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Abstract form based on a regularization procedure, which allows to ver-
We introduce a robust algorithm for the qualification of tabu- ify the causality without numerical difficulties. In addition, er-

lated frequency data representing the port responses of a linear ror bounds in this verification process due to finite sampling
subsystem. This algorithm is aimed at the verification that fre- frequency and bandwidth are explicitly computed and used to
quency responses obtained via full-wave electromagnetic sim- unbias the causality check from systematic errors. Several test
ulation or from direct measurement of some interconnect struc- cases are considered to illustrate that causality violations are
ture are self-consistent and causal before they are used for the quite common in practical situations. We show that when no
generation of macromodels for system-level analysis and design countermeasures are taken, serious inconsistencies may arise in
purposes. The technique is based on an advanced formulation the macromodel generation and its further use for system-level
of the Hilbert transform, leading to a direct check for causality analysis and design.
of the raw data. One of the main advantages of the proposed Causality and Hilbert transform
method is the possibility to provide accurate estimates for error We consider a linear interconnect structure with input-output
bounds due to various sources, including sampling frequency behavior described by
and data availability over a limited bandwidth.

y(t) = h(t) * x(t) Y(jw) = H(jw)X(jw), (1)
Introduction and motivations

The design of high-speed interconnect structures is usually with x(t) collecting the electrical variables assumed as in-

based on systematic simulation at component, subsystem, and puts, y(t) the outputs, and h(t) being the system impulse re-

system level. These simulations are based on suitable models sponse matrix. The corresponding frequency-domain represen-
tation involves the system transfer matrix H(jw), typically the

for the various subparts of the system, which must represent all i
relevant electromagnetic phenomena that have some influence imeac,ditneorsteigmtixcodngoth
relevant eglectmagneiphwenromena thality. hesomerinflueneo adopted representation. Throughout this work we will present

botheonsignaluctands power/gr,acoundcquality Considarin oneofit results that apply to any entry of the transfer matrix. Therefore,
these substructures (e.g., a connector or a via array), the first wihulosfgeratyweilcnidraeeiccar
step for the derivation of such a model is to perform some full- trfutioneH(jw) we + jw)with U and Vcde-transfer function H( w) = U(w) + XV(U), with U and V de-
wave electromagnetic simulation of the structure, in order to noting its real and imaginary parts as functions of frequency.
obtain a set of port responses in the form of frequency tables for Causality is a basic principle stating that any effect must
the scattering, impedance, or admittance matrix. Alternatively, not precede its cause. This causality principle requires the
these port responses can be obtained from direct measurement

if the hardware is available. ~system impulse response to be vanishing for negative times,
h(t) = 0, t < 0. This condition, when expressed in fre-When frequency responses are available, several techniques quency domain, implies that the real and imaginary parts of the

(e.g., the very popular Vector Fitting (VF) algorithm [1]) can transfer matrix are not independent but are related by Hilbert
be used for the derivation of macromodels that can be used for transform or, equivalently, satisfy the Kramers-Kr-nig disper-
transient simulation in standard circuit-based solvers. However, sion relations
a good model can only be derived from good data. The raw
frequency responses may be affected by noise in case of di- Ui(f) wV() '(2a)
rect measurement, or by frequency-dependent numerical errors 1 w - (
when coming from full-wave simulations. Also, such data are V(a) = - U() dwl(2b)
naturally available over a limited frequency range and with a 7WW /-
limited number of discrete frequency samples. All these facts where all integrals are defined according to Cauchy principal
may lead to failure of the macromodeling algorithm, which can value. Throughout this paper, unless explicitly noted, any inte-
in some cases fail to converge or lead to inaccurate results. It is gral extends from -oc to +c. The following theorem [2, 3]
often difficult to discriminate whether these difficulties are due s ee c noi
to flaws and inconsistencies in the raw frequency responses or stiio,ntgvehr)tatcrceizacualytm
to a poor performance/misuse of the macromodeling algorithm.
We propose in this paper a technique for the verification Of Theorem 1. Thefollowingfacts are equivalent:

causality of raw frequency data. It is well-known that real and (i) h(t) =Ofor t < 0;
imaginary parts of any frequency response representing a causal ..
system are related by HlbDert transform. Direct verification of i)tedseso eain 2)(b od
causality via Hilbert transform, however, is numerically diffi- (iii) H(jw,) is thce limcit as (J-O of a fucnction H(s) =H(u +
cult. We propose an advanced formulation of the Hilbert trans- iwv) analytic and ofpolynomcial growthcfor uJ > 0.
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Robust causality check with error bounds where
We assume that the following discrete set of samples in-1 U(V) (0) ~ n-1 V(V) (0)

H(Sznk), k1, ,K (3) ~~~~au(g) = E: I (0) av(w) = E: w
()n

is known, with w1 = 0 and WK B defining the band- and n is the number of subtractions. These expressions are read-
width over which raw frequency responses are available. Due ily obtained by subtracting the n-th order Taylor polynomial
to the symmetry of the spectrum of real signals, we can as- from H(jw), dividing the result by w n, and finally applying
sume data available also for negative frequencies. The main the standard Hilbert transform. It can be shown that if H(jw)
objective of this paper is to provide a robust verification for satisfies (5a) and (5b), the system is causal, i.e., these two gen-
the consistency of the available data points (3) with the disper- eralized dispersion relations are fully equivalent to (2a)-(2b).
sion relations (2a)-(2b). This involves the reconstruction of the The two main advantages of this formulation are: (i) applica-
real (imaginary) part of the data starting form the imaginary bility for arbitrary H(jw), including the case of no asymptotic
(real) one using some discretized form of (2a)-(2b). If we de- decay; (ii) reduced sensitivity to the high-frequencybehavior of
note the reconstructed transfer function as H(jw), a frequency- H(jw). Unfortunately, their numerical evaluation requires the
dependent consistency error may be defined as estimation of the n-th order Taylor polynomial, which becomes

ill-conditioned in case of discrete data as in (3), since numericalA(jw'k) fjwk) - H(jwk), k 1,, K ( ) evaluation of high-order derivatives is implied.

A causality violation will be detected when this error results We overcome this last difficulty as follows. High-order
larger than some suitable threshold. The precise definition of derivatives are needed to compensate the strong singularity in
this threshold is one of the main results of this paper and is w = 0 arising from the division by the polynomial wn How-
given in the following. ever, we can distribute the roots of this polynomial at different
The direct discretization of (2a)-(2b) fails due to the follow- frequencies w-q instead of in w = 0. We obtain

ing reasons Hnq) V(w')-v(w) dw'
* Raw data are available up to a maximum frequency B, U(w) !u(w) + H (w - W

whereas Hilbert transform must be defined by integration n
over the entire frequency axis from -o to +c. This leads V(w) -e (w.)- HJq=-(w-¾)JU< )-u(wOdw'
to an unavoidable truncation error in the numerical evalua- Hq=(' -/q) -W

tion of dispersion relations. This error source may be very (6)
critical since H(jcw) may not decay to zero for large fre-
quencies (it may even grow for w -> oc in the case of qF
impedance or admittance representations). This implies n

that the contribution of aw > B to the integral may not be Iq (w) =7 (Lagrange interpolation polynomials)
negligible and must be dealt with in some way. P=1 q

* Only a discrete number of frequency samples is available. These relations make only use of function evaluation at the sub-
This introduces a discretization error in the numerical eval- traction points 59q leading to use of the more stable Lagrange
uation of the dispersion relations, which is dependent on polynomials. Optimal placement of the subtraction points is
the sampling interval. This error is magnified by the sin- discussed below.
gular nature of the Hilbert kernel (W _WI) - 1. An accurate

Truncation error: estimation and accuracy optimization.numerical evaluation calls for some regularization proce- For the sake of brevity we focus on the first line in (6), but thedure to account for this singularity, following developments apply to both dispersion relations. The
These two facts contribute to numerical errors in the evaluation truncation error is due to data availability in a finite bandwidth
of the dispersion integrals, which may be so large to hide even [-B, B] and equals, for 1w < B,
quite significant causality violations. Therefore, we propose an n -V
alternative formulation of the Hilbert transform pair, that guar- En(w=)-( ' V(w ) -v( )df (7)
antees an effective handling of the above difficulties and allows 7 Q Hq=1(WI -¾q) W W

an accurate estimate of the resulting numerical errors. In turn, where QB identifies the frequencies outside [-B, B]. This error
these estimates provide a rigorous frequency-dependent thresh- can be split into two separate contributions
old to compare the reconstruction error (4) with.

Generalized dispersion relations with subtractions. Instead E~ (w) - q=(w - ¾) / V(wJ') dwu'+
of(2a)-(2b), we suggest to use the so-called dispersion relations iF QBEH.pq=(w'7 - 7q)W -7
with subtractions [4], defined as En(w)

U(w.) =aoU(W) + CU f V(WI)inv( dzn (5a) -
S
iF

( (8)

V(w) =avY(w.) - j U(w)a2 u(w') Jiw' (b)C)
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Figure 1: Bound on truncation error as a function of number of Rcntuto ro
subtraction points n with Chebyshev distribution over 90% Of ol~
the bandwidth B. <

The second term C(wn) can be quite large, but it can be eval- rO 10io \ / J\
uated analitically and corrected. Thus, the truncation error re-;'.'
duces to En (w) only. A bound for this error term is obtained
by assuming a worst-case high-frequency behavior for H(jw.). 10 0 1.. 3 4 5
This behavior depends on the adopted representation. We derive Frequency [Hz] x l 09
here such a bound assuming data in scattering form, therefore F r :T nl ibr-eosrce elatcmae
assuming IH(jw) . 1 at any frequency. Bounds for other rep- gppp p

reses.i eob. dv to the raw data. Dots denote samples where causality violations
In he caterigcse e otai th eror oun in are detected. Bottom panel: reconstruction error A\(jw) com-similarly. ~~~~~~~~~~~paredto the frequency-dependent threshold Enot (w).

closed form as

Hlq=l1w¾q f 1 dw'En(w2) . ]rJ/ H-_ ~'-gq g and computing the remaining non-singular integral with acon-
CB q.. . . ventional quadrature algorithm. One can choose the integra-

T(w) 0l...[in B- - (_)h in B..q 1 x tion method that guarantees the best accuracy/efficiency for the_ B-. B.+ data under examinaton and possibly provides an estmaton of
n _ ~~~~~~~~thenumerical error D(w) affecting the result. In this work,

x[I W - Wp (9) we compute D(w) by comparing the results of two different
P1 aJ-a quadrature methods of different order (namely, trapezoidal and

P7&q Simpson rules).

It can be shown that T12(wv) remains bounded between any pair The causality check. Having identified the various sources of
of subtraction points. Also, this error can be made arbitrary errors, we construct a worst-case frequency-dependent numeri-
small by increasing the number of subtractions n. An exam- cal error as
ple is provided in Fig. 1. This important result enables direct Et°t(w) =T12(w) + D(w) . (11)
accuracy-controlled causality check even for bandlimited data.

The.. tuctnerr )...me This provides the "resolution" of the numerical tool we have
* ~ ~ ~~~~~~-constructed for detecting causality violations. Therefore thean appropriate placement of subtraction points wq We have g y

... sA1

verified that a Chebyshev dilstribution casltvcekw aoti

B(1 )cos(q-1)w (10)sc VttUC, k: WUk < B(1-e) (12)

-e. cs...1..q=.l... ..,.....I ....10).
n-.0i. q .....teA(w).4tw)

If teabove condition is satisfied, any causality violation in the
guarantees a quasi-optimal truncation error in a bandwidth ar- data is not discernible'f
bitrarily close (e A< 1) to [-B, B]. The truncation error always Hilbert transform tool. Conversely, if this condition is violated

divergesanearzwe±druentothercintrinsic (two-sd) n at some frequencies, we are confident that the raw data are not

of the Hilberttransformkernel. ~ ~~ ~ ~ Rcontrctin ero

of the Hilberttransform kernel, causal, since the accuracy of the numerical tool we use for the
Discretization error and singularity extraction. The compu- check is finer than the violation itself.
tation of integrals with principal value in (6) needs special care
because integrands are singular for w' w; a simple but effec- Eape
tive approach consists of extracting the singular term The first example we show is specifically designed to illus-

trate the excellent resolution of the proposed causality check
IhBe d' [ g(w)-g(w) B w tool. We consider a uniform transmission line segment with
t so t 1B= dwq-lg()in B +e per-unit-length parameters L 4.73 nH/cm, C 3.8 pF/cm,
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R = 0.8 Q/cm, G = 0, and length L = 10 cm. We com- 0.15 - -
puted the scattering matrix of the structure up to 5 GHz. Then, a 0.1 -

smooth gaussian-shaped perturbation was added to the real part
of Si, (iw), thus forcing an artificial causality violation. The 0.05

peak amplitude of the perturbation is 0.01, with an approximate 5 o0
bandwidth of 0.5 GHz, centered around 2.5 GHz. The proposed 005 - Measured
causality check was applied, by setting a number of subtractions Measured
n = 12, such that the expected truncation error bound results -0.1 4 --- Reconstructeds-Error bounds
less than 10-3. Top panel in Fig. 2 shows the excellent accuracy 7.2
of the proposed Hilbert transform numerical evaluation tool by Frequency [GHz]
comparing the perturbed real part to the reconstructed one from l 0°
the imaginary part. Note that with this scale the causality viola- Causal

--Non causaltion is hardly visible. Bottom panel in Fig. 2 compares the re-
construction error A(jaw) to the frequency-dependent threshold , 10'
Eot° (w). This plot confirms the high resolution of the causal- a
ity check, which is able in this case to detect even such a small
causality violation. ao-
The second example we investigate comes from direct VNA >

measurements of a long interconnect link (courtesy of IBM).
We were actually aware of some flaws in the data before de- 10 20 40 60 80 100 120 140 160 180 2(0
veloping and applying the causality verification tool, since we Order
experienced difficulties in trying to identify a macromodel from Figure 3: Top panel: Hilbert-reconstructed real part with su-
the data. In fact, application of VF for producing a rational ap-
proximation of the scattering matrix entries was not converging Bottmpanel evoluti ofVF .aroxiati erromas fnti.
and was consistently producing poles with positive real part. A othe ner opoles f th origalion-cas measured
run of the causality check with n = 6 subtraction points leads ta nd for thetd a ithlenorecausalty.
to the results depicted in the top panel of Fig. 3. The presence
of causality violations is evident from the portions of the raw
data falling outside the allowed frequency-dependent interval sponses. As a final remark, we note that the proposed technique
obtained by the error bound estimates. Bottom panel in Fig. 3 can be readily extended to more restrictive causality definitions
reports the approximation error obtained by VF as a function accounting for propagation delay effects, e.g., for distributed
of the number of poles used in the approximation. The origi- interconnects and transmission line structures. This extension
nal dataset shows error stagnation, as a visible symptom of the will be documented in a future report.
causality violations. We then used our Hilbert-transform tool
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