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Abstract

Let M be a simply connected complex submanifold of CN . We
prove that M is irreducible, up a totally geodesic factor, if and only
if the normal holonomy group acts irreducibly. This is an extrinsic
analogue of the well-known De Rham decomposition theorem for a
complex manifold. Our result is not valid in the real context, as it is
shown by many counter-examples.

1 Introduction

In the last few years the holonomy group of the normal connection turned
out to be a very important tool for studying submanifold geometry in Eu-
clidean space, or more generally in Hilbert space [O1], [O2], [O3], [HOT],
[HL1]. Although normal holonomy groups are even simpler than the Rie-
mannian ones, the restriction they impose on the geometry of arbitrary sub-
manifolds is, in general, weaker. Thus, it is natural to combine the knowledge
of such groups with simple geometric invariants as, for instance, in the case
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of isoparametric submanifolds [T], [PT], or submanifolds with constant prin-
cipal curvatures [HOT].

The main purpose of this article is to prove the following decomposition
theorem.

Theorem 1.1 A complex isometric full immersion of a simply connected
complete Kähler manifold f : M → CN is irreducible, up a totally geodesic
factor, if and only if the normal holonomy group acts irreducibly.

This can be interpreted as an extrinsic analogue of the well-known De
Rham decomposition theorem for Kähler manifolds (in both cases local ver-
sions also hold). A general decomposition theorem for arbitrary real sub-
manifolds does not hold, since the normal holonomy group is invariant under
conformal diffeomorphisms of the ambient space. There are also examples of
irreducible orbits of s-representations with reducible normal holonomy groups
[HO], and it is an open problem whether there exist other homogeneous ex-
amples or not (see [O2, Section 7] ). Observe that non totally geodesic
complex submanifolds of CN can never be (extrinsically) homogeneous, due
to the fact that they are minimal [D].

2 Preliminaries and basic facts

Let f : M → CN be a complex (immersed) submanifold. M is said to be
reducible if it is the product of two isometric immersions, and M is said to
be full when it is not contained in a proper affine hyperplane, regarding M
as a submanifold of the Euclidean space IR2N = CN .

Let R,R⊥,A and α denote the Riemannian curvature tensor, the normal
curvature tensor, the shape operator, and the second fundamental form, re-
spectively. They are related by the well-known identities of Gauss, Codazzi
and Ricci. Moreover, since f is a complex immersion, the following relations
hold [KN, pp.175]: α(X, JY ) = α(JX, Y ) = Jα(X, Y ). Equivalently

AξJ = −JAξ = −AJξ. (1)

Let ν(M) be the normal bundle of M, endowed with the normal con-
nection ∇⊥. Observe that the normal bundle of M , as well as the tangent
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bundle, have a complex structure J which is invariant under parallel trans-
port. Thus, the respective holonomy groups act by complex orthogonal en-
domorphisms. Let us decompose ν(M) = ν0(M) ⊕ νs(M), where ν0(M)
is the maximal ∇⊥-parallel subbundle of ν(M) which is flat and νs(M) is
the orthogonal complement. Namely, ν0(M)p consists of those vectors of
the normal space at p which are fixed by the restricted normal holonomy
group ⊥Φ∗p(see [O2]). The following lemma generalizes the well-known fact

that there exist no nontrivial complex hypersurfaces of CN with flat normal
bundle(see [SN, Theorem 7]).

Lemma 2.1 Let M be a complex submanifold of CN . Then M is full if and
only if ν0(M) is trivial.

Proof. It is clear that if ν0(M) is trivial then M is full. Conversely, let ξ 6=
0 be a∇⊥-parallel local section of ν0(M). Then, 〈R⊥(X, Y )ξ, Jξ〉 = 0 and so,
by the Ricci identity and equation (1) we have that [Aξ, AJξ] = −J2A2

ξ = 0,
which implies Aξ = 0. Then, by [E] M is not full.

Remark 2.2 Observe that the complex structure J of the normal bundle lies
in the normal holonomy group. In fact, normal holonomy groups act as s-
representations [O3] and for such representations this is a well-known fact
(see [H, pp.375 Theorem 4.5]). Namely, in a Hermitian symmetric space the
complex structure J at a given point, preserves the curvature tensor and so
it is given as the differential of some isometry which fixes that point (see also
[O2, Lemma 5.2]).

Assume that f : M → CN is full, hence, by Lemma 2.1 ν(M) = νs(M).
If the normal holonomy group of M does not act irreducibly on the normal
space, then the normal bundle ν(M) decomposes orthogonally as ν(M) =
ν1(M)⊕ ν2(M), where ν1(M) and ν2(M) are ∇⊥-parallel nontrivial subbun-
dles.

The following lemma will be crucial for our purposes.

Lemma 2.3 Let ξ1,ξ2 be local sections of ν1(M) and ν2(M) respectively.
Then Aξ1 .Aξ2 = Aξ2 .Aξ1 = 0.

Proof. We obtain, from the Ricci identity and the fact that both ν1(M)
and ν2(M) are parallel, that 0 = J [Aξ1 , AJξ2 ] + [Aξ1 , Aξ2 ] = 2Aξ1 .Aξ2 . The
last equality follows from equation (1).

We will also need the following complex versions of Moore lemma [M].
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Lemma 2.4 (Local complex version of Moore lemma) A complex sub-
manifold of CN is locally reducible at p if and only if there exists a complex
parallel distribution H in a neighborhood of p such that α(H,H⊥) = 0.

Proof. The essential part in Moore’s proof is that the affine spaces gener-
ated by the leaves ofH (as well as those ofH⊥) are all parallel and orthogonal
to the leaves of H⊥. In our case, these affine spaces are complex, since the
leaves are complex submanifolds of CN . Taking into account this observation,
the proof follows similarly to that of Moore for the real case.

Lemma 2.5 (Global complex version of Moore lemma) Suppose that
M1,M2 are connected complex riemannian manifolds and that

f : M1 ×M2 → CN

is an isometric complex immersion of the riemannian product. If the
second fundamental form verifies

α(TM1, TM2) = 0

then

f = f1 × f2 : M1 ×M2 → CN1 × CN2 = CN

Proof. This follows from [M] as in the proof of Lemma 2.4.

3 Invariant autoparallel distributions

Let us assume, as at the end of the previous section, that f : M → CN

is a full isometric immersion, and let us decompose ν(M) = ν1(M)⊕ ν2(M)
into ∇⊥-parallel subbundles. Let, for p ∈M ,

Di(p) =
⋂

ξ∈νi(M)p

ker(Aξ) i = 1, 2.

It is standard to show that both D1 and D2 define C∞-distributions in
an open and dense subset U of M (i.e. D1 and D2 are linear subbundles of
TU → U).
Lemma 3.1 The distributions D1, D2 have the following properties
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(i) D1 +D2 = TM,
(ii) D1 and D2 are autoparallel,
(iii) α(D1,D2) = 0 and α(Di, TM) ⊂ νj(M) for i 6= j,
(iv) R(D1,D2) = 0.

Proof. It is not difficult to show that TpM =
∑
ξ∈ν1(M)p

Im(Aξ) ⊕ D1(p)
and hence TpM = D1(p)+D2(p), since

∑
ξ∈ν1(M) Im(Aξ) ⊂ D2 due to Lemma

2.3. This shows part (i). We now prove part (ii). LetX, Y be tangent vectors
fields in U, such that X lies in Di and let ξi be a section of νi(M). By the
Codazzi identity ∇X(AξiY ) = ∇Y (AξiX)−A∇⊥Y ξiX−Aξi(∇YX)+A∇⊥XξiY −
Aξi(∇XY ) we obtain ∇X(AξiY ) = −Aξi(∇YX)+A∇⊥XξiY −Aξi(∇XY ) which

is a linear combination of images of shape operators of sections in νi(M).
This shows that ∇XZ ∈ D⊥i if Z ∈ D⊥i (because D⊥i =

∑
ξ∈νi(M)p

Im(Aξ)).

This implies that Di is autoparallel, since 〈Di,D⊥i 〉 = 0. We consider next
part (iii). If Xi ∈ Di and ξj ∈ νj(M) (i, j = 1, 2), then 〈α(X1, X2), ξj〉 =
〈AξjX1, X2〉 = 0, which implies the first part of (iii). The second part is
similar. Part (iv) is a consequence of part (iii) and the Gauss identity.

Remark 3.2 Observe that D1and D2 are integrable with totally geodesic
leaves which are Kähler manifolds.

It is easy to see that two complementary (orthogonal) autoparallel dis-
tributions must be parallel (see e.g. [O2, pp.624]). This implies that the
local holonomy group Φloc

p has an invariant subspace. Observe that this is
not anymore true in general if the distributions do intersect. But, in our
situation, we have the additional property that the curvature tensor RXY

vanishes if X lies in D1 and Y lies in D2, as it follows from Lemma 3.1.

We will need the following general result.

Proposition 3.3 Let M be a Riemannian manifold and let T1 and T2 be au-
toparallel distributions spanning TM which are orthogonal modulo the inter-
section T1

⋂ T2 (T1 6= TM 6= T2). Assume that the curvature tensor RXY = 0
if X lies in T1 and Y lies in T2. Then, for each p ∈ M there exists a non-
trivial subspace of T1(p) which contains T ⊥2 and is invariant under the local
holonomy group Φloc

p . In particular M is locally reducible at each point.
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Proof. Let q ∈ M and let v ∈ T2(q)⊥, v 6= 0. Then, by hypothesis it
follows that v ∈ T1(q). We will show that Φloc

q .v ⊂ T1(q), which implies that
the linear span of Φloc

q .v is an invariant nontrivial subspace of T1(q) (Then,
by the theorem of De Rham, we get the local reducibility at q). This is
equivalent to show that Ω.v ⊂ T1(q) for some open neighborhood Ω of the
identity in Φloc

q . In fact, for u ∈ T ⊥1 , the function g → 〈u, g.v〉 is analytic
on Φloc

q and vanishes on Ω. Hence it must vanish identically on Φloc
q , which

in term implies the invariance of the linear span of Φloc
q .v. Let γ be a short

(piecewise differentiable) loop through q and let τγ be the parallel transport
along γ. Let us now consider the integrable distribution T1 and its orthogonal
complement T ⊥1 ⊂ T2. Since RT ⊥1 ,T1 = 0, there exist curves γ1 tangent to T1

and γ2 tangent to T ⊥1 such that τγ = τγ1 ◦ τγ2 . In fact, by Frobenius theorem,
we can construct a submersion π from an appropriate neighborhood V of q
such that the fibers are (locally) the leaves of T1. Our assertion follows now
from the Lemma in [O1, Appendix], after defining the horizontal distribution
to be T ⊥1 . Observe that γ1 (resp. γ2) lies in the leaf L1(q) (resp. L2(q)) of T1

(resp. T2) through q. Since L2(q) is totally geodesic and v ⊥ T2(q) the parallel
transport τγ2 with respect to the Levi-Civita connection in the ambient space
coincides with the parallel transport τ⊥γ2 of the normal connection of L2(q).
Thus, τγ2 .v belongs to (T2(γ2(q)))⊥ ⊂ T1(γ2(q)), hence τγ1(τγ2 .v) belongs
to T1(q) as L1(q) is totally geodesic. Thus, we have shown that the parallel
transport τγ.v along short loops belongs to T1(q). Since the parallel transport
along short loops contains an open neighborhood of the identity of Φloc

q ([EO,
Appendix]) we conclude that Φloc

q .v ⊂ T1(q).

Remark 3.4 A completely different (and extrinsic) approach to the above
splitting proposition can be done following some of the ideas in [HL2].

4 Reducibility of complex submanifolds

We keep the assumptions and notation of the first part of §3. We have,
by [E], that D1 6= TM 6= D2, since we assume that f is full. Let U be the
open and dense subset of M where D1 and D2 are C∞-distributions. By
Lemma 3.1 and Proposition 3.3, for each p ∈ U there exists a nontrivial
subspace of D1(p) invariant with respect to the local holonomy group. Let,
for p ∈ U ⊂M, H(p) be the maximal Φloc

p -invariant subspace of D1(p). It is
standard to show that H is a C∞-distribution near any point in U .
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Lemma 4.1 Under the assumptions in this section, we have

(i) H is a complex distribution,
(ii) α(H,H⊥) = 0.

Proof. If Xp ∈ H(p) then Φloc
p .J(Xp) = J(Φloc

p .Xp) because J is parallel.
This implies, by the maximality of H(p), that Φloc

p .J(Xp) ⊂ H(p). This
proves part (i). Part (ii) follows from Lemma 3.1 and the fact that H⊥ ⊂ D2

(see Proposition 3.3).

Now we can prove our principal result.

Proof of Theorem 1.1. It is clear that if f : M → CN is a product
of non totally geodesic immersions, then Φ⊥ acts reducibly. Let us assume,
conversely, that this action is reducible, that is ν(M) = ν1(M)⊕ν2(M) where
ν1(M) and ν2(M) are ∇⊥-parallel subbundles. Define C∞-distributions D1,
D2, H in U as in the previous section, where U is the open and dense set
where D1 and D2 are defined. If p ∈ U, then it follows from Lemma 4.1 and
Lemma 2.4 that M is locally reducible at p. Thus, by using the complex
De Rham decomposition theorem [KN, pp.171], Lemma 2.5 and a standard
argument involving analiticity we obtain the reducibility of the immersion.

Corollary 4.2 Let f : M → CN be a complex 1-1 isometric immersion of
a complete Kähler manifold M . Then f is irreducible, up a totally geodesic
factor, if and only if the normal holonomy group acts irreducibly.

Proof. It is clear that if f : M → CN is a product of non totally geodesic
immersions, then Φ⊥ acts reducibly. Assume that the normal holonomy
group acts reducibly. Let f̃ : M̃ → CN be the natural isometric immersion
from the universal cover of M . Then, by Theorem 1.1 the immersion f̃ is a
product and so f̃(M̃) = f(M) is a product. Now it is not difficult to show
that f is reducible since it is one to one.

Remark 4.3 It is well-known that if M0 ×M1 × . . . ×Mk is the De Rham
decomposition of a simply connected, complete Kähler manifold M then each
Mi is a Kähler manifold in a natural manner and the isometry between M
and M0 × M1 × . . . × Mk is holomorphic (see [KN, pp.171]). The same
holds for complex isometric immersions. Namely, if a complex full isometric
immersion f is a product of real immersions then each irreducible non totally
geodesic factor is a complex submanifold, as it follows from Remark 2.2.
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