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Abstract— With the ever increasing amount of traffic, scalability 
is probably the most important factor that differentiates several 
existing approaches to traffic classification. This paper focuses on 
payload-based classification and compares the results obtained 
through a “lightweight” traffic classification approach with the 
ones obtained with a “completely stateful” approach, 
demonstrating that the first approach, albeit less precise, is still 
appropriate for a large class of applications. 

I. INTRODUCTION 
Traffic classification is one of the hottest issues in modern 

networks. On one side, corporate and ISPs network managers 
want to know the nature of the traffic in their network for better 
managements (e.g., QoS, security), on the other side users want 
to bypass network restrictions in order to re-gain their freedom. 

Several traffic classification technologies have been 
proposed so far, ranging from the “old” payload-based methods 
[2][3][4] (the packet payload is inspected to determine the 
application-layer protocol contained in it) to new statistical 
methods [5][6][7][8] (some statistical behavior of the traffic, 
e.g. packet inter-arrival time, number and type of new sessions, 
etc., are used to characterize and classify the traffic). Former 
methods are usually more accurate, but are known to require 
more resources (processing and memory) and fail (always) in 
case of encrypted traffic and (often) in case of tunneled traffic. 
Statistical methods look promising for overcoming previous 
limitations, but currently are not yet suitable to fine-grained 
traffic classification. For example, they are usually able to 
distinguish between web and peer-to-peer traffic, but they have 
a hard time differentiating the traffic of a malicious peer-to-
peer application from a corporate-friendly one. Moreover, 
current research results take into account a small set of 
protocols, which is far from the large number of protocols that 
are commonly used in today’s networks. In addition, the 
accuracy of their classification (in terms of false positives and 
false negatives) is often below the limits usually acceptable. 
For these reasons, most of the products available nowadays are 
based on payload-based methods, which are able to provide 
much more precise results, although they are known to be 
affected by scalability problems. In fact, these problems are 
particularly evident in the last generation of “stateful” methods, 
which are often based on the application of a set of rules 
(usually application-layer signatures) against the entire 
payload. While this avoids common problems such as the 
verification of messages when they are split across several 

packets, it requires the complete reconstruction of the session 
at application-layer. 

While future traffic classification mechanisms will 
probably implement both payload-based and statistical-based 
techniques in order to overcome each other issues and to take 
the best from both worlds, this paper focuses on payload-based 
techniques because of their widespread use. The aim of this 
paper is to demonstrate that these “stateful” techniques can be 
replaced with some more “lightweight” techniques1 at least for 
a certain set of applications, guaranteeing a better scalability 
while maintaining a high level of accuracy. 

This paper is organized as follows. Section II presents a 
taxonomy of the methods that can be used in payload based 
traffic classification; Section III presents some results related to 
the evaluation of “packet-based” vs. “message-based” 
technologies, Section IV presents some conclusive remarks and 
a brief look at the future research directions. 

II. PAYLOAD-BASED TRAFFIC CLASSIFICATION 
Although the problem of determining the higher-layer 

protocol of a packet is commonly known as “traffic 
classification”, in case of payload-based methods often it 
becomes a problem of “pattern verification”. In the past, 
applications were detected by “classifying” the packet based on 
the value of a field (e.g. port 25 equal to SMTP traffic) [1]. 
These days, ports are meaningless on a vast portion of the 
traffic and the classification consists in guessing the 
application-layer protocol and verifying that this is correct by 
means of some appropriate controls (e.g. if the payload 
contains some well-known keywords). The difference between 
the payload-based technologies is due to the different types of 
controls that can be put in place, and the different processing 
methods that are required to perform these checks, as shown in 
Figure 1. The different complexity of these methods can be 
seen in the processing power that increases from left to right 
(e.g. the simplest method requires the parsing of L2-L4 
headers, while the most complex one requires the processing of 
the application payload in all packets) and in the corresponding 
memory requirements. 

                                                        
1 Currently, the accuracy that can be achieved with a “stateless” technique 

(which is basically a port-based one) is pretty low; therefore all the techniques 
that are in use nowadays require keeping a limited amount of per-session 
state, as shown in the following. 
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The following sections will show the problem of traffic 
classification from the point of view of the possible verification 
methods, the (currently unsolved) problem of application 
classification, and a list of processing methods that can be 
deployed within a payload-based classifier. 
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Figure 1. Payload-based traffic classification: different processing and 

verification methods. 

A. Verification methods 
With respect to traffic classification, we can envision four 

different degrees of verification. 

A first degree of verification is the signature-based one, 
which aims at locating some signatures within the application-
layer payload. For instance, an HTTP packet begins with a 
command followed by the URL and the protocol version, while 
most Edonkey packets start with a field containing the size of 
the payload. A signature-based method classifies the traffic by 
checking if (part) of the payload matches the signature defined 
for that protocol. Signatures are usually regular expressions, 
although they can include some more controls (e.g., a check 
over the length of the payload). A second degree of 
verification, the syntactical one, can be seen as a more accurate 
version of the signature-based one, since it aims at checking the 
correctness of the transmitted data from the syntactical point of 
view (e.g. a supposed HTTP payload must contain HTTP 
headers). A verifier should decode all the fields contained in 
the message and guarantee that the message is well formed. A 
third degree of verification relates to protocol conformance, 
e.g. controlling that an HTTP GET Request from a client is 
followed by a valid response from the server. This form of 
verification is more accurate because it can validate the run-
time behavior of the protocol against its canonical state 
machine as defined by specifications. A fourth degree of 
verification refers to the semantic of the data, e.g., the 
possibility to verify whether an image object transferred by the 
HTTP protocol is in fact an image, or some other form of 
content. This verification is extremely useful to detect “smart 
tunneling” mechanisms, in which an application uses another 
protocol to transport its data. However, the authors are not 
aware of any technology that implements such level of 
verification, which is very complex indeed. 

B. Protocol vs. application classification 
One of the possible problems at this level is that users tend 

to mix up the concepts of protocol and application 
classification. For instance, it is not clear how to classify the 
traffic of a peer-to-peer application that uses HTTP for data 
exchange: the protocol is HTTP, but it is used for P2P traffic. 
In general, applications use protocols for their purposes: often 
applications define their own protocols (and this makes this 
problem trivial), but sometimes they use other existing 
protocols; in order words, as shown in Figure 2, application 
classification may be somewhat orthogonal to protocol 
classification. 
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Figure 2. “Application domain” vs. “Protocol domain”. 

From the practical point of view, verification methods 
presented in the previous section are a solution to protocol 
classification but might not be appropriate for application 
classification, which, unfortunately, is what the user expects 
from a classification system. For example, the protocol 
conformance verification will fail in case of a P2P traffic 
exchanged through HTTP (the result will be that the traffic is 
HTTP, which is in fact correct from the protocol conformance 
point of view), while simplest methods, such as the signature-
based one, can be better tuned to distinguish (e.g. by checking 
different values of the “user-agent” HTTP header) between 
web traffic and the HTTP generated by the P2P application. 

While a better analysis of the problem of application 
classification is left to future work, the conclusion is that the 
verification techniques shown in the previous section, when 
taken alone, are not able to return the results expected by the 
users and must be integrated with some “tricks” that take into 
account the application domain. Therefore, it is not guaranteed 
that a technology based on the most advanced verification 
methods will be able to return the best results; in fact, vendors 
usually integrate these methods with some heuristics to classify 
traffic per-application instead of per-protocol. 

The rest of the paper will consider systems that are able to 
perform application-based classification, mixing adequately 
the methods shown in Section II.A with heuristics. 

C. Payload-based processing methods 
A taxonomy of the possible approaches in shown in the 

portion of Figure 1 dedicated to processing methods. The 
simplest method is the Packet Based-No State (PBNS), which 
operates by checking the value of some fields present in each 
packet, such as the TCP/UDP ports. This method is very simple 
computationally (only packet headers until L4 have to be 
processed), it does not require state, but the results in terms of 
accuracy are inadequate on current traffic. 



A second method is the Packet Based – Per Flow State 
(PBFS), which requires a session table in which each record 
includes the session ID (the 5-tuple IP source/destination, 
transport protocol, port source/destination) and the 
corresponding application-layer protocol (Protocol ID), which 
accounts for some tens of bytes each. This method supports the 
implementation of a verification mechanism based on 
application-layer data, although this is limited to a per-packet 
inspection. For example, it is able to scan the payload looking 
for a specific signature (e.g. “GET * HTTP”). The limited per-
session state is required because the application signature may 
not be present on all the packets; hence the entire session must 
be “marked” as soon as one packet is detected that complies 
with the verification process. The processing complexity of this 
method increases because of the necessity to manage the 
session table, plus the payload inspection: it is worthy noticing 
that the latter is required only on a subset of packets (i.e., the 
first one(s) of each session). 

A third method is the Message Based – Per Flow State 
(MBFS), which operates on messages instead of packets. This 
requires a TCP/IP normalizer2 module that takes care of IP 
fragments (i.e. putting all the IP fragments together into a 
single IP packet) and TCP segments (i.e. creating a “virtual 
payload” by putting the required segments together and 
reconstructing the application-layer message). Basically, 
MBFS technologies can perform the same checks of the PBFS 
ones, but operate on messages; hence their controls can be 
extended over the entire message instead of the first segment of 
data. In such case, memory requirements increase because of 
the additional state information that must be kept for each 
session (e.g. TCP sequence number) and of buffers required by 
the TCP/IP normalizer, although these are highly dependent on 
the nature of the traffic, i.e., on the quantity of fragmented 
packets and “abnormal” (e.g., out-of-order, overlapped, 
missing segments, and more) TCP sessions. Processing 
requirements increase as well because at least the first message 
(which may span across different packets) on each session 
must be checked. Depending on the implementation, some 
products can perform syntactical verification on all the 
messages, therefore requiring a deep processing of the entire 
data exchanged during each session. 

The fourth method is the Message Based – Per Protocol 
State (MBPS), which goes one step further by interpreting 
exactly what each application transmits and receives. A MBPS 
processor understands not only the semantic of the message, 
but also the different phases of a messages exchange (e.g. an 
HTTP GET must be followed by a valid response code from 
the web server, while MBFS does not implement such kind of 
correlation between messages) because it has a full 
understanding of the protocol state machine. Memory 
requirements become even larger, because this method needs to 
take into account not only the state of the transport session, but 

                                                        
2  The taxonomy presented in this section presents different processing 

methods without taking into account implementation details. Particularly, 
several implementations are available for a TCP/IP normalizer; the important 
point is that in case of MBFS methods this module must be present and must 
be able to return TCP/IP packets in such a way that the following modules can 
operate on the entire application-layer message, even if the message is split 
across different packets.  

also the state of each application-layer session. Also processing 
power is the highest because the protocol conformance analysis 
requires processing the entire application data, while previous 
methods are limited to the first packet(s) within each session. 

Real implementations based on the PBFS technology 
usually associate some additional state to each session in order 
to perform a more accurate classification. For example, some 
applications (e.g. Skype, VoIP) can be detected by checking a 
pattern over some consecutive packets, and this can be 
implemented by storing some additional data (usually a few 
bytes) in the session table. However, this method cannot 
provide deterministic results, because although PBFS can 
support cross packet analysis (and, to some extent, also 
protocol conformance) through this small additional state, the 
reality is that packets can arrive out of order, may be duplicated 
or missing. In this case, i.e., when the application-layer data 
stream is “corrupted” due to some error at packet level, a 
TCP/IP normalizer is required, hence falling in the MBFS case. 
Therefore, PBFS and MBFS are much more oriented to 
achieve high performances at the expense of the accuracy and 
some decisions (e.g. “this packet belongs to an HTTP session”) 
may be proven wrong in case the same session is analyzed with 
a more sophisticated method. 

Existing technologies do not fit exactly in this taxonomy, 
since the same technology can span over several categories. 
Particularly, technologies are usually differentiated in packet-
based (such as NetPDL [9], NBAR [12]) and “stream-based” 
ones (such as SML [13], BinPac [11]). However, these 
technologies behave differently according to the different 
implementation; for instance, NetPDL and NBAR can behave 
as PBFS or MBFS depending on the presence of a TCP/IP 
normalizer in the processing data path. 

Obviously, when moving from the simplest PBNS to the 
more sophisticated MBPS, requirements in terms of memory 
and processing power increases, with the advantage of a more 
accurate protocol classification. However, it is currently 
unknown to what extent such higher complexity is worthy, i.e., 
if the additional accuracy obtainable with the more 
sophisticated methods is balanced by the increased complexity. 

III. EXPERIMENTAL EVALUATION 

A. Technologies under evaluation 
The common belief is that a more sophisticated technology 

allows obtaining more precise results. However, as explained 
in Section II, a more sophisticated technology costs more in 
terms of memory and processing power; therefore is not 
suitable for high speed links. Moreover, it is currently unclear 
the worsening, e.g. in terms of accuracy, when moving from a 
more sophisticated technology to a simpler one. 

In order to give an answer to this question, this paper 
compares the PBFS and MBPS technologies with respect to 
traffic classification. Particularly NetPDL (available in the 
NetBee library [14]) will be used as an example of PBFS 
technology, while for MBPS two implementations have been 
selected: one based on the BinPac language, available in the 
BRO Intrusion Detection System [15][16] and the other based 
on the SML language, available in the Cisco SCE box [17]. All 



the technologies are based on a description language (packet-
based for NetPDL, protocol-based for BinPac and SCE) that 
allows describing some aspects of network protocols, i.e., 
protocol format and, for the most advanced ones, the protocol 
state machine, and are included in a product that does 
packet/protocol processing based on that language. Due to 
some practical constraints (e.g., sources are available only for 
NetPDL and BinPac), analysis related to PBFS technology 
were done using used NetPDL, while MBPS analysis was 
based either on BinPac or SML, depending on the requirements 
of the planned test. More details about these technologies can 
be found in [10]. 

Obviously, each implementation has some differences 
compared to the set of verification technologies presented in 
Section II.C. For example, the SCE box implements the MBPS 
technology plus some additional features (not really 
documented) that belong to the application classification 
domain, and some statistical-based methods. Vice versa, Bro is 
a pure MBPS technology (with respect to protocols 
implemented in BinPac language) and it is not capable of 
application classification, at least in the code available on the 
web site at time of testing. These characteristics must be taken 
in mind when discussing the outcomes of our tests. 

B. Performance indexes 
Our tests aimed at evaluating the parameters shown in 

Figure 3, mainly the coverage, i.e., the number of protocols 
that are classified by a given technology, the accuracy and the 
completeness of the classification. 
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protocol
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Quality of the 
classification for 

protocol X

False
positives

“this protocol is 
X”, while it is not

False
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“this protocol is 
not X”, while it is

Unclassified

“this protocol is 
unknown”, while it is X

Mis-classification

“this protocol is Y”, 
while it is X

Completeness

% of traffic 
classified  

Figure 3. Parameters under evaluation. 

Particularly, the accuracy is computed “per protocol” and is 
conveyed in terms of false positives (FP) and false negatives 
(FN) with a definition that is slightly different from the one 
found in literature, but it is more intuitive and makes easier to 
compare the results. In this paper a false positive for protocol X 
(FP(X)) occurs when a session contain protocol Y is 
erroneously classified as X. A false negative for protocol X 
(FN(X)) occurs when a session containing protocol X is 
erroneously classified as Y (FN-Wrong Classification), or it 
remains unclassified (FN-Unclassified). Particularly, the case 
of FN-Wrong is often more problematic because in some 
applications this can lead to dangerous behavior (e.g. a session 
that should be blocked by a firewall could get higher privileges 
instead), while the unclassified traffic (FN-Unclassified) is 
usually tolerated. With respect to the completeness, this 
parameter represents the amount of traffic that has been 
classified. This parameter must be taken with care because it 

does not distinguish between the traffic correctly classified and 
the one that is not, being equal to 1 minus the percentage of 
unclassified traffic. 

C. Methodology 
Tests have been made using both pre-classified traces 

organized per-application (each trace either contains only the 
traffic generated by that application, or a traffic that is similar 
but is generated by another application), synthetic traces (the 
traffic coming from a set of applications is duplicated several 
times, changing “randomly” IP addresses, ports and some of 
the most peculiar data in it, such as email addresses and more) 
and real traces captured on the link that connects our 
University to the Internet. Captured data was pre-processed in 
order to discard packets belonging to a session started before 
the beginning of the capture3; moreover, we discarded all the 
packets belonging to sessions that resulted idle for more than 5 
minutes. Several tests demonstrated that this timeout was fair 
enough to keep the vast majority of the traffic. Table 1 shows 
an outcome of one of these tests, proving that an increased 
value for the timeout leads only to greater cost (e.g., session 
entries must be kept in memory for more time) without any 
other impact in the results of the test. Moreover, several real 
implementations (e.g. firewalls) use the same value as the 
standard inactivity timeout. 

TABLE 1. PACKETS DISCARDED WITH DIFFERENT VALUES OF THE INACTIVITY 
TIMEOUT FOR TCP SESSIONS 

Timeout Total 
packets 

TCP 
packets 

TCP 
packets 

dropped (#) 

TCP 
packets 
dropped 

(%) 
1 min 14979286 14073381 3590186 25.51% 
2 min 14979286 14073381 792968 5.63% 
4 min 14979286 14073381 770051 5.47% 
5 min 14979286 14073381 756899 5.38% 
6 min 14979286 14073381 696864 4.95% 
8 min 14979286 14073381 676638 4.81% 

10 min 14979286 14073381 674401 4.79% 
 

Pre-classified traces had a very limited amount of encrypted 
traffic, which cannot be classified with pure payload-based 
technologies. In all trace files, applications can use any port, 
e.g. it may happen to have some HTTP sessions on port other 
than 80; in addition, real traces may contain malicious traffic 
(although we did not introduce it explicitly). The technologies 
under evaluation are not required to detect a security attack 
(e.g. SYN flooding), but must be able to recognize traffic also 
on non-standard ports. 

D. Coverage 
The number of protocols supported by the technologies 

under testing is extremely different. NetBee currently supports 
about 100 application-level protocols. Among the MBPS 
technologies, the SCE supports more than 600 applications, 
while BRO supports a very limited number of applications, 

                                                        
3 In fact, this is valid only for TCP traffic, in which we can easily detect the 

beginning of a session. In this preprocessing stage, all non-TCP traffic was 
left untouched.  



namely DNS, RPC, DCE_RPC, HTTP, NCP, SMB4. Among 
these, only HTTP is classified even if traffic is not on the 
standard port; hence only the HTTP protocol will be suitable 
for our tests. With the exception of BRO, the other 
technologies support the vast majority of IETF protocols and a 
fair number of “tough” applications such as VoIP (e.g. SIP, 
H.323, Skype, Vonage, etc.) and P2P (such as Kazaa, Gnutella, 
Edonkey). From the point of view of coverage, MBPS and 
PBFS are mostly equivalent, provided that the current objective 
is application-layer classification and not application-layer 
protocol decoding, in which treating packets or messages 
makes a big difference. 

E. Accuracy 
The first set of tests involves the analysis of pre-classified 

traces (about 200MB of data), containing each one a set of 
packets belonging to a given protocol. These pre-classified 
traces have been analyzed with the SCE box and with NetBee. 
Results were a 100% accuracy for the SCE box, and near-
100% accuracy for NetBee (details are shown in Table 2), with 
no false positives (which is expected, since pre-classified traces 
contained only packets belonging to the selected protocol) and 
a negligible amount of false negatives, almost all unclassified 
traffic. Among the unclassified packets, there was some 
encrypted traffic, some packets whose signature was split 
across different packets, or some part of the protocol not 
supported by the signature base (e.g., some Kazaa packets). 
Finally, some packets were unclassified because of the 
necessity to analyze several consecutive packets to detect the 
protocol (e.g. RTP); in this case, the first packets of the session 
appear as unclassified. 

TABLE 2. ACCURACY WITH PREFLASSIFIED TRACES, USING NETBEE 

Application # Files # Packets % Packets 
Detected FP FN-W FN-U

Edonkey 26 41426 99.04% 0.00% 0.77% 0.19%
Kazaa 27 38888 98.89% 0.00% 0.02% 1.09%

Gnutella 21 16407 99.96% 0.00% 0.00% 0.04%
HTTP 97 81290 99.87% 0.00% 0.00% 0.13%
FTP 25 49024 99.82% 0.00% 0.14% 0.04%
RTP 19 90643 99.21% 0.00% 0.00% 0.79%

SIP + RTP 27 467267 99.98% 0.00% 0.00% 0.02%
 

With respect to NetBee, we ran the tests several times, each 
time improving the signature base. This lead to the conclusion 
that the results are highly dependent on the quality of the 
signature (for example, NetBee did not implement a signature 
for some binary messages rarely used by Kazaa, and in fact the 
accuracy related to this protocol is the lowest among the tested 
set), and these results can be further improved with an 
appropriate tuning of the signatures. Protocols under testing 
were some among the most significant ones (peer-to-peer, 
voice, client-server); it is the authors’ belief that a larger 
number of protocols will not change these results substantially, 
since the quality of the classification in NetBee (hence in PBFS 
technologies) depends mostly on the quality of the signatures. 

                                                        
4 BRO supports a larger number of applications, but only these ones are 

supported through the BinPac language; therefore, only these application-
layer protocols are checked with the various stages of verification until 
Protocol Conformance. 

Figure 4 compares the classification results obtained by the 
SCE box and NetBee on four different sets of synthetic traces. 
Our tests show that these technologies have almost the same 
results, with the most part of the traffic (usually around 85%) 
either classified in the same way or unclassified. Differences 
(the three upper sections) are very limited, and mostly related 
to sessions that goes unclassified in one of these two 
technologies, bringing two different results only in about an 
average of 2% of the sessions. While this may be related to the 
quality of the signature database in NetBee, we have to say 
that, surprisingly, a manual inspection showed that most of the 
errors were in the SCE box. 
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Figure 4. Comparing classification results between NetBee and SCE. 

F. Robustness 
One of the problems of the MBPS technology is that it does 

not tolerate losses of packets. This is the case of a network-
related packet loss, but it may be the case of an overloaded 
classification device (e.g. some device on the market start 
discarding packets when the processing load approaches 
100%), or in case of asymmetric routing, where packets within 
the same session follow different paths in the two directions. 

A test was performed to demonstrate this problem. Traces 
containing HTTP sessions were analyzed with Bro and NetBee, 
and then results were compared “session-by-session”. Sessions 
detected by both tools were assumed being HTTP without any 
further control, while sessions detected only by one tool were 
manually inspected to decide who was wrong. 

The most important result was that, globally, NetBee was 
more accurate than Bro, and perhaps the most important 
reasons is related to the better robustness of the PBFS 
technology, as shown in the first two sections of Table 3. In 
fact, Bro showed a fair number of false negatives due to 
asymmetric routing (respectively, 17 and 29) that caused 
sessions to be captured only in one direction. This behavior is 
correct indeed from the point of view of MBPS technologies (if 
a packet is missing, the protocol state machine cannot be 
validated), but this points out that the physical deployment of 
these technologies must be done with care. For example, a 
MBPS classifier cannot be deployed in the backbone, or in 
networks with multiple exit gateways. A second problem was 
due to packet losses. Our sniffer was dropping a limited 
amount of packets during the capture, resulting in some 
“corrupted” HTTP sessions. NetBee correctly classified these 
sessions (3 in each test), while (as we may expect) Bro was not 



able to mark them as HTTP5. On the other side, Bro was able 
to classify two HTTP sessions more than NetBee, due to the 
presence of a signature split across two packets. While, again, 
this is a known drawback of the PBFS technology, it is 
interesting to note that the number of sessions showing this 
problem was extremely limited (only four sessions) and, more 
important, two of them were correctly classified by NetBee. In 
fact, the last two sessions were related to the version 1.1. of the 
HTTP protocol, which can handle several transactions 
(request/response) in the same TCP session. It turned out that 
the first request was split across two packets, while the second 
one was contained within a single packet, and NetBee 
classified this session as HTTP starting from that point6. 

This result must be taken with care because the current 
analysis is far from being exhaustive, but the general 
impression is that this problem may be less important than we 
did expect. First, the number of sessions with split signatures 
may vary in different captures; second, this problem may be 
more evident in applications in which the signature is 
particularly complex, or in case of malicious (e.g. short) 
packets such as the ones used in some attacks. Another point is 
that this problem is exacerbated when only a snapshot of each 
packet is analyzed in order to decrease processing costs, and 
for these reasons we believe that this is an area in which some 
more investigations will be required.  

It is worth noticing that all the false negatives in Table 3 
were related to unclassified packets; in other words, no 
misclassifications were present in these files. 

TABLE 3.  CLASSIFICATION OF HTTP SESSIONS IN BRO AND NETBEE 

 Trace1 Trace2 Comments 

# HTTP sessions 22897 38018  
Classified by both  22875 37986  
False Negatives    

Bro 20 32 Asymmetric routing 
(17/29), drops (3/3) 

NetBee 2 0 Signature split across 
packets (2/0) 

False Positives    
Bro 7 13 Skype (6/11), Edonkey 

(1/2) 
NetBee 0 0  

G. Application vs. protocol classification 
The fact that the MBPS technology alone is not able to 

perform application classification (Section II.B) is evident from 
the last section of Table 3. In fact, Bro showed some false 
positives due to web-like traffic generated by peer-to-peer 
applications, which was classified as web traffic. Particularly, 7 
(in the first test) and 13 sessions (in the second test) that were 
in fact generated either by Edonkey or Skype and encapsulated 
in HTTP, were classified by Bro as web traffic. This 

                                                        
5 This demonstrates the higher robustness of the PBFS technology, which 

does not mean absolute robustness. For instance, PBFS cannot classify a 
session if the packet containing the signature is lost. The difference is that 
PBFS fails only if this packet is missing, while MBFS or MBPS will fail 
whenever a single packet within the session is lost, whatever this will be.  

6 The current implementation of NetBee analyzes all the packets within a 
session until a valid application-layer is found. Therefore, in case a session is 
still unclassified, all its packets are inspected looking for a known signature. 

demonstrates our statement that a pure MBPS technology is 
still not enough in current application-based traffic 
classification because this technology is able to check only 
protocol conformance, while application classification requires 
some more controls. 

H. Completeness 
Given the results that proved the accuracy of the PBFS 

technology (at least in case of the pre-classified traces), we ran 
a couple of tests on real traces to test the completeness of the 
classification. Results were extremely interesting: in both 
traces (captured in different days, and accounting for different 
groups of users) almost 97% of the traffic was classified (see 
Table 4), although the accuracy is unknown. It is worthy 
noticing that another capture done in February 2007 showed a 
completeness of about 70%, but a large part of the unclassified 
traffic was generated by Emule using obfuscation techniques 
(i.e., it was encrypted traffic), and this traffic cannot be 
classified with payload-based technologies. 

TABLE 4. TRAFFIC CLASSIFIED BY NETBEE WITH TWO DIFFERENT REAL 
TRACES 

 Classified Unclassified 

November 2006, 9.5 GB, 9.5 hours 96.80% 3.20% 
May 2007, 7.8 GB, 22 minutes 96.55% 3.45% 

December 2007, 461 GB, 12.5 hours 92.83% 7.17% 
 

Figure 5 shows the results of the classification on the last 
trace, covering the traffic of the entire campus and spanning 
over about 12 hours. Results show an increase of the 
unclassified traffic, but we guess that a large part of this traffic 
is encrypted edonkey, which is unexpectedly low in our 
measurements, while we know (from other sources) that it 
should have higher share. Also interesting is the amount of 
SSH traffic, which is probably an indication of some tunneling 
mechanisms used to bypass network restrictions. 
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Figure 5. Protocol distribution (in number of bytes), with NetBee. 

I. Scalability 
While MBPS technology is known to suffer from the 

scalability point of view, our findings demonstrate that also the 
requirements of PBFS may be problematic in case of high-
speed links. For instance, Figure 6 shows the cumulative 
distribution function (CDF) related to the number of TCP 
session entries required to classify some real capture traces, 
with the 5-min inactivity timeout defined in Section III.C. A 
couple of capture traces with an average traffic load of 2Mbps 
and about 100 subscribers required about 2500 entries in the 



TCP session table for being able to classify the entire data. 
While this result does not have a general validity (and further 
analysis is required), it turns out that a multi-gigabit pipe may 
require millions of entries in the TCP session table, which may 
be far beyond the capability of any hardware platform. A more 
detailed study about this problem and possible solutions to 
mitigate these effects are left to future work. 
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Figure 6. Number of TCP session entries required to classify the traffic. 

IV. CONCLUSIONS 
This paper brings two contributions. First, it presents a 

taxonomy of payload-based classification approaches, showing 
their characteristics, their strength and their weaknesses, and 
their processing and memory requirements. Second, it 
compares one implementation following the Packet Based – 
Flow State approach (often known as “lightweight” 
technology) with a couple of implementations following the 
Message Based – Per Protocol State approach (often known as 
“stateful” technology). Results show that, although the former 
cannot probably achieve the precision required in security 
appliances, differences in terms of coverage, accuracy and 
completeness are very limited at a fraction of the complexity 
(memory requirement, processing limited to the first few 
packets within each session) of the latter. In any case, MBPS 
technologies are not able to achieve the expected results in 
terms of application classification, which is one step further 
than protocol conformance and that requires specific 
mechanisms (e.g. application-specific signature-based 
classification). Moreover, tests pointed out a couple of 
additional interesting results. First, tests showed that some 
known problems of the per-packet approach (such as signature 
split across two packets) might be negligible on real traffic. 
Second, they showed that the packet-based technology is more 
robust (e.g. packet losses, asymmetric routing), and that the 
deployment (e.g. in terms of physical location) of “stateful” 
technologies must be done with care. 

The tuning of the signature database is perhaps the most 
problematic issue that emerges from this work. In fact, all these 
packet classification technologies were increasingly relying on 
signatures for protocol detection, and the accuracy depends on 
the quality of these signatures. However, some protocols are 
not well documented (or not documented at all) and the choice 
of the best signature often makes the difference. 

This paper answers to some question, but several new areas 
of investigations are emerging from current results. Among the 
others, a more detailed evaluation of the accuracy in case of 
real traces, the problem of further decreasing the state in PBFS 
technology, the accuracy obtainable when decreasing the 

amount of data processed (e.g. analyzing only a snapshot of the 
packet) in PBFS, and the problem of application (and not 
protocol) classification. 
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