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Abstract

We prove that minimal (extrinsically) homogeneous submanifolds
of the euclidean space are totally geodesic. As an application, we ob-
tain that a complex homogeneous submanifold of CN must be totally
geodesic.
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1 Introduction

The theory of minimal immersions into spheres is very well developed
[L], [C2], [S], [DW]. There is a beautiful method, using eigenfunctions of
the Laplacian, for constructing minimal equivariant immersions of compact
homogeneous spaces into spheres [T], [W]. In particular, Hsiang [H] has
constructed orbits of subgroups of isometries of the sphere which are minimal

∗Supported by a CONICET fellowship, partially supported by CONICOR and Secyt-
UNC

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11394702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://link.springer.com/article/10.1023%2FA%3A1014260931008
http://porto.polito.it
http://porto.polito.it
http://www.sherpa.ac.uk/romeo/search.php?issn=0232-704X


(see also [H-L]). In this paper we consider the analogous problem for the
euclidean space.

A (extrinsically) homogeneous submanifold of the euclidean space is a
submanifold which is an orbit of a Lie subgroup of isometries of the euclidean
space. The following theorem shows that in the euclidean spaces there are
only trivial minimal homogeneous submanifolds.

Theorem 1.1 A (extrinsically) homogeneous minimal submanifold of the
euclidean space must be totally geodesic.

We remark that the homogeneity hypothesis cannot be weakened, since
there exist minimal submanifolds of the euclidean space with cohomogeneity
1 and they are not totally geodesic. For instance, we can take a minimal
surface of revolution, or the complex submanifold of C2 defined by the equa-
tion z2 + w2 = 1. We also remark that in the case that the submanifold
is (extrinsically) symmetric (i.e. has parallel second fundamental form) the
result is due to D. Ferus [F, Lemma 4].

It is a well known result that a complex immersed submanifold of CN is
minimal [S, Th. 3.1.2], [KN, pp. 380]. On the other hand, Calabi [C1] has
shown that complex isometric immersions are rigid. A simple consequence
of these two facts is the following corollary, which was in fact the starting
question of this paper [D].

Corollary 1.2 A complex isometric immersion from a complex homoge-
neous space into CN must be totally geodesic.

In other words, such an isometric immersion can not exist unless the
immersed manifold is an affine space. A special case of this corollary, for
symmetric bounded domains, is contained in [B, Th. 13].

As another application of our theorem we obtain the following improve-
ment of the corollary in [O2, pp. 2928] (see also [O1])

Corollary 1.3 Let Mn (n ≥ 2) be a homogeneous irreducible submanifold
of the euclidean space with parallel mean curvature vector H. Then H 6= 0
and M is contained in a sphere, where it is either minimal or it is an orbit
of the isotropy representation of a simple symmetric space.
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It is interesting to note that our result plays an important role in the
proof of the same result in the hyperbolic space (i.e. a minimal homogeneous
submanifold of the hyperbolic space must be totally geodesic, see [DO]). On
the other hand, there exist nontrivial homogeneous minimal hypersurfaces in
complex hyperbolic spaces or in more general symmetric spaces of negative
curvature see [Be].

2 Homogeneous submanifolds of the

euclidean space

We say that an orbit G.v of IRN is reducible if G.v = M1×M2 (Rieman-
nian product) where M1,M2 are nontrivial factors and i = i1 × i2 where i is
the natural inclusion of G.v in IRN and i1 : M1 → IRN1 , i2 : M2 → IRN2 are
isometric immersions and N = N1 + N2. If G.v is a reducible submanifold,
then each factor is also a homogeneous submanifold of the corresponding
euclidean space.

We need the following stronger version of the theorem in [O2, appendix]
(see also [V]). Roughly speaking, it says that (non compact) homogeneous
submanifolds of the euclidean space are generalized helicoids.

Theorem 2.1 Let M = G.v be a homogeneous irreducible submanifold of
IRN , where G is a Lie subgroup of the isometry group I(IRN) of IRN . Then,
the universal cover G̃ of G splits as K × IRk, where K is a compact simply
connected Lie group. Moreover, the representation ρ of K × IRk into I(IRN)
is equivalent to ρ1⊕ρ2, where ρ1 is a representation of K× IRk into SO(IRd)
and ρ2 is a linear map of IRk into IRe, (N=d+e), regarding IRe as its group
of translations.

Proof. By the theorem in [O2, Appendix], we just need to show that
any representation ρ : IRk → I(IRN) is equivalent to a direct sum ρ1 ⊕ ρ2,
where ρ1 is a representation of IRk into SO(IRd) and ρ2 is a linear map
of IRk into IRe (N = d + e). The Lie algebra L(I(IRN)) is the semidirect
product L(SO(N)) × IRN , where the bracket is defined by [(A, v), (B, u)] =
([A,B], A(u) − B(v)), and the exponential is given by exp(t.(A, v))(p) =
et.A.(p− c) + c+ t.d for d ∈ ker(A) and v = d− A(c).

We are going to show that there exists a common c for the “rotational”
part of the Lie algebra L(ρ(IRN)). Let R be the projection of L(ρ(IRN))
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in L(SO(IRN)). The abelian family R of skew symmetric endomorphisms
can be diagonalized simultaneously in C. Now let λi (i = 1, 2, . . . , n) be the
different non zero linear functionals associated to each eigenspace. The set
O = {R ∈ R : λi(R) 6= 0 for all i} is open and dense. It is not hard to show
that there exists a basis w1 = (R1, d1 − R1(c1)), . . . , wr = (Rr, dr − Rr(cr))
of L(ρ(IRN)) such that Ri belongs to O for all i = 1, . . . , r. This implies
that di ∈ V = ker(Rj) =

⋂
j=1,...,r ker(Rj) (i, j = 1, . . . , r). By the bracket

formula we obtain that Ri(Rj(ci − cj)) = 0 (i, j = 1, . . . , r) and this implies
in turn ci = cj for i, j = 1, . . . , r. By fixing the origin at c1 we deduce that
ρ is equivalent to ρ1 ⊕ ρ2, where ρ1 is a representation of IRk into SO(V ⊥)
and ρ2 is a linear map of IRk into V .

Now we can prove our principal result.

Proof of Theorem 1.1. Without loss of generality we may assume that
the homogeneous submanifold G.p is irreducible (see [O2, section 1]). By
Theorem 2.1 we can choose a basis of L(G) of the form (A1, d1), . . . , (An, dn)
where di ∈ ker(Ai) = V (i = 1, . . . , n). Moreover, we can choose this
basis in such a way that (A1, d1), . . . , (Ar, dr) belong to the isotropy sub-
algebra of G at p (and so d1, . . . , dr = 0) and (Ar+1, dr+1).p = Ar+1(p) +
dr+1, . . . , (An, dn).p = An(p) + dn form an orthonormal basis of Tp(G.p). Let
us decompose p = p1 + p2, with p1 ∈ V ⊥ and p2 ∈ V . Set γi(t) = etAi .p+ t.di

i = 1, . . . , n. We observe that p1 is a normal vector to G.p at p. We then
claim that p1 must be zero. In fact, if α is the second fundamental form, then
0 =

∑r
i=1〈α(γ̇i, γ̇i), p1〉 =

∑r
i=1〈A2

i .(p1), p1〉 =
∑r

i=1−〈Ai(p1), Ai(p1)〉. This
implies p1 = 0, as Ai(p1) = 0 for all i and p ∈ V , and we conclude that the
orbit is totally geodesic.
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