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Exact Quadrature of Singular and
Nearly Singular Potential Integrals

R. D. Graglia*

Abstract — This paper describes a new numerical
technique based on the cancellation method to com-
pute singular and nearly singular potential integrals
with machine precision.

1 Introduction

The numerical evaluation of multiple integrals with
singular kernels is a necessary part of the moment-
method solution of electromagnetic problems for-
mulated in terms of integral equations. Self-term
integrals are obtained for coincident source and
testing domains; near-self integrals occur whenever
the source and the testing domains are very close
to each other, but do not overlap. In the self-
term case, the singular point of the integral kernel
belongs to the integration region whereas, in the
near-self case, the integration region does not con-
tain the singular point. In spite of the fact that
the singularity of the integral kernel is not encoun-
tered in the near-self case, the accurate evaluation
of these integrals is often more difficult than in the
self-term case. Important results for the numeri-
cal computation of multiple integrals involving the
three-dimensional Greens function and its gradient
have already been published [1], [2], [3], [4].
Modern electromagnetic (EM) codes model the
geometry of a given problem as the union of sub-
domains of different but simple geometrical shape.
EM problems are then numerically solved by ex-
panding the unknowns in terms of vector or scalar
functions locally defined on these sub-domains.
The expansion functions are conveniently defined
on rectilinear domains of a parent space, with all
sub-domains of the global geometry obtained by
properly mapping one or few parent domains into
the global object-space. In its parent space a do-
main is described in terms of normalized (dimen-
sionless) parent coordinates, and the parent domain
is rectilinear although the corresponding object-
space sub-domains could be curvilinear. The word
element indicates a sub-domain together with a set
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of expansion functions defined over there, and asso-
ciated with a certain number of degrees of freedom.
Several elements were defined and used in previ-
ous works. Two-dimensional (2D) triangular and
quadrilateral elements, as well as three-dimensional
(3D) tetrahedral and brick elements are for exam-
ple discussed in [5], whereas prism and pyrami-
dal elements are given in [6] and [7], respectively.
In the following we assume the reader to be com-
fortable with the definitions given in those papers,
and adopt the same notation used there to present
a new application of the singularity cancellation
method to evaluate potential integrals. The can-
cellation method is based on variable transforma-
tions whose Jacobian cancels out the singularity of
the kernel of the potential integral. The superior-
ity of the cancellation method with respect to other
methods is discussed, for example, in [4].

Our new technique to compute singular and
nearly singular potential integrals is described in
detail in [8], where we also provide the rules to
establish the quadrature weights/points (includ-
ing their number) to guarantee machine precision.
The integration scheme is based on a new ratio-
nal expression of the singular and nearly singular
integrals obtained by special variable transforma-
tions and quadratures: Gauss quadrature for ra-
tional functions [9], together with classical Gauss-
Legendre quadrature. The technique can deal with
static and dynamic potentials on surface and vol-
ume elements. In particular, in the static case of
polynomial source distributions the new cancella-
tion procedure allows for the exact integration of
the potential integrals.

Preliminary results of this work have been pre-
sented in [10]; in this paper, for the sake of brevity,
we focus our discussion on the general procedure
to obtain the variable transformation formulas re-
quired for singularity cancellation. Several numer-
ical results for potential integrals will be presented
at the conference.

2 The cancellation technique

Potential integrals on a given element are normally
evaluated by subdividing the element region in the
object-space into sub-domains, obtained by joining
with a line each vertex of the entire domain to the
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given observation point . Subdivision requires ele-
ment sub-meshing driven by the observation point,
and re-parameterization of each sub-domain with a
parent sub-mapping in terms of parent coordinates.
We assume that the expansion functions are given
in terms of the parent coordinates of the entire el-
ement, where each element is described by a set &
of normalized parametric coordinates € = (&1, &,

..,&5). These are chosen so that the i-th edge
of a two-dimensional element, or the i-th face of
a three-dimensional element, is the zero-coordinate
surface for the normalized coordinate &;. Two co-
ordinates on 2D, and three coordinates on 3D ele-
ments are then selected as independent coordinates,
the remaining coordinates become dependent co-
ordinates, and each is related to the independent
coordinates via a dependency relation [5]-[7]. All
parametric coordinates are positive inside the el-
ement, and every point outside of the element has
one or more negative parent coordinate. For nested
integration over the element region

Ee ={&| & = 0,vie[1,0]} (1)

the £ upper bounds must be obtained explicitly
through the dependency relationships, thereby en-
suring never negative coordinates within the inte-
gration region. The & upper bounds of all the ele-
ments given in [5]-[7] are always equal or less than
unity, although properly specified by the relevant
dependency relationships.

The number o of parametric coordinates used to
describe a given element is the size of the element
or, that is the same, the size of the set £&. There-
fore, the size of a two-dimensional element is the
number of its edges whereas, for three-dimensional
elements, the size o is given by the number of the el-
ement faces. The size of the triangular and quadri-
lateral element is three and four, respectively; the
size of the tetrahedron is four; six is the size of the
brick, and five is the size of the triangular-prism
and of the pyramid.

In the object space the element geometry is de-
fined by n, interpolation (or control) points 7,
where [I] = [I,Is,...,1,] is a multi-index ar-
ray of size o, with integer entries I; € [0,n,] for
7 = 1,0. The element dependency relations give
further bounds to the integer entries I; of the multi-
index array, and these bounds depend on the shape,
size and dimension of the element [5]-[7]. The po-
sition vector in the object space is then expressed
in terms of n, shape functions Pj(§), usually of
polynomial form, attached to each interpolation or
control point

(&) =Y 7 Pn(é) (2)
(7]
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Figure 1: By joining the point £€° = (£5,...,&3) to
each domain vertex, a domain of size 4 is subdivided
into four triangular (at left) or tetrahedral (at right)
sub-domains.

In the global object space, the element region is the
whole set of points r(&) obtained by mapping with
(2) all the points of the parent region & defined in
(1).

For a given element of size o, a potential inte-
gral on £ over the element region & is subdivided
into o sub-integrals, with integral subdomains ob-
tained by joining, in the parent space, a point
£° = (£9,£5,...,£2) to each vertex of the parent do-
main (see Fig. 1). £° is the arbitrarily located com-
mon origin of ¢ different local pseudo-radial frames
introduced to locally perform each sub-integral by
properly changing the integration variables; the Ja-
cobian of each variable transformation vanishes at
£°.

In applications involving 3D elements, £° is the
parent point that maps the observation point r
of the global object-space; notice that in the ob-
ject space we use no superscript for the observation
point 7, whereas the source (i.e., integration) point
7’ is primed. In applications involving planar 2D
elements, £° is the parent point that maps, in the
global space, the normal projection r, of the obser-
vation point 7 onto the element surface, or onto its
extension. If the 2D element is not planar, the 2D
potential integrals are performed by working with
a rectilinear planar patch of the object space that
is tangent to the original curved one; in this case
£€° is the point that maps the normal projection r,
of the observation point r onto this tangent patch.

The variable transformation formulas required
for singularity cancellation are easily obtained by
applying, in the parent space, a general four-step
procedure, described in the following paragraphs:
2.1-Duplication of the parent set; 2.2-Introduction
of the pseudo-radial variable; 2.3-Radial-binding
at observation point £°; 2.4-Sub-domain selection
via zero-blocking and variable transformation
formulas.

2.1. Duplication of the parent set. Be-
side the parametric set &£, we introduce a second
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Figure 2: A four-sided planar patch of the object space is broken into four triangular subdomains about
the normal projection 7, of the observation point r onto the plane of the patch; the distance from 7 to

the plane of the patch is d.

set Y of normalized coordinates having the same
size as €. The YT-parametric coordinates satisfy the
same dependency relationships that hold for the
&-coordinates, and the region &y = {Y;|Y; > 0,
Vi € [1,0]} is the duplicate of the whole integra-
tion domain &; in other words, the two sets &
and Y are equal, but for the name given to the
coordinates of each set.

2.2. Introduction of the pseudo-radial
variable. We introduce a new parametric variable
p > 0, and then append this variable to the
duplicated set Y to form the new parametric set
Y, = (T, Yo, ..., Yq, p), with size equal to o + 1.

2.3. Radial-binding at £°.
and the Y, set together by setting
& =& (L—p)+pYy, (3)

so to obtain, for all the allowed values of the integer
subscript @ (=1, 0)

{ fi = g; at P = 07

We bind the ¢

for i=1,0

The pseudo-radial variable p binds the two sets
together at €° since, for p # 0, eq. (3) requires
T, =& whenever & =&;.

2.4. Subdomain selection via zero-blocking
and variable transformation formulas. By
blocking to zero one Y-coordinate at a time of the
augmented set X, one obtains o different sets of size
o that are used together with (3) to subdivide the
original parent domain into o subdomains. Only
the unblocked coordinates can vary in a blocked
set, although all the coordinates remain bounded
by the dependency relationships duplicated in step
2.1. The transformation formulas for integration

on the k-th subdomain via singularity cancellation
are thus simply obtained by setting

Tp = 0 (5)

into (3), for k = 1,2,...,0. The k-th subdomain
is mapped by the region {p € [0,1], Y € &y, with
T) = 0}. The coordinate-surface £ = 0 bounds
the k-th subdomain as well as the entire parent
element, because of egs. (3, 5) and the second of
(4), that yields T =&, =0at p=1.

2.5. Transformation Jacobians. The Ja-
cobians of the variable transformation formulas
obtained in this manner vanish at p = 0, where
the parent integration point & coincides with
£° = (&,85,...,£2); this is why p is referred to
as a pseudo-radial variable. In particular, for
the k-th subdomain selected by setting T = 0,

the Jacobian [J; becomes [J, = & p in case of
2D elements whereas, for 3D-elements, one has
T = & p°.

To exemplify the procedure, let us consider a tri-
angular (T") and a quadrilateral (@) element subdi-
vided into triangular subdomains. The procedure
maps each sub-domain T} into the square domain
{pe (0,1, T €[0,1]}.

The triangular domain 7T is split into three sub-
domains Ty (k = 1,2,3) with subscripts counted
modulo three. By setting T = 0 as per eq.
(5), the duplicated dependency relation (see [5])
Ti+Tir1+ i1 = 1yields Tp_1 = (1—Tk+1). In
this case, by dropping the subscript in Ty, (that
is, by setting T = Tj11), the variable transforma-
tion formulas (3) for the k-th subdomain read as
follows

e = & (1-p)
Sev1 = 1 (1—p)+pT (6)
§e-1 = Goa(l=p)+p(1-17)
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For the quadrilateral domain @ (see Fig. 2),
split into four subdomains T} (k = 1,2,3,4), one
counts the subscripts modulo four to write the
two dependency relationships (& + &x12) = 1 and
(€1 + &k—1) = 1 (see [5]). By setting Ty = 0
as per eq. (5), the duplicated dependency relation-
ships yield Tp42 =1 and Yg—1 = (1 — Tg41). One
then drops the subscript in Y41 and simplifies the
transformation formulas (3) for the k-th subdomain
of a quadrilateral as it follows

& = & (1—-p)
§k+2 = 5}2+2 (1 - p) +p (7)
Sky1 = 5/24—1 (1—p)+pY
o1 = G (l—p)+p(1-1)

Notice that (6) and (7) fully comply with the depen-
dency relationships of the triangular and quadri-
lateral element, respectively. Both (6) and (7) can
deal with a point £° located outside the parent do-
main, or on its border.

3 [Evaluation of the potential integral

The singularity cancellation procedure can be ap-
plied, for example, to potential integrals of the form

exp exp (—jkR)
A(r
/ 4R

where A(r) is a vector or scalar basis function,
R = r — 7’ is the vector distance from observation
to integration point, and R = |R|. By using suc-
cessive variable transformations into parent coordi-
nates and then into pseudo-radial coordinates, and
by using the modified Euler’s substitution given in
[8] one gets

ds’ (8)

exp< jkR)

Is = o /dp/A -2
(9)

where J is the Jacobian of the transformation be-
tween global and parametric £-coordinates, and ¢
is the new integration variable that has substituted
T, and with ¢ = —C%/p. Cy is a real function of p
that does not depend on ¢, with Cj, > 0 and ¢ < 0
for all p in the integration interval [0,1]. The in-
tegral (9) is evaluated numerically by integrating
first along ¢ (using Gauss quadrature for rational
functions [9]), that is for p = const., and then on p
(using Gauss-Legendre quadrature). This integral
simplifies considerably when the observation points
lies on the patch-surface (self-element integration)
or on its extension, that is for d = 0.

Preliminary results for a right triangle 7', with
catheti of 1[m] in length are reported in [10].
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