solve this problem.

4 CONFORMAL MAPPING

The technique of conformal mapping will be ap-

plied to (1), resulting in a successful strategy for

the study of our two-dimensional RC model. This

process will help us identify one irregularly-shaped

homogeneously-filled cavity, that maps into the 2D

cavity of Section 3.1.

4.1 Basic Theory

Let us consider the inhomogeneous Helmholtz equa-

tion in two dimensions:
[∇2

xy + k2
]
f(x, y) = g(x, y) . (3)

Let us apply the conformal mapping w = w(z)
between the complex variable z = x + jy and

w = u + jv to (3) as was shown in [9] to obtain

a slightly more complicated equation in the trans-

formed domain:

[∇2

uv + k2/Juvxy

]
F (u, v) = G(u, v) , (4)

where ∇2

uv = ∂2/∂u2 + ∂2/∂v2 and Juvxy is the

Jacobian of the transformation (x, y) ⇔ (u, v) as-

sociated with the conformal mapping

Juvxy =

∣∣∣∣
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

∣∣∣∣ . (5)

Equation (4) corresponds to an inhomogeneous

medium situation, where the wavenumber k would

be a function of the coordinates.

4.2 Changing Domains

The cavity described in Section 3.1 is indeed of

the same class of (4) if we assume that κ(u, v) =

1/Juvxy. Let us now suppose it as if it were a cer-

tain cavity in the transformed domain and find out

a geometry in the physical domain that maps into

it. In other words, we would like to find out a con-

formal mapping

w = w(z) ⇔ {u = u(x, y); v = v(x, y)} , (6)

whose Jacobian corresponds with the inverse of the

κ(u, v) function. One possible solution was found

to use the following transformation,

u(x, y) = x

v(x, y) =

⎧
⎨
⎩

y + b/2 0 ≤ x < x1

y/κ+ b/2 x1 ≤ x < x2

y + b/2 x2 ≤ x ≤ a
(7)
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in the cavity depicted in Figure 5. It is quite

straightforward to see that the conformal mapping

in 7 will have a Jacobian as the one we search for.
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Figure 5: The cavity of Fig. 2 in the assumed phys-

ical domain.

4.3 Highlighting the Analogy

The cavity geometry conceived as our new physical

domain has two discontinuous steps in the horizon-

tal walls of the cavity. The difference of height of

the steps and the walls is (κ − 1)b/2. Pushing our

problem to some simple limits, we can make clearer

the effect of our transformation and correlate the

dielectric stirrer with a geometrical discontinuity.

Let us, as a first example, make κ = 1. In the

physical domain, this means that no discontinuity

steps are present. On the transformed domain, this

means that the perturbing layer is made of vacuum.

So the conformal mapping will transform a rectan-

gular cavity into itself.

As a second example, we change instead of κ,
the width of the discontinuity steps so as to make

x1 = 0 and x2 = a. In this case, the physical do-

main turns again into a rectangular geometry, with-

out discontinuities. The transformed domain re-

sults to be homogeneously filled, because the layer

occupies all the space. Both of them are regular

rectangles, but with a difference: their sizes. The

solutions inside these two cavities are equal, but one

of them is smaller than the other one and filled with

a dielectric material. This is in perfect coherence

of what is known in waveguides theory.

It is again clear to see that all the statistical re-

sults pointed out in Section 3.2 will be reproduced

in our new physical domain.

5 CONCLUSIONS

This paper describes a 2D RC model inspired by [1]

that presents a strong behavioral analogy with 3D

RCs. In this model, the statistically uniform field

can be obtained in two different ways: either by

varying the size of the stirrer, or its relative dielec-

tric constant. Both processes show reliable normal-

ity conditions. The main convenience of this model

consists in providing a complete understanding of

RCs, without leaving a gap in the theoretical de-

velopment. With the use of the conformal mapping

technique, we can interpret the role of a dielectric

stirrer as a geometrical discontinuity. Changing the

width of the stirrer is equivalent to changing the

width of the discontinuity steps. Changing the rel-

ative dielectric constant is equal to changing the

height of the discontinuity steps. From this analy-

sis, a novel RC design arises. A chamber with a pro-

file as Fig. 5 appears to be feasibly constructible.

Further work (currently under way) should involve

both the development of a correlation between the

real stirrer and its 1D parameters and a 3D exten-

sion of this model.
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