
Lightweight, Payload-Based Traffic Classification:
An Experimental Evaluation

F. Risso, M. Baldi, O. Morandi
Dipartimento di Automatica e Informatica

Politecnico di Torino
Torino, Italy

A. Baldini, P. Monclus
Cisco Systems

San Jose, CA, USA

Abstract— With the ever increasing amount of traffic, scalability
is probably the most important factor that differentiates several
existing approaches to traffic classification. This paper focuses on
payload-based classification and compares the results obtained
through a “lightweight” traffic classification approach with the
ones obtained with a “completely stateful” approach,
demonstrating that the first approach, albeit less precise, is still
appropriate for a large class of applications.

I. INTRODUCTION
Traffic classification is one of the hottest issues in modern

networks. On one side, corporate and ISPs network managers
want to know the nature of the traffic in their network for better
managements (e.g., QoS, security), on the other side users want
to bypass network restrictions in order to re-gain their freedom.

Several traffic classification technologies have been
proposed so far, ranging from the “old” payload-based methods
[2][3][4] (the packet payload is inspected to determine the
application-layer protocol contained in it) to new statistical
methods [5][6][7][8] (some statistical behavior of the traffic,
e.g. packet inter-arrival time, number and type of new sessions,
etc., are used to characterize and classify the traffic). Former
methods are usually more accurate, but are known to require
more resources (processing and memory) and fail (always) in
case of encrypted traffic and (often) in case of tunneled traffic.
Statistical methods look promising for overcoming previous
limitations, but currently are not yet suitable to fine-grained
traffic classification. For example, they are usually able to
distinguish between web and peer-to-peer traffic, but they have
a hard time differentiating the traffic of a malicious peer-to-
peer application from a corporate-friendly one. Moreover,
current research results take into account a small set of
protocols, which is far from the large number of protocols that
are commonly used in today’s networks. In addition, the
accuracy of their classification (in terms of false positives and
false negatives) is often below the limits usually acceptable.
For these reasons, most of the products available nowadays are
based on payload-based methods, which are able to provide
much more precise results, although they are known to be
affected by scalability problems. In fact, these problems are
particularly evident in the last generation of “stateful” methods,
which are often based on the application of a set of rules
(usually application-layer signatures) against the entire
payload. While this avoids common problems such as the
verification of messages when they are split across several

packets, it requires the complete reconstruction of the session
at application-layer.

While future traffic classification mechanisms will
probably implement both payload-based and statistical-based
techniques in order to overcome each other issues and to take
the best from both worlds, this paper focuses on payload-based
techniques because of their widespread use. The aim of this
paper is to demonstrate that these “stateful” techniques can be
replaced with some more “lightweight” techniques1 at least for
a certain set of applications, guaranteeing a better scalability
while maintaining a high level of accuracy.

This paper is organized as follows. Section II presents a
taxonomy of the methods that can be used in payload based
traffic classification; Section III presents some results related to
the evaluation of “packet-based” vs. “message-based”
technologies, Section IV presents some conclusive remarks and
a brief look at the future research directions.

II. PAYLOAD-BASED TRAFFIC CLASSIFICATION
Although the problem of determining the higher-layer

protocol of a packet is commonly known as “traffic
classification”, in case of payload-based methods often it
becomes a problem of “pattern verification”. In the past,
applications were detected by “classifying” the packet based on
the value of a field (e.g. port 25 equal to SMTP traffic) [1].
These days, ports are meaningless on a vast portion of the
traffic and the classification consists in guessing the
application-layer protocol and verifying that this is correct by
means of some appropriate controls (e.g. if the payload
contains some well-known keywords). The difference between
the payload-based technologies is due to the different types of
controls that can be put in place, and the different processing
methods that are required to perform these checks, as shown in
Figure 1. The different complexity of these methods can be
seen in the processing power that increases from left to right
(e.g. the simplest method requires the parsing of L2-L4
headers, while the most complex one requires the processing of
the application payload in all packets) and in the corresponding
memory requirements.

1 Currently, the accuracy that can be achieved with a “stateless” technique

(which is basically a port-based one) is pretty low; therefore all the techniques
that are in use nowadays require keeping a limited amount of per-session
state, as shown in the following.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11396796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The following sections will show the problem of traffic
classification from the point of view of the possible verification
methods, the (currently unsolved) problem of application
classification, and a list of processing methods that can be
deployed within a payload-based classifier.

Network
packet

Session
tracker

TCP/IP
normalizer

Protocol state
machine

Packet Based,
No State
(PBNS)

Packet Based,
Per Flow State

(PBFS)

Message Based,
Per Flow State

(MBFS)

Message Based,
Per Protocol State

(MBPS)

P
ro

ce
ss

in
g

m
e
th

o
ds

E
xa

m
p
le

T
e
ch

n
o
lo

g
y

e.g. NetPDL e.g. NetPDL e.g. BinPac, SML

FlowID

FlowID

FlowID

ProtID

ProtID

ProtID

FlowID

FlowID

FlowID

NormBuf

NormBuf

NormBuf

ProtID

ProtID

ProtID

ProtState

ProtState

ProtState

Session Table Session Table Session Table

FlowID

FlowID

FlowID

NormBuf

NormBuf

NormBuf

ProtID

ProtID

ProtID

L4 headers (all pkts) L4 headers (all pkts)

Session Payload (1st

segm.)

L4 headers (all pkts)

Session payload (1st

msg) / (all pkts)

L4 headers (all pkts)

Session payload (all pkts)

Signature-based
Syntactical

Signature-based
Syntactical

Protocol Conformance

Signature-based
Syntactical

No verification

V
e
ri
fi
ca

ti
o
n

m
e
th

o
ds

Summary of major memory requirements

Summary of major processing costs

Major processing components

Figure 1. Payload-based traffic classification: different processing and

verification methods.

A. Verification methods
With respect to traffic classification, we can envision four

different degrees of verification.

A first degree of verification is the signature-based one,
which aims at locating some signatures within the application-
layer payload. For instance, an HTTP packet begins with a
command followed by the URL and the protocol version, while
most Edonkey packets start with a field containing the size of
the payload. A signature-based method classifies the traffic by
checking if (part) of the payload matches the signature defined
for that protocol. Signatures are usually regular expressions,
although they can include some more controls (e.g., a check
over the length of the payload). A second degree of
verification, the syntactical one, can be seen as a more accurate
version of the signature-based one, since it aims at checking the
correctness of the transmitted data from the syntactical point of
view (e.g. a supposed HTTP payload must contain HTTP
headers). A verifier should decode all the fields contained in
the message and guarantee that the message is well formed. A
third degree of verification relates to protocol conformance,
e.g. controlling that an HTTP GET Request from a client is
followed by a valid response from the server. This form of
verification is more accurate because it can validate the run-
time behavior of the protocol against its canonical state
machine as defined by specifications. A fourth degree of
verification refers to the semantic of the data, e.g., the
possibility to verify whether an image object transferred by the
HTTP protocol is in fact an image, or some other form of
content. This verification is extremely useful to detect “smart
tunneling” mechanisms, in which an application uses another
protocol to transport its data. However, the authors are not
aware of any technology that implements such level of
verification, which is very complex indeed.

B. Protocol vs. application classification
One of the possible problems at this level is that users tend

to mix up the concepts of protocol and application
classification. For instance, it is not clear how to classify the
traffic of a peer-to-peer application that uses HTTP for data
exchange: the protocol is HTTP, but it is used for P2P traffic.
In general, applications use protocols for their purposes: often
applications define their own protocols (and this makes this
problem trivial), but sometimes they use other existing
protocols; in order words, as shown in Figure 2, application
classification may be somewhat orthogonal to protocol
classification.

Application
Domain

Web HTTP

Protocol
Domain

HTTPS
Emule

Edonkey2000

SkypeSkype

Figure 2. “Application domain” vs. “Protocol domain”.

From the practical point of view, verification methods
presented in the previous section are a solution to protocol
classification but might not be appropriate for application
classification, which, unfortunately, is what the user expects
from a classification system. For example, the protocol
conformance verification will fail in case of a P2P traffic
exchanged through HTTP (the result will be that the traffic is
HTTP, which is in fact correct from the protocol conformance
point of view), while simplest methods, such as the signature-
based one, can be better tuned to distinguish (e.g. by checking
different values of the “user-agent” HTTP header) between
web traffic and the HTTP generated by the P2P application.

While a better analysis of the problem of application
classification is left to future work, the conclusion is that the
verification techniques shown in the previous section, when
taken alone, are not able to return the results expected by the
users and must be integrated with some “tricks” that take into
account the application domain. Therefore, it is not guaranteed
that a technology based on the most advanced verification
methods will be able to return the best results; in fact, vendors
usually integrate these methods with some heuristics to classify
traffic per-application instead of per-protocol.

The rest of the paper will consider systems that are able to
perform application-based classification, mixing adequately
the methods shown in Section II.A with heuristics.

C. Payload-based processing methods
A taxonomy of the possible approaches in shown in the

portion of Figure 1 dedicated to processing methods. The
simplest method is the Packet Based-No State (PBNS), which
operates by checking the value of some fields present in each
packet, such as the TCP/UDP ports. This method is very simple
computationally (only packet headers until L4 have to be
processed), it does not require state, but the results in terms of
accuracy are inadequate on current traffic.

A second method is the Packet Based – Per Flow State
(PBFS), which requires a session table in which each record
includes the session ID (the 5-tuple IP source/destination,
transport protocol, port source/destination) and the
corresponding application-layer protocol (Protocol ID), which
accounts for some tens of bytes each. This method supports the
implementation of a verification mechanism based on
application-layer data, although this is limited to a per-packet
inspection. For example, it is able to scan the payload looking
for a specific signature (e.g. “GET * HTTP”). The limited per-
session state is required because the application signature may
not be present on all the packets; hence the entire session must
be “marked” as soon as one packet is detected that complies
with the verification process. The processing complexity of this
method increases because of the necessity to manage the
session table, plus the payload inspection: it is worthy noticing
that the latter is required only on a subset of packets (i.e., the
first one(s) of each session).

A third method is the Message Based – Per Flow State
(MBFS), which operates on messages instead of packets. This
requires a TCP/IP normalizer2 module that takes care of IP
fragments (i.e. putting all the IP fragments together into a
single IP packet) and TCP segments (i.e. creating a “virtual
payload” by putting the required segments together and
reconstructing the application-layer message). Basically,
MBFS technologies can perform the same checks of the PBFS
ones, but operate on messages; hence their controls can be
extended over the entire message instead of the first segment of
data. In such case, memory requirements increase because of
the additional state information that must be kept for each
session (e.g. TCP sequence number) and of buffers required by
the TCP/IP normalizer, although these are highly dependent on
the nature of the traffic, i.e., on the quantity of fragmented
packets and “abnormal” (e.g., out-of-order, overlapped,
missing segments, and more) TCP sessions. Processing
requirements increase as well because at least the first message
(which may span across different packets) on each session
must be checked. Depending on the implementation, some
products can perform syntactical verification on all the
messages, therefore requiring a deep processing of the entire
data exchanged during each session.

The fourth method is the Message Based – Per Protocol
State (MBPS), which goes one step further by interpreting
exactly what each application transmits and receives. A MBPS
processor understands not only the semantic of the message,
but also the different phases of a messages exchange (e.g. an
HTTP GET must be followed by a valid response code from
the web server, while MBFS does not implement such kind of
correlation between messages) because it has a full
understanding of the protocol state machine. Memory
requirements become even larger, because this method needs to
take into account not only the state of the transport session, but

2 The taxonomy presented in this section presents different processing

methods without taking into account implementation details. Particularly,
several implementations are available for a TCP/IP normalizer; the important
point is that in case of MBFS methods this module must be present and must
be able to return TCP/IP packets in such a way that the following modules can
operate on the entire application-layer message, even if the message is split
across different packets.

also the state of each application-layer session. Also processing
power is the highest because the protocol conformance analysis
requires processing the entire application data, while previous
methods are limited to the first packet(s) within each session.

Real implementations based on the PBFS technology
usually associate some additional state to each session in order
to perform a more accurate classification. For example, some
applications (e.g. Skype, VoIP) can be detected by checking a
pattern over some consecutive packets, and this can be
implemented by storing some additional data (usually a few
bytes) in the session table. However, this method cannot
provide deterministic results, because although PBFS can
support cross packet analysis (and, to some extent, also
protocol conformance) through this small additional state, the
reality is that packets can arrive out of order, may be duplicated
or missing. In this case, i.e., when the application-layer data
stream is “corrupted” due to some error at packet level, a
TCP/IP normalizer is required, hence falling in the MBFS case.
Therefore, PBFS and MBFS are much more oriented to
achieve high performances at the expense of the accuracy and
some decisions (e.g. “this packet belongs to an HTTP session”)
may be proven wrong in case the same session is analyzed with
a more sophisticated method.

Existing technologies do not fit exactly in this taxonomy,
since the same technology can span over several categories.
Particularly, technologies are usually differentiated in packet-
based (such as NetPDL [9], NBAR [12]) and “stream-based”
ones (such as SML [13], BinPac [11]). However, these
technologies behave differently according to the different
implementation; for instance, NetPDL and NBAR can behave
as PBFS or MBFS depending on the presence of a TCP/IP
normalizer in the processing data path.

Obviously, when moving from the simplest PBNS to the
more sophisticated MBPS, requirements in terms of memory
and processing power increases, with the advantage of a more
accurate protocol classification. However, it is currently
unknown to what extent such higher complexity is worthy, i.e.,
if the additional accuracy obtainable with the more
sophisticated methods is balanced by the increased complexity.

III. EXPERIMENTAL EVALUATION

A. Technologies under evaluation
The common belief is that a more sophisticated technology

allows obtaining more precise results. However, as explained
in Section II, a more sophisticated technology costs more in
terms of memory and processing power; therefore is not
suitable for high speed links. Moreover, it is currently unclear
the worsening, e.g. in terms of accuracy, when moving from a
more sophisticated technology to a simpler one.

In order to give an answer to this question, this paper
compares the PBFS and MBPS technologies with respect to
traffic classification. Particularly NetPDL (available in the
NetBee library [14]) will be used as an example of PBFS
technology, while for MBPS two implementations have been
selected: one based on the BinPac language, available in the
BRO Intrusion Detection System [15][16] and the other based
on the SML language, available in the Cisco SCE box [17]. All

the technologies are based on a description language (packet-
based for NetPDL, protocol-based for BinPac and SCE) that
allows describing some aspects of network protocols, i.e.,
protocol format and, for the most advanced ones, the protocol
state machine, and are included in a product that does
packet/protocol processing based on that language. Due to
some practical constraints (e.g., sources are available only for
NetPDL and BinPac), analysis related to PBFS technology
were done using used NetPDL, while MBPS analysis was
based either on BinPac or SML, depending on the requirements
of the planned test. More details about these technologies can
be found in [10].

Obviously, each implementation has some differences
compared to the set of verification technologies presented in
Section II.C. For example, the SCE box implements the MBPS
technology plus some additional features (not really
documented) that belong to the application classification
domain, and some statistical-based methods. Vice versa, Bro is
a pure MBPS technology (with respect to protocols
implemented in BinPac language) and it is not capable of
application classification, at least in the code available on the
web site at time of testing. These characteristics must be taken
in mind when discussing the outcomes of our tests.

B. Performance indexes
Our tests aimed at evaluating the parameters shown in

Figure 3, mainly the coverage, i.e., the number of protocols
that are classified by a given technology, the accuracy and the
completeness of the classification.

Evaluation
Parameters

Coverage

#of supported
protocol

Accuracy

Quality of the
classification for

protocol X

False
positives

“this protocol is
X”, while it is not

False
negatives

“this protocol is
not X”, while it is

Unclassified

“this protocol is
unknown”, while it is X

Mis-classification

“this protocol is Y”,
while it is X

Completeness

% of traffic
classified

Figure 3. Parameters under evaluation.

Particularly, the accuracy is computed “per protocol” and is
conveyed in terms of false positives (FP) and false negatives
(FN) with a definition that is slightly different from the one
found in literature, but it is more intuitive and makes easier to
compare the results. In this paper a false positive for protocol X
(FP(X)) occurs when a session contain protocol Y is
erroneously classified as X. A false negative for protocol X
(FN(X)) occurs when a session containing protocol X is
erroneously classified as Y (FN-Wrong Classification), or it
remains unclassified (FN-Unclassified). Particularly, the case
of FN-Wrong is often more problematic because in some
applications this can lead to dangerous behavior (e.g. a session
that should be blocked by a firewall could get higher privileges
instead), while the unclassified traffic (FN-Unclassified) is
usually tolerated. With respect to the completeness, this
parameter represents the amount of traffic that has been
classified. This parameter must be taken with care because it

does not distinguish between the traffic correctly classified and
the one that is not, being equal to 1 minus the percentage of
unclassified traffic.

C. Methodology
Tests have been made using both pre-classified traces

organized per-application (each trace either contains only the
traffic generated by that application, or a traffic that is similar
but is generated by another application), synthetic traces (the
traffic coming from a set of applications is duplicated several
times, changing “randomly” IP addresses, ports and some of
the most peculiar data in it, such as email addresses and more)
and real traces captured on the link that connects our
University to the Internet. Captured data was pre-processed in
order to discard packets belonging to a session started before
the beginning of the capture3; moreover, we discarded all the
packets belonging to sessions that resulted idle for more than 5
minutes. Several tests demonstrated that this timeout was fair
enough to keep the vast majority of the traffic. Table 1 shows
an outcome of one of these tests, proving that an increased
value for the timeout leads only to greater cost (e.g., session
entries must be kept in memory for more time) without any
other impact in the results of the test. Moreover, several real
implementations (e.g. firewalls) use the same value as the
standard inactivity timeout.

TABLE 1. PACKETS DISCARDED WITH DIFFERENT VALUES OF THE INACTIVITY
TIMEOUT FOR TCP SESSIONS

Timeout Total
packets

TCP
packets

TCP
packets

dropped (#)

TCP
packets
dropped

(%)
1 min 14979286 14073381 3590186 25.51%
2 min 14979286 14073381 792968 5.63%
4 min 14979286 14073381 770051 5.47%
5 min 14979286 14073381 756899 5.38%
6 min 14979286 14073381 696864 4.95%
8 min 14979286 14073381 676638 4.81%

10 min 14979286 14073381 674401 4.79%

Pre-classified traces had a very limited amount of encrypted
traffic, which cannot be classified with pure payload-based
technologies. In all trace files, applications can use any port,
e.g. it may happen to have some HTTP sessions on port other
than 80; in addition, real traces may contain malicious traffic
(although we did not introduce it explicitly). The technologies
under evaluation are not required to detect a security attack
(e.g. SYN flooding), but must be able to recognize traffic also
on non-standard ports.

D. Coverage
The number of protocols supported by the technologies

under testing is extremely different. NetBee currently supports
about 100 application-level protocols. Among the MBPS
technologies, the SCE supports more than 600 applications,
while BRO supports a very limited number of applications,

3 In fact, this is valid only for TCP traffic, in which we can easily detect the

beginning of a session. In this preprocessing stage, all non-TCP traffic was
left untouched.

namely DNS, RPC, DCE_RPC, HTTP, NCP, SMB4. Among
these, only HTTP is classified even if traffic is not on the
standard port; hence only the HTTP protocol will be suitable
for our tests. With the exception of BRO, the other
technologies support the vast majority of IETF protocols and a
fair number of “tough” applications such as VoIP (e.g. SIP,
H.323, Skype, Vonage, etc.) and P2P (such as Kazaa, Gnutella,
Edonkey). From the point of view of coverage, MBPS and
PBFS are mostly equivalent, provided that the current objective
is application-layer classification and not application-layer
protocol decoding, in which treating packets or messages
makes a big difference.

E. Accuracy
The first set of tests involves the analysis of pre-classified

traces (about 200MB of data), containing each one a set of
packets belonging to a given protocol. These pre-classified
traces have been analyzed with the SCE box and with NetBee.
Results were a 100% accuracy for the SCE box, and near-
100% accuracy for NetBee (details are shown in Table 2), with
no false positives (which is expected, since pre-classified traces
contained only packets belonging to the selected protocol) and
a negligible amount of false negatives, almost all unclassified
traffic. Among the unclassified packets, there was some
encrypted traffic, some packets whose signature was split
across different packets, or some part of the protocol not
supported by the signature base (e.g., some Kazaa packets).
Finally, some packets were unclassified because of the
necessity to analyze several consecutive packets to detect the
protocol (e.g. RTP); in this case, the first packets of the session
appear as unclassified.

TABLE 2. ACCURACY WITH PREFLASSIFIED TRACES, USING NETBEE

Application # Files # Packets % Packets
Detected FP FN-W FN-U

Edonkey 26 41426 99.04% 0.00% 0.77% 0.19%
Kazaa 27 38888 98.89% 0.00% 0.02% 1.09%

Gnutella 21 16407 99.96% 0.00% 0.00% 0.04%
HTTP 97 81290 99.87% 0.00% 0.00% 0.13%
FTP 25 49024 99.82% 0.00% 0.14% 0.04%
RTP 19 90643 99.21% 0.00% 0.00% 0.79%

SIP + RTP 27 467267 99.98% 0.00% 0.00% 0.02%

With respect to NetBee, we ran the tests several times, each
time improving the signature base. This lead to the conclusion
that the results are highly dependent on the quality of the
signature (for example, NetBee did not implement a signature
for some binary messages rarely used by Kazaa, and in fact the
accuracy related to this protocol is the lowest among the tested
set), and these results can be further improved with an
appropriate tuning of the signatures. Protocols under testing
were some among the most significant ones (peer-to-peer,
voice, client-server); it is the authors’ belief that a larger
number of protocols will not change these results substantially,
since the quality of the classification in NetBee (hence in PBFS
technologies) depends mostly on the quality of the signatures.

4 BRO supports a larger number of applications, but only these ones are

supported through the BinPac language; therefore, only these application-
layer protocols are checked with the various stages of verification until
Protocol Conformance.

Figure 4 compares the classification results obtained by the
SCE box and NetBee on four different sets of synthetic traces.
Our tests show that these technologies have almost the same
results, with the most part of the traffic (usually around 85%)
either classified in the same way or unclassified. Differences
(the three upper sections) are very limited, and mostly related
to sessions that goes unclassified in one of these two
technologies, bringing two different results only in about an
average of 2% of the sessions. While this may be related to the
quality of the signature database in NetBee, we have to say
that, surprisingly, a manual inspection showed that most of the
errors were in the SCE box.

74%

40%

79% 80%

10%

45%

5% 4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Trace1 Trace2 Trace3 Trace4

Classified only by SCE
Classified only by NetBee
Different classification
Unclassified by both
Same protocol

Figure 4. Comparing classification results between NetBee and SCE.

F. Robustness
One of the problems of the MBPS technology is that it does

not tolerate losses of packets. This is the case of a network-
related packet loss, but it may be the case of an overloaded
classification device (e.g. some device on the market start
discarding packets when the processing load approaches
100%), or in case of asymmetric routing, where packets within
the same session follow different paths in the two directions.

A test was performed to demonstrate this problem. Traces
containing HTTP sessions were analyzed with Bro and NetBee,
and then results were compared “session-by-session”. Sessions
detected by both tools were assumed being HTTP without any
further control, while sessions detected only by one tool were
manually inspected to decide who was wrong.

The most important result was that, globally, NetBee was
more accurate than Bro, and perhaps the most important
reasons is related to the better robustness of the PBFS
technology, as shown in the first two sections of Table 3. In
fact, Bro showed a fair number of false negatives due to
asymmetric routing (respectively, 17 and 29) that caused
sessions to be captured only in one direction. This behavior is
correct indeed from the point of view of MBPS technologies (if
a packet is missing, the protocol state machine cannot be
validated), but this points out that the physical deployment of
these technologies must be done with care. For example, a
MBPS classifier cannot be deployed in the backbone, or in
networks with multiple exit gateways. A second problem was
due to packet losses. Our sniffer was dropping a limited
amount of packets during the capture, resulting in some
“corrupted” HTTP sessions. NetBee correctly classified these
sessions (3 in each test), while (as we may expect) Bro was not

able to mark them as HTTP5. On the other side, Bro was able
to classify two HTTP sessions more than NetBee, due to the
presence of a signature split across two packets. While, again,
this is a known drawback of the PBFS technology, it is
interesting to note that the number of sessions showing this
problem was extremely limited (only four sessions) and, more
important, two of them were correctly classified by NetBee. In
fact, the last two sessions were related to the version 1.1. of the
HTTP protocol, which can handle several transactions
(request/response) in the same TCP session. It turned out that
the first request was split across two packets, while the second
one was contained within a single packet, and NetBee
classified this session as HTTP starting from that point6.

This result must be taken with care because the current
analysis is far from being exhaustive, but the general
impression is that this problem may be less important than we
did expect. First, the number of sessions with split signatures
may vary in different captures; second, this problem may be
more evident in applications in which the signature is
particularly complex, or in case of malicious (e.g. short)
packets such as the ones used in some attacks. Another point is
that this problem is exacerbated when only a snapshot of each
packet is analyzed in order to decrease processing costs, and
for these reasons we believe that this is an area in which some
more investigations will be required.

It is worth noticing that all the false negatives in Table 3
were related to unclassified packets; in other words, no
misclassifications were present in these files.

TABLE 3. CLASSIFICATION OF HTTP SESSIONS IN BRO AND NETBEE

 Trace1 Trace2 Comments

HTTP sessions 22897 38018
Classified by both 22875 37986
False Negatives

Bro 20 32 Asymmetric routing
(17/29), drops (3/3)

NetBee 2 0 Signature split across
packets (2/0)

False Positives
Bro 7 13 Skype (6/11), Edonkey

(1/2)
NetBee 0 0

G. Application vs. protocol classification
The fact that the MBPS technology alone is not able to

perform application classification (Section II.B) is evident from
the last section of Table 3. In fact, Bro showed some false
positives due to web-like traffic generated by peer-to-peer
applications, which was classified as web traffic. Particularly, 7
(in the first test) and 13 sessions (in the second test) that were
in fact generated either by Edonkey or Skype and encapsulated
in HTTP, were classified by Bro as web traffic. This

5 This demonstrates the higher robustness of the PBFS technology, which

does not mean absolute robustness. For instance, PBFS cannot classify a
session if the packet containing the signature is lost. The difference is that
PBFS fails only if this packet is missing, while MBFS or MBPS will fail
whenever a single packet within the session is lost, whatever this will be.

6 The current implementation of NetBee analyzes all the packets within a
session until a valid application-layer is found. Therefore, in case a session is
still unclassified, all its packets are inspected looking for a known signature.

demonstrates our statement that a pure MBPS technology is
still not enough in current application-based traffic
classification because this technology is able to check only
protocol conformance, while application classification requires
some more controls.

H. Completeness
Given the results that proved the accuracy of the PBFS

technology (at least in case of the pre-classified traces), we ran
a couple of tests on real traces to test the completeness of the
classification. Results were extremely interesting: in both
traces (captured in different days, and accounting for different
groups of users) almost 97% of the traffic was classified (see
Table 4), although the accuracy is unknown. It is worthy
noticing that another capture done in February 2007 showed a
completeness of about 70%, but a large part of the unclassified
traffic was generated by Emule using obfuscation techniques
(i.e., it was encrypted traffic), and this traffic cannot be
classified with payload-based technologies.

TABLE 4. TRAFFIC CLASSIFIED BY NETBEE WITH TWO DIFFERENT REAL
TRACES

 Classified Unclassified

November 2006, 9.5 GB, 9.5 hours 96.80% 3.20%
May 2007, 7.8 GB, 22 minutes 96.55% 3.45%

December 2007, 461 GB, 12.5 hours 92.83% 7.17%

Figure 5 shows the results of the classification on the last
trace, covering the traffic of the entire campus and spanning
over about 12 hours. Results show an increase of the
unclassified traffic, but we guess that a large part of this traffic
is encrypted edonkey, which is unexpectedly low in our
measurements, while we know (from other sources) that it
should have higher share. Also interesting is the amount of
SSH traffic, which is probably an indication of some tunneling
mechanisms used to bypass network restrictions.

69,77%

4,84% 3,05% 2,67% 2,25% 1,53%
8,72% 7,17%

0%

20%

40%

60%

80%

http bittorrent ssh ssl smtp imap Other
protocols

Unclassified

Figure 5. Protocol distribution (in number of bytes), with NetBee.

I. Scalability
While MBPS technology is known to suffer from the

scalability point of view, our findings demonstrate that also the
requirements of PBFS may be problematic in case of high-
speed links. For instance, Figure 6 shows the cumulative
distribution function (CDF) related to the number of TCP
session entries required to classify some real capture traces,
with the 5-min inactivity timeout defined in Section III.C. A
couple of capture traces with an average traffic load of 2Mbps
and about 100 subscribers required about 2500 entries in the

TCP session table for being able to classify the entire data.
While this result does not have a general validity (and further
analysis is required), it turns out that a multi-gigabit pipe may
require millions of entries in the TCP session table, which may
be far beyond the capability of any hardware platform. A more
detailed study about this problem and possible solutions to
mitigate these effects are left to future work.

0%

20%

40%

60%

80%

100%

100 500 900 1300 1700 2100 2500 2900
entries in the TCP session table

%
 o

f c
la

ss
ifi

ed
 tr

af
fic Nov 06, 9.5GB, 9.5 hours

Feb 07, 9.3GB, 11 hours

Figure 6. Number of TCP session entries required to classify the traffic.

IV. CONCLUSIONS
This paper brings two contributions. First, it presents a

taxonomy of payload-based classification approaches, showing
their characteristics, their strength and their weaknesses, and
their processing and memory requirements. Second, it
compares one implementation following the Packet Based –
Flow State approach (often known as “lightweight”
technology) with a couple of implementations following the
Message Based – Per Protocol State approach (often known as
“stateful” technology). Results show that, although the former
cannot probably achieve the precision required in security
appliances, differences in terms of coverage, accuracy and
completeness are very limited at a fraction of the complexity
(memory requirement, processing limited to the first few
packets within each session) of the latter. In any case, MBPS
technologies are not able to achieve the expected results in
terms of application classification, which is one step further
than protocol conformance and that requires specific
mechanisms (e.g. application-specific signature-based
classification). Moreover, tests pointed out a couple of
additional interesting results. First, tests showed that some
known problems of the per-packet approach (such as signature
split across two packets) might be negligible on real traffic.
Second, they showed that the packet-based technology is more
robust (e.g. packet losses, asymmetric routing), and that the
deployment (e.g. in terms of physical location) of “stateful”
technologies must be done with care.

The tuning of the signature database is perhaps the most
problematic issue that emerges from this work. In fact, all these
packet classification technologies were increasingly relying on
signatures for protocol detection, and the accuracy depends on
the quality of these signatures. However, some protocols are
not well documented (or not documented at all) and the choice
of the best signature often makes the difference.

This paper answers to some question, but several new areas
of investigations are emerging from current results. Among the
others, a more detailed evaluation of the accuracy in case of
real traces, the problem of further decreasing the state in PBFS
technology, the accuracy obtainable when decreasing the

amount of data processed (e.g. analyzing only a snapshot of the
packet) in PBFS, and the problem of application (and not
protocol) classification.

V. ACKNOWLEDGMENT
The authors wish to thank Flavio Bonomi, Satish Gannu,

Bob Olsen, Ravid Sagy, Mario Ullio and Vinicio Vercellone,
for their comments and their many suggestions, and Niccolò
Cascarano, Christian Novello and Gianpaolo Surfaro who spent
part of their graduation thesis working on this topic.

REFERENCES
[1] D. Moore, K. Keys, R. Koga, E. Lagache, and K. C. Claffy. The

CoralReef Software Suite as a Tool for System and Network
Administrators. In Proceedings of the 15th USENIX conference on
Systems Administration (LISA 01), pages 133–144, San Diego, CA,
USA, December 2001.

[2] A. W. Moore, K. Papagiannaki. Toward the Accurate Identification of
Network Applications. In Proceedings of the 6th International Workshop
on Passive and Active Network Measurement (PAM 2005), Boston, MA,
USA, March 2005, Pages 41-54.

[3] S. Sen, O. Spatscheck, D. Wang. Accurate, scalable in-network
identification of p2p traffic using application signatures. In Proceedings
of the 13th international conference on World Wide Web (WWW 04),
pages 512–521, New York, NY, USA, 2004.

[4] P. Haffner, S. Sen, O. Spatscheck, D. Wang. ACAS: Automated
Construction of Application Signatures. In Proceeding of the 2005 ACM
SIGCOMM workshop on Mining network, pages 197 – 202,
Philadelphia, PA, USA, 2005

[5] A. W. Moore, D. Zuev. Internet traffic classification using bayesian
analysis techniques. In Proceedings of the 2005 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, pages 50–60, Banff, Alberta, Canada, June 2005.

[6] J. Erman, M. Arlitt , A. Mahanti. Traffic classification using clustering
algorithms. In Proceedings of the 2006 SIGCOMM workshop on Mining
network data, pages 281-286, September 2006, Pisa, Italy.

[7] M. Crotti, M. Dusi, F. Gringoli, L. Salgarelli. Traffic Classification
through Simple Statistical Fingerprinting. In ACM SIGCOMM Computer
Communication Review, Vol. 37, No. 1, pp. 5-16, Jan. 2007

[8] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC: Multilevel
Traffic Classification in the Dark. In Proceedings of ACM SIGCOMM,
pages 229–240, Philadelphia, PA, August, 2005.

[9] M. Baldi, F. Risso. NetPDL: An Extensible XML-Based Language for
Packet Header Description. In Elsevier Computer Networks Journal
(COMNET), Volume 50, Issue 5, Pages 688-706, April 2006.

[10] F. Risso, A. Baldini, F. Bonomi. Extending the NetPDL Language to
Support Traffic Classification. In Proceedings of IEEE Globecom 2007,
Washington, D.C, USA, November 2007.

[11] R. Pang, V. Paxson, R. Sommer, L. Peterson. Binpac: a yacc for writing
application protocol parsers. In Proceedings of the 6th ACM SIGCOMM
on Internet Measurement, pages 289-300, Rio de Janeiro, Brazil,
October 2006.

[12] Cisco Systems. Network Based Application Recognition (NBAR).
Available at http://www.cisco.com/en/US/products/ps6616/
products_ios_protocol_group_home.html.

[13] O. Reviv. Inside network programming with SML. EE Times, August
2003. Available at http://www.eetimes.com/story/OEG20030818S0077.

[14] Computer Networks Group (NetGroup) at Politecnico di Torino. The
NetBee Library. August 2004. Available at http://www.nbee.org/.

[15] V. Paxson. Bro: a system for detecting network intruders in real-time.
Computer Networks, 31(23–24):2435–2463, 1999.

[16] Lawrence Berkeley National Laboratory. Bro Intrusion Detection
System. Available at http://www.bro-ids.org/.

[17] Cisco Systems. SCE 2000 Series Service Control Engine. Product
literature at http://www.cisco.com/en/US/products/ps6151/index.html.

