

Politecnico di Torino

Porto Institutional Repository

[Other] Relationships between tensile and fracture mechanics properties and fatigue properties of large plastic mold steel

Original Citation:

Firrao D., Matteis P., Scavino G., Ubertalli G., Ienco M.G., Pinasco M.R., Stagno E., Gerosa R., Rivolta B., Silvestri A., Silva G., Ghidini A. (2006). *Relationships between tensile and fracture mechanics properties and fatigue properties of large plastic mold steel.*.

Availability:

This version is available at : http://porto.polito.it/1667886/ since: January 2008

Terms of use:

This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved"), as described at http://porto.polito.it/terms_and_conditions.html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters.

(Article begins on next page)

Relationships between Tensile and Fracture Mechanics Properties and Fatigue Properties of Large Plastic Mold Steel

D. Firrao¹, P. Matteis¹, G. Scavino¹, G. Ubertalli¹, M. G. lenco², M. R. Pinasco², E. Stagno², R. Gerosa³, B. Rivolta³, A. Silvestri³, G. Silva³, A. Ghidini⁴

¹Politecnico di Torino ²Università di Genova ³Politecnico di Milano ⁴Lucchini Sidermeccanica

Overall views of a bumper mould.

Summary

- Production cycle and critical issues of large plastic moulds
- Sampling pattern and re-heat-treatments
- As-received microstructures
- Mechanical properties and fatigue behaviour of as-received and re-heat-treated steel
- Fracture surfaces
- Conclusions

Plastic molds machined from 1x1x2 m forged and pre-hardened steel blooms

Applications

>automotive components (bumpers, dashboards, ...)

Stresses

➤ applied stresses:

injection pressure thermal gradients notch effects wear by reinforced resins flow fatigue (millions of pieces)

stresses raised by:

cracks (improper weld bed depositions), abnormal operations (incomplete extraction).

Experience-based design, no usual defect-allowance calculation procedure
Reported macroscopically brittle in-service failures

different microstructures expected at increasing depths after quench
any microstructure could be found at mold face

Usual Production cycle (I)

> Steel composition		С	Cr	Mn	Ni	Мо	Si	S	Р
	1 2738	0.35	1.8	1.3	0.9	0.15	0.2		
	40CrMnNiMo8-6-4	-	-	-	-	-	-	<0.03	<0.03
		0.45	2.1	1.6	1.2	0.25	0.4		
	Examined bloom	0.42	2.0	1.5	1.1	0.21	0,37	0.002	0.006

Steel mill operations

ingot casting (ESR refining is not possible) forging to 1x1 m sections dehydrogenization oil quenching tempering (one or more stages)

Usual Production cycle (II)

Commercial warehouse operations removal of rough and decarburized surfaces (up to 10-20 mm) sawing to requested dimensions

> Mold machining shop operations

chip-removal and/or electrical-discharge machining to the mold shape grinding with or without polishing in selected areas local surface treatments

eventual corrections using weld bed depositions

Usual Production cycle (cont.)

Forging

comparable ingot and bloom sectionsome repeated forging steps

>total reduction ratio much lower than in rolling (and not comparable)

Heat treatil	ng in air Step	Temperature	Duration
	hydrogen removal		a few days
	austenitizing	840-880°C	1-2 days
	oil quench	-	-
	tempering to 330-300 HB (one or more stages)	550-600°C	1-2 days (each stage)

Experimental (I): sampling of the original bloom

Experimental (II): sampling pattern & re-heat-treatments

Re-heat-treatments: 860°C ³/₄h / N₂ or air / 590°C 3h / 550°C 3h

As-received microstructures vs. depth (Nital etch)

Hardness, tensile and fracture toughness tests

Charpy-V tests & transition curves

Transition curves

175 °C tests

As received steel

Rotating bending fatigue tests – 4.2 Mcycles endurance limit

test n.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Χ	0
[MPa]																	
500								Χ				Χ				2	0
490							0		Χ		0		Χ			2	2
480						0				0				Χ		1	2
470			Χ		0										0	1	2
460		0		0												0	2
450	0															0	1

Staircase method (example below: core as-received specimens)

		Stress [MPa]								
Survival	As-re	ceived	Re-heat-treated							
Probability	Core (~560 mm)	Surface (~140 mm)	Core (~560 mm)	Surface (~140 mm)						
10%	518	581	638	706						
90%	469	537	577	694						
50%	493_19	559_17	608 24	700 5						
	25% increase									

Fractography (I): Charpy-V test - brittle areas (as received specs.)

40 mm depth intergranular

667 mm depth quasi-cleavage & ductile areas

Fractography (II): K_{lc} tests – as received specs.

Fractography (III): K_{lc} tests – re-heat-treated specs.

Fatigue **Brittle** precrack propagation

Fractography (IV): fatigue tests – fatigue areas

As-received

Surface (~140 mm) Core (~560 mm)

Re-heat-treated

Fractography (V): fatigue tests – overload areas

Re-heat-treated (originally ~560 mm) intergranular (partially ductile)

Fractography (VI): remarks

Macroscopically brittle (overload) fracture mechanisms

- Charpy-V, K_{Ic} and fatigue test specimens with similar microstructures show similar microscopic fracture mechanisms.
- Core and intermediate depth as-received microstructures show cleavage or quasi-cleavage fracture with some ductile areas.
- Both as-received (low depth) and re-heat-treated tempered martensite microstructures show mainly intergranular fracture.

Toughness of tempered martensite microstructures

- Only the re-heat-treated samples show ductile regions at the crack tip of the K_{lc} specs. (and thus higher toughness).
- Differences in the tempered martensite carbide distribution, not observable by the O.M., must be supposed.

Conclusions (I)

- Mixed microstructures occur throughout the examined bloom.
- ☆ The bloom fracture toughness is exceptionally low (about 40 MPa√m) for a Q&T steel, considering the achieved UTS.
- The plain-strain fracture prevalently occurs by decohesion, coherently with the fact that, at room temperature, this steel is in its brittle temperature range.
- The low toughness must be attributed to the microstructures caused by the heat treatment, and in turn to the large dimensions of the blooms and of the moulds.
- The much higher toughness of the re-heat-treated samples must be attributed to microstructural differences on a sub-micron scale.

Conclusions (II)

- The rotating bending fatigue endurance limits scale with the tensile strength, rather than with the fracture toughness.
- The endurance limits of the re-heat-treated samples is 25% higher, keeping the differences due to the original location.
- The low fracture toughness is a critical property; the lower fatigue endurance limit allows for a critical crack to develop more rapidly than in a fully Q&T condition.

Relationships between Tensile and Fracture Mechanics Properties and Fatigue Properties of Large Plastic Mold Steel

D. Firrao¹, P. Matteis¹, G. Scavino¹, G. Ubertalli¹, M. G. lenco², M. R. Pinasco², E. Stagno², R. Gerosa³, B. Rivolta³, A. Silvestri³, G. Silva³, A. Ghidini⁴

³Politecnico di Milano

¹Politecnico di Torino ²Università di Genova ⁴Lucchini Sidermeccanica

Thank you for your attention!