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Multi-echelon distribution systems are quite common in supply-chain and logistics. They are used by public
administrations in their transportation and traffic planning strategies as well as by companies to model own
distribution systems. In the literature, most of the studies address issues relating to the movement of flows
throughout the system from their origins to their final destinations. Another recent trend is to focus on the
management of the vehicle fleets required to provide transportation among different echelons.

The aim of this paper is twofold. First, it introduces the family of Two-Echelon Vehicle Routing Problems,
a term which broadly covers such settings, where the delivery from one or more depots to customers is
managed by routing and consolidating freight through intermediate depots. Second, it considers in detail
the basic version of Two-Echelon Vehicle Routing Problems, the Two-Echelon Capacitated Vehicle Routing
Problem, which is an extension of the classical VRP where the delivery is compulsorily delivered through
intermediate depots, named satellites.

A mathematical model for Two-Echelon Capacitated Vehicle Routing Problem, some valid inequalities,
and two math-heuristics based on the model are presented. Computational results of up to 50 customers and
4 satellites show the effectiveness of the methods developed.
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1. Introduction
The freight transportation industry is a major source of employment and supports the economic
development of the country. However, freight transportation is also a disturbing activity, due to
congestion and environmental nuisances which negatively affect the quality of life, in particular in
urban areas.

In freight transportation there are two main distribution strategies: direct shipping and multi-
echelon distribution. In direct shipping, vehicles starting from a depot transport their freight
directly to the customers, while in multi-echelon systems the freight is delivered from the origin
to the customers through intermediate depots. The growth in the volume of freight traffic as well
as the need to take into account factors such as the environmental impact and traffic congestion
has led research in recent years to focus on multi-echelon distribution systems, and, in particular,
two-echelon systems (Crainic et al., 2004). In two-echelon distribution systems, freight is delivered
to an intermediate depot and from this depot to customers.

Multi-echelon systems presented in the literature refer to the movement of flows throughout the
system from their origins to their final destinations and, eventually, explicitly consider only the
routing problem at the last level of the transportation system (Ricciardi et al., 2002; Daskin et al.,
2002; Shen et al., 2003).

Moreover, in the past decade multi-echelon systems with LTL dispatching policies have
been introduced by practitioners in different areas such as express delivery service companies
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(http://www.tntlogistics.com), grocery and hypermarkets product distribution, e-commerce and
home delivery services (http://www.sears.com), Newspaper and press distribution (Jacobsen and
Madsen, 1980), and city logistics (Crainic et al., 2004).

The main contribution of this paper is to introduce Two-Echelon Vehicle Routing Problems, a
new family of routing problems where routing and freight management are explicitly considered
at their different levels. The basic variant of Two-Echelon Vehicle Routing Problems, the Two-
Echelon Capacitated Vehicle Routing Problem (2E-CVRP) is introduced and examined in detail. In
2E-CVRP, the freight delivery from the depot to the customers is managed by shipping the freight
through intermediate depots. Thus, the transportation network is decomposed into two levels, the
1st level connecting the depot to the intermediate depots and the 2nd connecting the intermediate
depots to the customers. The objective is to minimize the total transportation cost of the vehicles
involved in both levels. Constraints on the maximum capacity of the vehicles and the intermediate
depots are considered, while the timing of the deliveries is ignored.

A flow-based model for the 2E-CVRP is introduced, as well as valid inequalities used to
strengthen the continuous lower bound. Moreover, the same model is used to derive two fast math-
heuristics.

The paper is organized as follows. In Section 2 we recall the literature related to Multi-Echelon
Distribution Systems, showing similarities and differences between Two-Echelon Vehicle Routing
Problems and other problems present in the literature. In Section 3 we give a general description
of Two-Echelon Vehicle Routing Problems. In Section 4 2E-CVRP is introduced and a mathe-
matical model is given, which is strengthened by means of valid inequalities in Section 5. Section
6 presents the two heuristics using different simplified variants of the base model to quickly find
feasible solutions for the 2E-CVRP. Finally, test instances for 2E-CVRP are introduced and some
computational results are discussed in Section 7.

2. Literature review
Freight distribution and vehicle routing have been playing in the past decade a central role not only
in the supply chain and production planning, but also for their leading role in several environmental
and politic aspects. Moreover, several transportation and production systems have been moved
from a single-level to a multi-echelon distribution schema. As stated in the introduction, this
paper focuses on the extension to multi-echelon systems of vehicle routing problems, which have
been poorly studied so far from the routing point of view. For this reason, the literature review
is presented below along two directions. First, some references for the Vehicle Routing Problems
are shortly recalled. Second, a more detailed review of the literature on multi-echelon systems is
discussed.

Vehicle Routing has become a central problem in the fields of logistics and freight transportation.
In some market sectors, transportation costs constitute a high percentage of the value added of
goods. Therefore, the use of computerized methods for transportation can result in savings ranging
from 5% to as much as 20% of the total costs (Toth and Vigo, 2002). Unfortunately, to our
knowledge, even if VRP problems are present in the literature in many variants, only the single-
level version of the Vehicle Routing Problem has been studied (see Toth and Vigo (2002); Baldacci
et al. (2007) for the main contributions in the area and Perboli et al. (2008) for a comparison of
the main heuristic methods in the Capacitated VRP case).

In the literature, the multi-echelon systems, and the two-echelon systems in particular, refer
mainly to supply chain and inventory problems (Daskin et al., 2002; Shen et al., 2003; Verrijdt and
de Kok, 1995). These problems do not use an explicit routing approach for the different levels, but
focus more on the production and supply chain management issues.

Several papers deal with the design of the Multi-Echelon system with different levels of detail
(for a survey on continuous location models, network location models, mixed-integer programming
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models, and applications see Klose and Drexl (2005)). These papers include the location and relo-
cation of uncapacitated (Galvão and Santibaez-Gonzalez, 1992; Khumawala and Whybark, 1976;
Van Roy and Erlenkotter, 1982; Tadei et al., 2009) and capacitated (Hormozi and Khumawala,
1996; Barros, 1998; Barros and Labbé, 1994; Ricciardi et al., 2002; Tadei et al., 2010) interme-
diate depots, as well as with multiple objective functions (Melachrinoudis and Min, 2000; Min
and Melachrinoudis, 1999) and budget constraints (Wang et al., 2003). For a classification of the
different types of problems, as well as for a general mathematical framework for the dynamic multi-
commodity capacitated facility location of intermediate depots, please refer to Melo et al. (2006).
However, a common issue of these articles is the fact that the routing aspects are simplified by
approximating the true routes by direct shipping.

The first application of a two-echelon distribution system with an explicit minimization of the
total transportation costs can be found in Jacobsen and Madsen (1980). In this study, a comparison
is presented between several fast heuristics for solving a two-echelon Location Routing Problem in
which transfer points are not known in advance. The distribution system and input data are based
on a real case, in which two newspaper publishers combined their printing and transportation
facilities to decrease transportation costs. A more recent real application of two-tier distribution
networks is due to Crainic et al. (2004) and is related to the freight distribution in a large urban
area. The authors developed a two-tier freight distribution system for congested urban areas, using
small intermediate platforms, called satellites, as intermediate points for the freight distribution. In
Crainic et al. (2007, 2009b) the same authors introduced the first formal definition of 2E-CVRP as
a two-level, time-dependent, synchronized, multi-tour, multi-depot, multi-product, heterogeneous
fleet (on each level) VRP with hard (at satellites) and soft (at customers) time windows.

As stated before, multi-echelon systems presented in the literature usually explicitly consider
the routing problem only at the last level of the transportation system, while at higher levels a
simplified routing problem is considered. While this relaxation may be acceptable if the dispatching
at higher levels is managed with a truckload policy (TL), the routing costs of the higher levels
are often underestimated and decision-makers cannot directly use the solutions obtained from the
models in the case of the less-than-truckload (LTL) policy (Daskin et al., 2002; Shen et al., 2003;
Verrijdt and de Kok, 1995).

In the case where LTL policy with vehicle trips serving several customers is applied only at the
second level, the problem is similar to a multi-depot VRP. However, since the most critical decisions
are related to which satellites will be used and to the assignment of each customer to a satellite,
more pertinent methods will be found in Location Routing Problems (LRP). In these problems,
the location of the distribution centers and the routing problem are not solved as two separate
problems, but are considered as a unique more complex problem (for a more detailed survey of
LRP, see Nagy and Salhi, 2007; Albareda-Sambola et al., 2005; Prins et al., 2007). Moreover,
even if the routing from the intermediate depots to the customers is considered, as for example
in the Capacitated Location Routing Problem, the routing cost between the central depot and
the satellites is ignored (Boulanger and Semet, 2009). Other LRP studies refer to direct shipping
strategies in order to simplify the routing costs and some heuristics have been developed for specific
multi-echelon problems, even if no extension to a general multi-echelon routing scheme has been
developed (Jacobsen and Madsen, 1980; Gendron et al., 2009). Another application of a specific
two-echelon routing problem is the Truck and Trailer Routing Problem (TTRP). In this problem
some customers can be serviced by either a complete vehicle (i.e. a truck pulling a trailer) or a
single truck, while others can only be serviced by a single truck for various reasons (e.g. government
regulations, limited maneuvering space at customer site, road conditions, etc.) (Semet and Taillard,
1993; Lin et al., 2009; Villegas et al., 2010). Moreover, a limited number of parking points let the
drivers to detach the trailer in order to service a subset of customers which require the truck only.
This implies the presence in the solution of three types of routes: a pure truck route traveled by
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a single truck; a pure vehicle route without any sub-tour traveled by a complete vehicle; and a
complete vehicle route consisting of a main tour traveled by a complete vehicle, and at least one
sub-tour traveled by the truck alone. The last type of route is a two-level route, where the trailer
at the parking point acts as a small satellite. The network structure is partially a two-echelon one,
but on the contrary of 2E-CVRP just one single type vehicle and no consolidation at satellites are
considered.

3. Two-Echelon Vehicle Routing Problems
Freight consolidation from different shippers and carriers associated with some kind of coordina-
tion of operations is among the most important ways to achieve a rationalization of the distri-
bution activities. Intelligent Transportation Systems technologies and operations research-based
methodologies enable the optimization of the design, planning, management, and operation of City
Logistics systems (Crainic et al., 2009a; Taniguchi et al., 2001).

Consolidation activities take place at so-called Distribution Centers (DCs). When such DCs are
smaller than a depot and the freight can be stored for only a short time, they are also called
satellite platforms, or simply satellites. Long-haul transportation vehicles dock at a satellite to
unload their cargo. Freight is then consolidated in smaller vehicles, which deliver them to their
final destinations. Clearly, a similar system can be defined to address the reverse flows, i.e., from
origins within an area to destinations outside it.

As stated in the introduction, in the Multi-Echelon Vehicle Routing Problems the delivery from
the depot to the customers is managed by rerouting and consolidating the freight through different
intermediate satellites. The general goal of the process, which is also known in the literature
as cross-docking (Barthold and Gue, 2004), is to ensure an efficient and low-cost operation of
the system, while the freight is delivered on time and the total cost of the traffic on the overall
transportation network is minimized. Usually, capacity constraints on the vehicles and the satellites
are considered.

More precisely, in the Multi-Echelon Vehicle Routing Problems the overall transportation net-
work can be decomposed into k≥ 2 levels:
• the 1st level, which connects the depots to the 1st-level satellites;
• k− 2 intermediate levels interconnecting the satellites;
• the last level, where the freight is delivered from the satellites to the customers.
The most common version of Multi-Echelon Vehicle Routing Problem arising in practice is the

Two-Echelon Vehicle Routing Problem, where only one intermediate level of satellite depots is
present.

Let us denote the depot by v0, the set of intermediate depots called satellites by Vs and the
set of customers by Vc. Let ns be the number of satellites and nc the number of customers. The
depot is the starting point of the freight and the satellites are capacitated. The customers are the
destinations of the freight and each customer i shows a demand di, i.e. the quantity of freight that
has to be delivered to that customer. The demand of each customer cannot be split among different
vehicles at the 2nd level. For the first level, we consider that each satellite can be served by more
than one 1st-level vehicle, so the aggregated freight assigned to each satellite can be split into two
or more vehicles. Each 1st level vehicle can deliver the freight of one or more customers, as well as
serve more than one satellite in the same route.

The distribution of the freight cannot be managed by direct shipping from the depot to the
customers. Instead the freight must be consolidated from the depot to a satellite and then delivered
from the satellite to the desired customer. This implicitly defines a two-echelon transportation
system: the 1st level interconnecting the depot to the satellites and the 2nd one the satellites to
the customers (see Figure 1).
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Figure 1 Example of 2E-CVRP transportation network.

We define as arc (i, j) the direct route connecting node i to node j. If both nodes are satellites
or if one is the depot and the other is a satellite, we define the arc as belonging to the 1st-level
network, while if both nodes are customers or if one is a satellite and the other is a customer, the
arc belongs to the 2nd-level network.

We define as 1st-level route a route run by a 1st-level vehicle which starts from the depot, serves
one or more satellites and ends at the depot. A 2nd-level route is a route run by a 2nd-level vehicle
which starts from a satellite, serves one or more customers and ends at the same satellite.

The problem is easily seen to be NP-Hard via a reduction to VRP, which is a special case of
2E-CVRP arising when just one satellite is considered.

In the following, we will focus on Two-Echelon Vehicle Routing Problems, using them to illustrate
the various types of constraints that are commonly defined on Multi-Echelon Vehicle Routing
Problems. We can define three groups of variants:

Basic variants with no time dependence:
• Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP). This is the simplest version

of Multi-Echelon Vehicle Routing Problems. At each level, all vehicles belonging to that level
have the same fixed capacity. The size of the fleet of each level is fixed, while the number of
vehicles assigned to each satellite is not known in advance. The objective is to serve customers
by minimizing the total transportation cost, satisfying the capacity constraints of the vehicles.
There is a single depot and a fixed number of capacitated satellites. All the customer demands
are fixed, known in advance and must be compulsorily satisfied. Moreover, no time window is
defined for the deliveries and the satellite operations. For the 2nd level, the demand of each
customer is smaller than each vehicle’s capacity and cannot be split in multiple routes of the
same level.

Basic variants with time dependence:
• Two-Echelon VRP with Time Windows (2E-VRP-TW). This problem is the extension of 2E-

CVRP where time windows on the arrival or departure time at the satellites and/or at the
customers are considered. The time windows can be hard or soft. In the first case the time
windows cannot be violated, while in the second, if they are violated a penalty cost is due.

• Two-Echelon VRP with Satellites Synchronization (2E-VRP-SS). In this problem, time con-
straints on the arrival and the departure of vehicles at the satellites are considered. In fact,
the vehicles arriving at a satellite unload their cargo, which must be immediately loaded into a
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2nd-level vehicle. Also this kind of constraints can be of two types: hard and soft. In the hard
case, every time a 1st-level vehicle unloads its freight, 2nd-level vehicles must be ready to load
it (this constraint is formulated through a very small hard time window). In the second case, if
2nd-level vehicles are not available, the demand is lost and a penalty is paid. If the satellites are
capacitated, constraints on loading/unloading operations are incorporated, such that in each
time period the satellite capacity in not violated.

Other 2E-CVRP variants are:
• Multi-depot problem. In this problem the satellites are served by more than one depot. A

constraint forcing to serve each customer by only one 2nd-level vehicle can be considered. In
this case, we have a Multi-Depot Single-Delivery Problem.

• 2E-CVRP with Pickup and Deliveries (2E-VRP-PD). In this case we can consider the satellites
as intermediate depots where both the freight that has been picked-up from the customers and
that which must be delivered to the customers are stored.

• 2E-CVRP with Taxi Services (2E-VRP-TS). In this variant, direct shipping from the depot to
the customers is allowed if it helps to decrease the cost, or to satisfy time and/or synchronization
constraints.

4. The Two-Echelon Capacitated Vehicle Routing Problem
As stated in Section 3, 2E-CVRP is the two-echelon extension of the well known CVRP prob-
lem. In this section we describe in detail the 2E-CVRP and introduce a mathematical formulation
solving small and medium-sized instances. We do not consider any time windows or satellite syn-
chronization constraints. In order to help the reader, we summarize the definitions of variables and
constants in Table 1.

4.1. A Flow-based Model for 2E-CVRP
According to the definition of 2E-CVRP, if the assignments between customers and satellites are
determined, the problem reduces to 1 +ns VRP (1 for the 1st-level and ns for the 2nd-level).

The main question when modeling 2E-CVRP is how to connect the two levels and manage the
dependence of the 2nd-level from the 1st one.

The freight must be delivered from the depot v0 to the customers set Vc = {vc1 , vc2 , ..., vcnc
}. Let

di be the demand of the customer ci. The number of 1st-level vehicles available at the depot is m1.
These vehicles have the same given capacity K1.

The total number of 2nd-level vehicles available for the second level is equal to m2. The total
number of active vehicles cannot exceed m2 and each satellite k has a maximum capacity msk .
The 2nd-level vehicles have the same given capacity K2. No additional limitation on the route size,
neither in length, nor in number of visited customers is introduced.

In our model we will not consider the fixed costs of the vehicles, since we suppose that they are
available in fixed number. Let us consider the travel costs cij, which are of two types:
• costs of the arcs traveled by 1st-level vehicles, i.e. arcs connecting the depot to the satellites

and the satellites between them;
• costs of the arcs traveled by 2nd-level vehicles, i.e. arcs connecting the satellites to the customers

and the customers between them.
Another cost that can be used is the cost of loading and unloading operations at the satellites.

Supposing that the number of workers in each satellite vsk is fixed, we consider only the cost
incurred by the management of the freight and we define Fk as the unit cost of freight handling at
the satellite vsk .

The formulation we present derives from the multi-commodity network design and uses the flow
of the freight on each arc as main decision variables.

We define five sets of variables, that can be divided in three groups:
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Table 1 Definitions and notations.

V0 = {v0} Depot
Vs = {vs1 , vs2 , ..., vsns

} Set of satellites
Vc = {vc1 , vc2 , ..., vcnc

} Set of customers
ns Number of satellites
nc Number of customers
m1 Number of the 1st-level vehicles
m2 Number of the 2nd-level vehicles
msk Maximum number of 2nd-level routes starting from satellite k
K1 Capacity of the vehicles for the 1st level
K2 Capacity of the vehicles for the 2nd level
di Demand required by customer i
cij Cost of the arc (i, j)
Fk Cost for loading/unloading operations of a unit

of freight in satellite k
Q1

ij Flow passing through the 1st-level arc (i, j)
Q2

ijk Flow passing through the 2st-level arc (i, j) and coming from satellite k
xij Number of 1st-level vehicles using the 1st-level arc (i, j)

yk
ij Boolean variable equal to 1 if the 2st-level arc (i, j) is used by

the 2nd-level routing starting from satellite k
zkj Variable set to 1 if the customer ci is served by the satellite k

• The first group represents the arc usage variables. We define two sets of such variables, one for
each level. The variable xij is an integer variable of the 1st-level routing and is equal to the
number of 1st-level vehicles using arc (i, j). The variable yk

ij is a binary variable representing
the 2nd-level routing. It is equal to 1 if a 2nd-level vehicle runs a route that starts from satellite
k and goes directly from node i to node j, 0 otherwise.

• The second group of variables represents the assignment of each customer to one satellite and
is used to link the two transportation levels. More precisely, we define zkj as a binary variable
that is equal to 1 if the freight to be delivered to customer j is consolidated in satellite k and
0 otherwise.

• The third group of variables, split into two subsets, one for each level, represents the freight
flow passing through each arc. We define the freight flow as a variable Q1

ij for the 1st-level and
Q2

ijk for the 2nd level, where k represents the satellite which the freight is passing through.
Both variables are continuous.

In order to lighten the model formulation, we define the auxiliary quantity

Dk =
∑
j∈Vc

djzkj,∀k ∈ Vs, (1)

which is non-negative and represents the freight passing through each satellite k.
The model to minimize the total cost of the system may be formulated as follows:

min
∑

i,j∈V0∪Vs,i6=j

cijxij +
∑
k∈Vs

∑
i,j∈Vs∪Vc,i6=j

cijy
k
ij +

∑
k∈Vs

FkDk (2)

Subject to∑
i∈Vs

x0i ≤m1 (3)

∑
j∈Vs∪V0,j 6=k

xjk =
∑

i∈Vs∪V0,i6=k

xki ∀k ∈ Vs ∪V0 (4)
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k∈Vs

∑
j∈Vc

yk
kj ≤m2 (5)

∑
j∈Vc

yk
kj ≤msk ∀k ∈ Vs (6)

∑
j∈Vc

yk
kj =

∑
j∈Vc

yk
jk ∀k ∈ Vs (7)

∑
i∈Vs∪v0,i6=j

Q1
ij −

∑
i∈Vs∪v0,i6=j

Q1
ji =

{
Dj j is not the depot∑

i∈Vc
−di otherwise

∀j ∈ Vs ∪V0 (8)

Q1
ij ≤K1xij ∀i, j ∈ Vs ∪V0, i 6= j (9)∑

i∈Vc∪k,i 6=j

Q2
ijk−

∑
i∈Vc∪k,i 6=j

Q2
jik =

{
zkjdj j is not a satellite
−Dj otherwise

∀j ∈ Vc ∪Vs,∀k ∈ Vs (10)

Q2
ijk ≤K2yk

ij ∀i, j ∈ Vs ∪Vc, i 6= j,∀k ∈ Vs (11)∑
i∈Vs

Q1
iv0

= 0 (12)

∑
j∈Vc

Q2
jkk = 0 ∀k ∈ Vs (13)

yk
ij ≤ zkj ∀i∈ Vs ∪Vc,∀j ∈ Vc,∀k ∈ Vs (14)

yk
ji ≤ zkj ∀i∈ Vs,∀j ∈ Vc,∀k ∈ Vs (15)∑

i∈Vs∪Vc

yk
ij = zkj ∀k ∈ Vs,∀j ∈ Vc (16)

∑
i∈Vs

yk
ji = zkj ∀k ∈ Vs,∀j ∈ Vc (17)

∑
i∈Vs

zij = 1 ∀j ∈ Vc (18)

yk
kj ≤

∑
l∈Vs∪V0

xkl ∀k ∈ Vs,∀j ∈ Vc (19)

yk
ij ∈ {0,1}, ∀k ∈ Vs ∪V0,∀i, j ∈ Vc (20)

zkj ∈ {0,1}, ∀k ∈ Vs ∪V0,∀j ∈ Vc (21)

xkj ∈Z+, ∀k, j ∈ Vs ∪V0 (22)

Q1
ij ≥ 0,∀i, j,∈ Vs ∪V0, Q

2
ijk ≥ 0, ∀i, j ∈ Vs ∪Vc,∀k ∈ Vs. (23)

The objective function minimizes the sum of the traveling and handling operations costs. Con-
straints (4) show that, if k = v0, then each 1st-level route begins and ends at the depot. Otherwise,
if k is a satellite, they impose the balance of vehicles entering and leaving that satellite. The limit
on the satellite capacity is satisfied by constraints (6). These limit the maximum number of 2nd-
level routes starting from every satellite (notice that constraints limit at the same time the freight
capacity of the satellites as well). Constraints (7) force each 2nd-level route to begin and end at
one satellite, while implying that the outgoing and the incoming routes associated to each satellite
are equal. The number of routes at each level must not exceed the number of vehicles for that level,
as imposed by constraints (3) and (5).



Perboli, Tadei, and Vigo: 2E-CVRP: models and math-based heuristics
Article submitted to Transportation Science; manuscript no. Final Draft. Doi: 10.1287/trsc.1110.0368 9

Constraints (8) and (10) indicate that the flows balance on each node is equal to the demand of
this node, except for the depot, where the exit flow is equal to the total demand of the customers,
and for the satellites at the 2nd-level, where the flow is equal to the demand (unknown) assigned to
the satellites. Moreover, constraints (8) and (10) forbid the presence of subtours not containing the
depot or a satellite, respectively. In fact, each node receives an amount of flow equal to its demand,
preventing the presence of subtours. Consider, for example, that a subtour is present between the
nodes i, j and k at the 1st level. It is easy to check that, in such a case, there exists no value
for variables Q1

ij, Q1
jk and Q1

ki satisfying constraints (8) and (10). The capacity constraints are
formulated in (9) and (11), for the 1st-level and the 2nd-level, respectively. Constraints (12) and
(13) do not allow residual flows in routes, making the returning flow of each route to the depot
(1st-level) and to each satellite (2nd-level) equal to 0.

Constraints (14) and (15) indicate that a customer j is served by a satellite k (zkj = 1) only if
it receives freight from the same satellite (yk

ij = 1). Constraint (18) assigns each customer to one
only satellite, while constraints (16) and (17) indicate that there is only one 2nd-level route passing
through each customer. At the same time, they impose the condition that a 2nd-level route departs
from a satellite k to deliver freight to a customer if the customer is assigned to that satellite, and
only in such case. Constraints (19) allow a 2nd-level route to start from a satellite k only if a
1st-level route has served it.

Finally, (20)-(23) specify the domains of the variables. In particular, notice that while the arc
variables yk

ij can be defined as Boolean, each customer being served by at most one route, the
1st-level arc variables xkj must be integer. This is due to the fact that each satellite could be served
by more than one vehicle and that the different vehicles could share the same arc.

5. Valid inequalities for 2E-CVRP
In order to strengthen the continuous relaxation of the flow model, we introduce cuts derived
from VRP formulations. In particular, we use two families of cuts, one applying to the assignment
variables derived from the subtour elimination constraints (edge cuts) and the other flow-based.

The edge cuts explicitly introduce the well-known subtours elimination constraints derived from
the TSP. They can be expressed as follows:∑
i,j∈V ′

yk
ij ≤ |V ′| − 1, ∀k ∈ Vs,∀V ′ ⊂ Vc, 2≤ |V ′| ≤ |Vc| − 2, (24)

where V ′ is a subset of the customers.
One could also consider the similar constraints on variables xij for the 1st-level routes. They are

not included here due to their marginal improvement, which in turn is probably due to the limited
number of satellites considered.

Inequalities (24) explicitly forbid the presence in the solution of subtours not containing the
depot, already forbidden by constraints (10).

These inequalities can be strengthened by considering that, given a subset of second-level edges
yk
ij belonging to the same satellite, the cardinality of the subset of customers V ′ appearing in (24)

can be substituted by the sum of variables of any subset of V ′ such that the number of variables
zkj is equal to the size of V ′ minus one. More precisely, the inequality (24) can be rewritten as
follows:∑
i,j∈V ′

yk
ij ≤

∑
j∈V ′\{l}

zkj, ∀k ∈ Vs, ∀V ′ ⊂ Vc, 2≤ |V ′| ≤ |Vc| − 2, ∀l ∈ V ′, (25)

where V ′ is a subset of the customers. In the following, we will refer to inequalities (25) as edge
cuts. The number of potential valid inequalities (24) and (25) is exponential, so we should need a



Perboli, Tadei, and Vigo: 2E-CVRP: models and math-based heuristics
10 Article submitted to Transportation Science; manuscript no. Final Draft. Doi: 10.1287/trsc.1110.0368

separation algorithm to add them. As these cuts correspond to the Generalized Subtour Elimination
Constraints for the TSP problem when adapted to the 2E-CVRP, we could use as separation
procedure the exact procedure presented in Wolsey, 1998. According to our test, the inequalities
involving sets V ′ with cardinality higher than 3 are rare. Moreover, no violation with sets over 5
nodes are present in the instances we tested (up to 50 customers, 5 customers) and the effect of
the cuts with size more than 3 is negligible. Thus the separation algorithm has been substituted
by a direct inspection of the constraints up to cardinality equal to 3.

The formulation can be strengthened by strengthening the BigM constraints (11). The idea is
to reduce the constant K2 by considering that each customer reduces the flow by an amount equal
to its demand di. Thus the following inequalities are valid:{
Q2

ijk ≤ (K2− di)y
k
ij,∀i, j ∈ Vc ∀k ∈ Vs

Q2
ijk−

∑
l∈Vs

Q2
jlk ≤ (K2− di)y

k
ij ∀i, j ∈ Vc,∀k ∈ Vs.

(26)

Constraints (26) are of the same order of magnitude of (11) and dominate them. Thus, they simply
replace constraints (11) in the model.

From the point of view of flow variables Q2
ijk, the feasibility of a node j, restricted to a satellite k,

is assured in a general way from constraints set in the basic formulation. The following constraints∑
i∈Vc∪Vs

Q2
ijk−

∑
l∈Vc∪Vs

Q2
jlk = djzkj ∀j ∈ Vc, k ∈ Vs (27)

have the same meaning of (10), restricted to Vc nodes set. When the route is a 2nd-level route such
that it does not serve only one customer, we can state that, for any integer solution, at most only
one of variables yk

ij and yk
ji is non-zero.

Thereby, if a continuous solution of the continuous relaxation of the model contains both flow
variables referred to a given edge (i, j), then the following inequalities apply:

Q2
ijk−

∑
m∈Vc∪Vs
m 6=i

Q2
jmk ≤ djy

k
ij ∀i∈ Vc ∪Vs,∀j ∈ Vc,∀k ∈ Vs (28)

∑
i∈Vc∪Vs
i 6=m

Q2
ijk−Q2

jmk ≥ djy
k
jm ∀j ∈ Vc,∀m∈ Vc,∀k ∈ Vs. (29)

The inequalities (28) and (29) describe the possible node infeasibility problem generated by target
incoming arc and target outgoing arc when both flow variables are active, respectively. A possible
violation can be detected considering the couples (yk

ij, y
k
ji) and the separation procedure that can

be done is O (|Vc|3).
Additional cuts derived from the CV RP literature could be added, but we verified that their

improvement is quite marginal with respect to their high computational effort (Perboli et al., 2010)
and we decided not to consider them.

6. Math-based Heuristics for 2E-CVRP
In this section we introduce heuristics for 2E-CVRP based on the information that can be obtained
by solving the linear relaxation of the model presented in the previous section. Algorithms of this
type are often called math-heuristics (or model based heuristics). If we consider the model of 2E-
CVRP presented in Section 4, we can notice that, given feasible values to the variables dealing with
the customer-satellite assignment, or zkj variables, the problem is simply partitioned in at most
ns + 1 CVRP instances, one for the 1st-level and one for each satellite with at least one customer
assigned. Thus, given the values of zkj, the associated solution can be computed by means of any
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heuristic or exact method developed for the CVRP. Thus, our idea is to focus our search on zkj,
using model (2)-(23) to guide the search process. According to these guidelines, we develop two
model-based heuristic methods to find feasible solutions based on the usage of simplified versions
of the 2E-CVRP model.

The first heuristic considers a continuous model derived from (2)-(23) plus the valid inequalities
(25) and the tighter constraints (26). Given the optimal solution of the continuous model, the
heuristic apply a diving procedure on zkj (Atamturk and Savelsberg, 2005). Differently from similar
procedures, in our case we would rather set variables to 0. In this way we slightly perturb the model,
letting it to adapt the values of the remaining variables while reducing the probability of obtaining
infeasible solutions at the same time. The variable fixed to zero is the variable whose value does not
exceed 0.1 and having the largest pseudocost. We remind that a pseudocost is an estimation of the
change in the objective function in consequence of the fact that the corresponding variable is set
to an integer value; for the basic variables in the optimal continuous solution, the pseudocost plays
a role similar to that of the reduced cost for non-basic variables (Atamturk and Savelsberg, 2005).
Moreover, in order to recover possible infeasibilities due to the setting, a restarting procedure is
incorporated. More precisely, the procedure works as follows (see Algorithm 1 for the pseudocode
and Table 5 for the list and the meaning of parameters):
• the set of compulsory forced variables forcedV ars is emptied;
• while an integer solution of zkj variables is not found or a maximum number of trials is not

reached proceed with the diving;
— set to 1 the zkj in forcedV ars;
— solve the continuous model (2)-(23);
— if the solution is integer in the zkj variables and the corresponding assignment of 2nd-level

vehicles satisfies the capacity constraints on the satellites, solve the corresponding CVRP
instances;

— otherwise
∗ get the p < P zkj variables with value near to zero and largest pseudocost and force them

to zero;
∗ if p= 0, get the Q zkj variables with value greater or equal to 0.5 and force them to 1.
∗ optimize the continuous model (2)-(23);
∗ if the model is infeasible, take the last fixed variable and add to forcedV ars, unfix the

other fixed variables, increase the number of trials and restart the process.
In the second heuristic method we consider that the number of variables zkj in model (2)-(23)

is quite small and a MIP solver can find a near-optimal solution with a limited computational
effort of 2E-CVRP model with variables yk

ij and xij considered as continuous. Thus, we consider
a simplified version of model (2)-(23) where (20) and (22) are ignored. Moreover, we add to the
simplified model the integer variables vk, representing the vehicles used by satellite k, and the
following constraints:∑
j∈Vc

zk,jdj <=K2vk, ∀k ∈ Vs, (30)

∑
k∈Vs

vk <=m2, ∀k ∈ Vs, (31)

∑
k∈Vs

vk <=msk , ∀k ∈ Vs. (32)

Constraints (30)-(32) are used to ensure that capacity constraints of satellites are satisfied even
when yk

ij are not integral. Constraints (30)-(32) could be also added to the original formulation in
order to introduce some redundancy. Unfortunately, computational tests show that this redundancy
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Algorithm 1 Diving-based Heuristic

numTrials= 0
forcedV ars= {�}
while numTrials <MaxTrials or solutionFound= false do
set the variables in forcedV ars to 1
Solve the continuous model
while one or more variables zkj are not integer do
if All the zkj have integral value and the capacity constraints on the satellites are satisfied then
Solve m+ 1 CVRP instances
solutionFound= true
else
Get the p≤ P variables with value zkj ≤ 0.1 and having the largest pseudocost
if p 6= 0 then
Set the p variables to 0
else
Get the q≤Q variables with value zkj ≥ 0.5
Set the q variables to 1
Solve the continuous model
if Model is infeasible then
numTrials= numTrials+ 1
Get the last variable zkj rounded
forcedV ars= forcedV ars∪{zkj}

is not able to strengthen the linear relaxation enough and the marginal improvement obtained is

dominated by the results of the other cuts presented in this paper. In the following, we will refer

to this simplified model as semi-continuous 2E-CVRP model.

Thus, the semi-continuous heuristic works as follows (see Table 5 for the list and the meaning

of the parameters):

• solve the continuous relaxation of the semi-continuous 2E-CVRP model and set the integer

variables to the value obtained by the model;

• solve the semi-continuous 2E-CVRP model on the reduced set of variables by means of a MIP

solver with a time-limit of 60 seconds and put in a list the best integer solutions. Let M be the

size of the list, i.e. the maximum number of solutions of the semi-continuous model, which is

taken into consideration in the next steps;

• for every solution in the list:

— consider the assignments satellite-customer given by the zkj variables;

— build the corresponding instances for the 1st-level and the single satellites CVRP;

— solve each CVRP instance with a CVRP solver (a fixed time limit is given);

• return the best 2E-CVRP solution found.

The threshold on the explored feasible solutions of the semi-continuous model M is used to

explore more integer solutions of the semi-continuous 2E-CVRP model, ensuring at the same time

an upper limit to the computational effort to the subsequent CVRP instances.

In both heuristics, any exact or heuristic method to solve the CVRP problems can be used to

solve the underlying CVRP instances. A comparison of the results obtained by means of both exact

(Ralphs et al., 2003) and heuristic (Perboli et al., 2008) methods for CVRP is provided in Section

7.1.
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7. Computational tests
In this section, we analyze the behavior of the model and the heuristics in term of solution quality
and computational efficiency. Two-echelon systems are known in the literature, but the routing
model as well as the 2E-CVRP are introduced for the first time in this paper. Thus, in Subsection
7.1 we define some benchmark instances, extending the instance sets from the VRP literature. All
the tests have been performed on a 3 GhZ Pentium PC with 1 Gb of Ram. The models and the
routines have been implemented in Mosel language and tested by means of XPress 2008a solver
(Dash Associates, 2008).

Section 7.2 is devoted to present the computational results on a wide set of benchmark instances
and the impact of the valid inequalities of Section 5 on the computational results, while Section
7.3 presents the computational results of the model, the heuristics and the valid inequalities on the
overall sets of instances.

7.1. Instance sets
In this section we introduce different instance sets for 2E-CVRP. The instances cover up to 51
nodes (1 depot and 50 customers) and are grouped in four sets. The first three sets have been built
from the existing instances for VRP by Christofides and Eilon and have been denoted as E-n13-k4,
E-n22-k4, E-n33-k4 and E-n51-k5 (Christofides and Eilon, 1969), while the fourth set, taken from
Crainic et al., 2010, comprises randomly generated instances replicating distributions of customers
and satellites typical of city logistics problems. All instance sets can be downloaded from the web
site of OR-Library (Beasley, 1990).

The first instance set comprises 66 small-sized instances with 1 depot, 12 customers and 2
satellites. All the instances have the cost matrix of the instance E-n13-k4 (the costs of the matrix
of the original instance is read as an upper triangular matrix and the corresponding optimal cost

of the VRP instance is 290). The two satellites are placed over two customers in all the

(
12
2

)
= 66

possible ways (the case where some customers are used as satellites is quite common for different
kinds of distribution, e.g. grocery distribution). When a node is both a customer and a satellite,
the arc cost cki is set to 0. The number of vehicles for the 1st-level is set to 2, while the 2nd-level
vehicles are 4, as in the original VRP instance. The capacity of 1st-level vehicles is 2.5 times that
of 2nd-level vehicles, to represent cases in which the 1st-level is made by trucks and the 2nd-level is
made by smaller vehicles (e.g., vehicles with a maximum weight smaller than 3.5 t). The capacity
of 2nd-level vehicles is equal to the capacity of the vehicles of the VRP instance. The cost due to
loading/unloading operations is set to 0, while the arc costs are the same as for the VRP instances.
This is done in order that results can be better compared with the original instances of the CVRP.
In this way, we can analyze the effect on the routing costs and the satellite usage of the customers’
geographical dispersion.

The second set of instances is obtained in a similar way from the instances E-n22-k4, E-n33-k4
and E-n51-k5. The instances are built by considering 6 pairs of randomly generated satellites. For
the instance E-n51-k5, which has 50 customers, we considered an additional group of 3 instances
obtained by randomly placing 4 satellites instead of 2. The cost due to loading/unloading operations
is set to 0, while the arc costs are the same as for the VRP instances.

The main issue in the original instances by Christofides and Eilon is that the depot is in an almost
central position with respect to the area covered by the customers. For this reason, the third set of
instances also considers the instances E-n22-k4, E-n33-k4 and E-n51-k5, but the distribution of the
satellites is more realistic. In fact, we consider six pairs of satellites randomly chosen between the
customers on the external border of the area determined by the customers distribution. Moreover,
the depot is external to the customers areas, being placed at the coordinate (0,0) (the southwest
corner of the customers area).
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Table 2 Summary of the benchmark tests.

Set Instances ns nc m1 m2 C1 C2 Satellite distribution Customer distribution

1 66 2 12 3 4 15000 6000 All pairs Christofides and Eilon (1969)
E-n13-k4 instance

2 6 2 21 3 4 15000 6000 Random Christofides and Eilon (1969)
E-n22-k4 instance

2 6 2 32 3 4 20000 8000 Random Christofides and Eilon (1969)
E-n33-k4 instance

2 6 2 50 3 5 400 160 Random Christofides and Eilon (1969)
E-n51-k5 instance

2 3 4 50 4 5 400 160 Random Christofides and Eilon (1969)
E-n51-k5 instance

3 6 2 21 3 4 15000 6000 Border Random Christofides and Eilon (1969)
E-n22-k4 instance

3 6 2 32 3 4 20000 8000 Border Random Christofides and Eilon (1969)
E-n33-k4 instance

3 6 2 50 3 5 400 160 Border Random Christofides and Eilon (1969)
E-n51-k5 instance

4 18 5 50 3 6 12500 5000 Crainic et al, 2009 Crainic et al, 2009

Finally, the fourth set comprises 18 instances with 50 customers and 5 satellites from Crainic
et al., 2010. Those instances, generated in order to represent different scenarios in city logistics,
present 3 realistic distributions for the customers and 3 different strategies for the location of the
satellites. The depot is external to the customers areas and both capacities for the 2nd-level fleet
and each satellite are present.

A summary of the main features of the different sets is reported in Table 2. The first column
reports the instance set, while the number of instances in shown in Column 2. Columns 3 and
4 contain the number of satellites and customers, respectively. The number of vehicles for the
1st and 2nd level can be read in Columns 5 and 6, while Columns 7 and 8 provide the capacity
of the vehicles at the two levels. In the remaining columns the rule used to locate the satellites
and the customers are specified. More in detail, the value All pairs indicates for satellites that all
the possible pairs have been computed, while Random and Border Random shows that satellites
are randomly selected. About the instance names showed in Column 10, they are those used by
Christofides and Eilon, 1969.

7.2. Valid inequalities computational results
In this section we present the computational results of the model (2)-(23) solved by means of
XPress 2008a on instances belonging to Set 1 and Set 2 using the valid inequalities introduced in
Section 5 within a computation time limit of 10000 seconds.

With respect to the edge cuts, a series of tests was carried out using a simple procedure which
tested all the subtours up to cardinality 5. The procedure, coded in Mosel, iteratively solves the
continuous problem and checks the violated cuts up to 10 iterations. According to our test, the
inequalities involving subsets with cardinality more than 3 are rare. Moreover, no violation with
sets over 4 nodes could be found in the instances that we tested (up to 50 customers and 4 satellites)
and the effect of the cuts with size more than 3 is negligible (they increase the overall objective
function of less than 0.1 units in the best case). Thus the separation algorithm for the Generalized
Subtour Elimination Constraints has been substituted by a direct inspection of the constraints up
to cardinality equal to 3.

In Table 3 the results of the 66 instances corresponding to the problem with 12 customers and
2 satellites are provided. The optimum is reported in the second column, while columns 3 and 4
contain the time in seconds needed to solve the instances without and with the valid inequalities
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introduced in Section 5, while column 5 reports the number of edge cuts added. Finally, the last
column presents the percentage of decreasing/increasing of computational time due to the usage of
valid inequalities. We do not present the lower bounds at the root node with and without cuts, the
difference being less than 2%. This behavior, as we will show with the results of Set 2, is mainly
due to the small size of the instances themselves.

According to the results most instances are solved in less than one minute, and only 10 of
them need more than 2 minutes to be solved. There are however seven instances for which the
computational time is greater than 10 minutes. This gap is mostly related to the satellite location.
In fact, the greatest computational times are related to the situation where choosing which satellite
to use has little or no effect on the final solution. In this situation, the model finds an optimal
solution quickly, but spends much time closing the nodes of the decision tree. This is due to the poor
quality of the lower bound obtained by the continuous relaxation of the model. A better behavior
is obtained with the valid inequalities. As a counter effect, on some instances, the computational
time still increases, due to the management of the additional inequalities. Moreover, the number
of added cuts is quite limited, with a mean of 56 cuts added to the original formulation.

By considering all the pairs of customers as possible satellite location and comparing the results
with the optimal solution of the original CVRP instance with optimum 247, in the following we
discuss advantages and disadvantages of the proposed two-level distribution system.

From the quality point of view, it is clear the advantage of using the 2E-CVRP distribution
model instead of the CVRP one. Indeed, the former is able to achieve a smaller cost in 42 instances,
while the decreasing/increasing of the costs is, except for satellites 11,12 with +24%, in the range
[−15%,+12%] of the corresponding CVRP instance. The mean decreases in the 42 instances with a
reduced transportation cost of 8.5%, which could be used to balance the costs of loading/unloading
operations at satellites. In the city logistics field, this means that the 2E-CVRP distribution model
could be introduced without raising the total transportation cost, while obtaining indirect advan-
tages, such as the reduction of the traffic flows and pollution level. For a more detailed discussion
of the satellite location, see Crainic et al., 2010.

The results on Set 2 instances are presented in Table 4, where the behavior of the lower bound
computed with a continuous relaxation of the model found without and with the valid inequalities
is considered. More precisely, columns 1 and 2 contain, respectively, the number of customers in
the original Christofides and Eilon’s instances and the position of the satellites given as customer
number. The values and the percentage gap with the best integer solution of the first lower bound
(calculated at the root node) without and with the valid inequalities are reported in columns 3-6,
while the same data on the final lower bound (calculated at the end of the optimization process),
increased by letting the solver apply lift-and-project cuts, included as a standard feature of the
MIP solver during the optimization, and its gap are presented in columns 7-10. All the gaps are
computed as (UB−LB)/LB, where UB is the upper bound reported in column Best sol and LB
is the lower bound under study. The number of cuts added at the root node is shown in column
11, while the best solution after 5000 seconds and 10000 seconds are reported in columns 12 and
13, respectively (bold values mean optimal values).

From these results it can be seen that the use of cuts helps the model to reduce the gap by up to
9 percentage points. The behavior is confirmed by considering the values of the feasible solutions
found by the model without and with the valid inequalities. According to these results, for up to
32 customers the model is able to find good quality solutions in 5000 seconds at most. When the
number of customers increases to 50, more than 5000 seconds are required to find a good solution.
Moreover, the use of the cuts increases the average model quality in terms of the initial solutions
and the lower bounds. The gaps between the best solutions and the best bounds are quite small
for instances involving up to 32 customers, but increase for 50-customer instances, with a gap up
to 42% for the 4 satellite instances.
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Table 3 12 customers and 2 satellites instances: valid inequalities improvements.

Cuts Cuts
Without cuts With cuts Without cuts With cuts

1,2 280 1312.34 835.56 55 -36.33% 4,8 252 5.25 0.64 48 -87.85%
1,3 286 861.94 247.99 66 -71.23% 4,9 264 6.56 3.71 18 -43.50%
1,4 284 1445.05 251.78 83 -82.58% 4,10 272 15.28 3.56 50 -76.72%
1,5 218 2.06 1.68 61 -18.40% 4,11 296 11.11 5.02 86 -54.78%
1,6 218 7.92 2.08 62 -73.71% 4,12 304 13.91 5.79 52 -58.34%
1,7 230 19.95 5.32 100 -73.34% 5,6 248 3.28 3.64 36 10.87%
1,8 224 2.50 2.78 77 11.01% 5,7 254 1.97 2.68 31 36.01%
1,9 236 13.34 6.28 117 -52.92% 5,8 256 9.34 4.06 42 -56.50%
1,10 244 14.27 5.18 114 -63.72% 5,9 262 6.59 4.39 48 -33.37%
1,11 268 28.70 7.81 67 -72.80% 5,10 262 2.08 2.84 27 36.90%
1,12 276 45.05 28.71 5 -36.27% 5,11 262 1.73 1.48 14 -14.51%
2,3 290 849.17 392.11 100 -53.82% 5,12 262 1.41 1.77 14 25.72%
2,4 288 895.19 639.22 93 -28.59% 6,7 280 17.70 19.35 62 9.31%
2,5 228 4.48 2.56 55 -42.99% 6,8 274 7.64 5.44 13 -28.83%
2,6 228 4.20 12.24 66 191.16% 6,9 280 15.22 11.09 28 -27.15%
2,7 238 7.09 3.41 157 -51.96% 6,10 280 7.73 9.13 11 18.10%
2,8 234 6.00 4.05 62 -32.43% 6,11 280 7.11 4.84 10 -31.88%
2,9 246 11.69 6.95 97 -40.49% 6,12 280 14.88 4.36 14 -70.67%
2,10 254 26.25 7.49 157 -71.48% 7,8 292 4.42 1.84 18 -58.41%
2,11 276 37.27 9.60 93 -74.25% 7,9 300 8.97 7.93 38 -11.60%
2,12 286 226.48 136.92 9 -39.55% 7,10 304 12.63 14.11 41 11.79%
3,4 312 1704.41 810.09 40 -52.47% 7,11 310 23.88 6.89 28 -71.15%
3,5 242 4.61 2.28 86 -50.46% 7,12 310 19.94 8.65 18 -56.60%
3,6 242 13.13 1.89 36 -85.58% 8,9 326 40.81 16.42 96 -59.77%
3,7 252 17.05 1.65 31 -90.32% 8,10 326 17.86 15.15 135 -15.17%
3,8 248 7.08 1.96 58 -72.28% 8,11 326 11.55 5.29 16 -54.18%
3,9 260 6.17 3.46 50 -43.99% 8,12 326 6.84 4.96 14 -27.59%
3,10 268 33.27 8.37 83 -74.84% 9,10 338 24.27 17.14 101 -29.38%
3,11 290 17.50 5.79 88 -66.92% 9,11 350 17.52 17.80 86 1.59%
3,12 300 13.39 7.82 76 -41.62% 9,12 350 16.25 10.87 12 -33.13%
4,5 246 6.39 2.80 31 -56.16% 10,11 358 40.98 55.11 32 34.46%
4,6 246 10.17 2.93 32 -71.18% 10,12 358 23.19 21.34 24 -7.97%
4,7 258 12.16 5.38 56 -55.77% 11,12 400 40.45 34.02 59 -15.91%

OPTSatellites OPT Time % TimeTime % Time Satellites

7.3. Overall computational results
In this section we present the results of the tests in Set 2, 3, and 4. All results have been obtained
using the model having valid inequalities activated. According to the results discussed in Section
7.2, we limited the generation of the cuts to cycles of length 3, while inequalities (26) were directly
added to the standard formulation. The results are related to Set 2, 3 and 4, being the sets with the
largest size in terms of customers and satellites. The accuracy of both diving and semi-continuous
heuristics are affected by the tuning of several parameters. The tuning has been done on a subset
of 20% of the overall instances. In order to reduce the length of the paper, we do not discuss the
tuning, but we simply report in Table 5 the optimal values for each parameter.

The results of the model on each set are summarized in Tables 6a and 6b. Each table contains
the instance name and the number of satellites in columns 1 and 2. Columns 3 and 4 contain the
best solution and the lower bound computed by continuous relaxation of the model. Finally, the
percentage gap of the best solution compared with the lower bound is presented in Column 5.

These results indicate that the gap is quite small up to 32 customers, while it increases in the
50-customer tests, and particularly in those with 4 satellites.

The instances generated from the classical CVRP instances (sets 2 and 3) present a distribution
of the customers which is quite different from the distribution in realistic applications in urban
and regional delivery. The model is able to find solutions with an average gap of about 6% in Set
2 and 8.5% in Set 3, which is quite large, but understandable considering that the lower bounds
come from the simple continuous relaxation of the model with cuts.
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Table 4 Results on instances of Set 2.

CVRP Instance Satellites Bound Gap Bound Gap Best Bound Gap Best Bound Gap Cuts Sol
5000 ss

Best Sol.

7,18 399.20 4.48% 411.12 1.45% 417.07 0.00% 417.07 0.00% 234 417.07 417.07
9,15 358.24 7.46% 369.92 4.06% 384.96 0.00% 384.95 0.00% 95 384.95 384.96

10,20 423.48 11.13% 441.10 6.69% 457.07 2.96% 470.60 0.00% 197 470.60 470.60
11,15 348.22 6.68% 360.56 3.03% 371.50 0.00% 371.48 0.01% 93 371.48 371.50
12,13 374.11 14.20% 395.73 7.96% 417.61 2.30% 427.22 0.00% 210 427.22 427.22
13,17 349.70 12.32% 366.31 7.23% 372.66 5.40% 392.78 0.00% 185 392.78 392.78
2,10 626.48 16.55% 696.70 4.80% 688.05 6.12% 730.16 0.00% 266 730.16 730.16
3,14 610.21 17.11% 675.84 5.74% 656.75 8.81% 709.76 0.69% 190 714.64 714.64
4,18 611.44 15.71% 657.33 7.63% 641.59 10.27% 698.81 1.24% 351 707.49 707.49
5,6 636.93 23.61% 713.81 10.29% 711.73 10.62% 757.39 3.95% 187 856.93 787.29
8,26 648.41 17.27% 718.35 5.85% 707.48 7.48% 745.71 1.96% 305 762.95 760.36

15,23 662.62 17.81% 750.99 3.94% 741.57 5.26% 764.49 2.11% 155 781.56 780.60
3,18 536.23 11.47% 542.60 10.16% 548.80 8.92% 579.74 3.10% 840 755.11 597.74
5,47 502.85 11.72% 509.36 10.30% 503.64 11.55% 515.24 9.04% 210 715.19 561.80
7,13 505.31 10.87% 510.41 9.76% 507.98 10.28% 528.84 5.93% 781 732.17 560.22

12,20 544.35 8.02% 551.06 6.70% 547.77 7.35% 559.59 5.08% 524 588.01 588.01
28,48 499.29 7.79% 505.86 6.39% 501.82 7.25% 526.34 2.25% 1244 540.88 538.20
33,38 513.01 7.70% 517.36 6.79% 519.56 6.34% 542.83 1.78% 802 692.54 552.49

3,5,18,47 465.35 30.99% 503.67 21.02% 479.91 27.02% 512.18 19.01% 2065 724.09 609.56
7,13,33,38 462.99 23.50% 501.87 13.93% 480.45 19.01% 507.49 12.67% 1572 685.45 571.80

12,20,28,48 476.98 51.81% 500.41 44.70% 482.01 50.22% 507.64 42.64% 936 915.43 724.09

E-n22-k4

Final BoundFirst Bound
Without cuts With cutsWithout cuts With cuts

E-n33-k4

E-n51-k5

E-n51-k5

Table 5 Summary of the optimal values of the parameters used by Diving and Semi-Continuous heuris-
tics.

Heuristic Parameter Meaning Value

P Maximum number of variables fixed 
to 0 4

Q Maximum number of variables fixed 
to 1 4

CVRP Time Limit Time Limit for every CVRP 10 ss
EVEOpt Stopping criteria Default from Perboli et al. (2008)

Max restart
Maximum number of restart of the 
process when the fixing gives an 
infeasible solution

5

Semi-continuous model
Time Limit

Time Limit given to the MIP solver 60 ss

M 

Maximum number of integer 
solutions of the model which are 
considered for finding 2E-VRP 
solutions

10

CVRP Time Limit Time Limit for every CVRP 5 ss
EVEOpt Stopping criteria Default from Perboli et al. (2008)

Diving

Semi-Continuous

Given the complexity of the model and in particular the number of integer variables and con-
straints involved, it is not surprising that the solver requires more than 3 hours to obtain a rea-
sonable solution. On the other hand, heuristic methods can help to close the gap with the lower
bound with a limited computational effort. Tables 7a and 7b present the results of math-based
heuristics derived from the complete 2E-CVRP model. Each table contains the instance name and
the number of satellites in Columns 1 and 2. Column 3 reports the best solution obtained by the
model. Columns 4, 5, 6, and 7 show the behavior of the diving and semi-continuous heuristic,
providing for each heuristic the value of the objective function and the computational time, while
the best solution obtained by combining the two heuristics and their total computational time is
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Table 6 Results of the MIP model on Set 2 and Set 3.

E-n22-k4-s6-17 2 417.07 417.07 0.00% E-n22-k4-s13-14 2 526.10 526.10 0.00%
E-n22-k4-s8-14 2 384.96 384.95 0.00% E-n22-k4-s13-16 2 521.04 521.04 0.00%
E-n22-k4-s9-19 2 470.60 470.60 0.00% E-n22-k4-s13-17 2 496.34 496.34 0.00%
E n22 k4 s10 14 2 371 50 371 50 0 00% E n22 k4 s14 19 2 498 81 498 81 0 00%

Final Solution Best Bound Final 
Solution

Instance Satellites Best 
Bound

GapGap Instance Satellites

E-n22-k4-s10-14 2 371.50 371.50 0.00% E-n22-k4-s14-19 2 498.81 498.81 0.00%
E-n22-k4-s11-12 2 427.22 427.22 0.00% E-n22-k4-s17-19 2 512.80 512.80 0.00%
E-n22-k4-s12-16 2 392.78 392.78 0.00% E-n22-k4-s19-21 2 520.41 520.41 0.00%
E-n33-k4-s1-9 2 730.16 730.16 0.00% E-n33-k4-s16-22 2 675.36 634.26 6.48%
E-n33-k4-s2-13 2 714.64 709.76 0.69% E-n33-k4-s16-24 2 669.60 622.88 7.50%
E-n33-k4-s3-17 2 707.49 698.81 1.24% E-n33-k4-s19-26 2 680.38 648.16 4.97%E n33 k4 s3 17 2 707.49 698.81 1.24% E n33 k4 s19 26 2 680.38 648.16 4.97%
E-n33-k4-s4-5 2 787.29 757.39 3.95% E-n33-k4-s22-26 2 680.90 650.39 4.69%
E-n33-k4-s7-25 2 760.36 745.71 1.96% E-n33-k4-s24-28 2 675.95 633.67 6.67%
E-n33-k4-s14-22 2 780.60 764.49 2.11% E-n33-k4-s25-28 2 651.25 616.59 5.62%
E-n51-k5-s2-17 2 597.74 579.74 3.10% E-n51-k5-s12-18 2 705.52 661.35 6.68%
E-n51-k5-s4-46 2 561.80 515.24 9.04% E-n51-k5-s12-41 2 823.05 635.67 29.48%

1 6 12 2 93% 1 12 3 2 10 39 3 2 %E-n51-k5-s6-12 2 560.22 528.84 5.93% E-n51-k5-s12-43 2 710.39 688.09 3.24%
E-n51-k5-s11-19 2 588.01 559.59 5.08% E-n51-k5-s39-41 2 845.94 679.80 24.44%
E-n51-k5-s27-47 2 538.20 526.34 2.25% E-n51-k5-s40-41 2 827.77 669.74 23.60%
E-n51-k5-s32-37 2 552.49 542.83 1.78% E-n51-k5-s40-43 2 906.68 707.85 28.09%
E-n51-k5-s2-4-17-46 4 609.56 512.18 19.01% Mean 8.41%
E-n51-k5-s6-12-32-37 4 571 80 507 49 12 67%E-n51-k5-s6-12-32-37 4 571.80 507.49 12.67%
E-n51-k5-s11-19-27-47 4 724.09 507.64 42.64%
Mean 6.19%

(a) - Set 2 (b) - Set 3

shown in columns 8 and 9. Column 10 provides the value of the best lower bound known for each
problem. Finally, columns 11 and 12 present the percentage gap of the best model solution and the
best heuristic solution compared with the best lower bound, respectively. All the computational
times include the time needed for solving the CVRP instances generated by the heuristics. Both
diving and semi-continuous heuristics have been tested solving the CVRP subproblems by means
of EVEOpt, the hybrid algorithm developed by Perboli et al., 2008. In semi-continuous heuristic
the parameter M , relating to the maximum number of integer solutions of the semi-continuous
model used by the heuristic, is set to 5.

According to the results, the semi-continuous heuristic dominates the diving one on Set 2, while
there is not a heuristic dominating the other on Set 3. Moreover, the combination of diving and
semi-continuous enabled us to reduce the mean gap from the lower bound. In particular, this is true
for Set 3, where the mean gap is reduced from 8.41% to 4.86% . This is more evident in 50-customer
instances, where the mean gap is reduced from 11% of the MIP model to 7% of the heuristics. The
benefits of the heuristics are also clear from the computational point of view, presenting a mean
value of 17 seconds and a worst case of 52 seconds in instance E-n51-k5-s6-12-32-37.

Obviously the results could be affected by the method used to solve the CVRP subproblems in
solution quality and efficiency. Moreover, using a heuristic method to solve the CVRP instances
had as side effect a worsening of the quality of the final solution. In order to test the heuristics we
replaced EVEOpt with the Branch and Cut by Ralphs et al., 2003 and stopped after 5 seconds.
Results are not presented, having the same solution quality, i.e. the objective function values of
the solutions obtained with EVEOpt and the truncated Branch and Cut are the same for the two
sets. From the efficiency point of view, the computational effort is much higher due to the usage of
the Branch and Cut, while the size of the instances makes impossible to use the Branch and Cut
for instances with more than 50 customers.

The results of the model with cuts are not satisfactory when the number of satellites increases, as
shown by the results on Set 2. In order to obtain better results, we hybridized the math-heuristics
and the exact model, providing as initial solution of the exact model the best solution found by the
math-heuristics and we introduced the cuts in a simple Branch and Cut scheme. More in detail,
the Branch and Cut works as follows:
• the diving and semi-continuous heuristics are applied at the root node only and their best

integer solution is provided to the Branch and Cut;
• cut generation process is applied at every node up to node depth equal to 10;
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Table 7 Results of the math-heuristics on Set 2 and Set 3.

Time
ss

E-n22-k4-s6-17 2 417.07 417.07 1.0 417.07 1.6 417.07 2.65 417.07 0.00% 0.00%
E-n22-k4-s8-14 2 384.96 441.41 0.9 408.14 0.9 408.14 1.74 384.95 0.00% 6.02%
E-n22-k4-s9-19 2 470.60 472.23 2.2 470.60 1.2 470.60 3.34 470.60 0.00% 0.00%
E-n22-k4-s10-14 2 371.50 435.92 1.5 440.85 0.0 435.92 1.51 371.48 0.01% 17.35%
E-n22-k4-s11-12 2 427.22 427.22 0.6 429.39 1.1 427.22 1.70 427.22 0.00% 0.00%
E-n22-k4-s12-16 2 392.78 425.65 1.1 425.65 1.0 425.65 2.03 392.78 0.00% 8.37%
E 33 k4 1 9 2 730 16 772 57 3 0 736 92 0 2 736 92 3 26 730 16 0 00% 0 93%

Gap
Model

Gap
Best Heur

Instance Satellites Model Best LBDiving Time
ss

SC Time
ss

Best
Heur

E-n33-k4-s1-9 2 730.16 772.57 3.0 736.92 0.2 736.92 3.26 730.16 0.00% 0.93%
E-n33-k4-s2-13 2 714.64 749.94 5.0 736.37 0.7 736.37 5.72 709.76 0.69% 3.75%
E-n33-k4-s3-17 2 707.49 801.19 7.4 739.47 0.7 739.47 8.07 698.81 1.24% 5.82%
E-n33-k4-s4-5 2 787.29 838.31 2.0 816.59 1.5 816.59 3.41 757.39 3.95% 7.82%
E-n33-k4-s7-25 2 760.36 756.88 2.3 756.88 4.8 756.88 7.15 745.71 1.96% 1.50%
E-n33-k4-s14-22 2 780.60 779.06 1.6 779.06 0.5 779.06 2.07 764.49 2.11% 1.91%
E-n51-k5-s2-17 2 597.74 666.83 4.9 597.49 42.9 597.49 47.80 579.74 3.10% 3.06%
E-n51-k5-s4-46 2 561.80 543.24 8.4 543.20 20.7 543.20 29.15 515.24 9.04% 5.43%
E n51 k5 s6 12 2 560 22 560 22 8 5 554 80 7 1 554 80 15 55 528 84 5 93% 4 91%E-n51-k5-s6-12 2 560.22 560.22 8.5 554.80 7.1 554.80 15.55 528.84 5.93% 4.91%
E-n51-k5-s11-19 2 588.01 584.09 4.9 592.06 10.5 584.09 15.43 559.59 5.08% 4.38%
E-n51-k5-s27-47 2 538.20 538.20 10.3 538.20 20.8 538.20 31.10 526.34 2.25% 2.25%
E-n51-k5-s32-37 2 552.49 584.59 8.9 578.23 29.5 578.23 38.34 542.83 1.78% 6.52%
E-n51-k5-s2-4-17-46 4 609.56 590.63 16.4 542.37 34.4 542.37 50.83 512.18 19.01% 5.89%
E-n51-k5-s6-12-32-37 4 571.80 571.80 23.5 584.88 28.8 571.80 52.30 507.49 12.67% 12.67%
E-n51-k5-s11-19-27-47 4 724.09 600.34 17.8 600.34 31.6 600.34 49.41 507.64 42.64% 18.26%
Me 17.74 6.19% 6.16%

Time
ss

E-n22-k4-s13-14 2 526.10 561.10 1.7 526.54 0.6 526.54 2.25 526.10 0.00% 0.08%
E-n22-k4-s13-16 2 521.04 521.04 2.6 521.10 0.2 521.04 2.81 521.04 0.00% 0.00%
E-n22-k4-s13-17 2 496.34 496.34 3.0 496.39 0.5 496.34 3.45 496.34 0.00% 0.00%

Instance Satellites Model Diving

(a) - Set 2

Gap
Model

Gap
Best Heur

Time
ss

SC Time
ss

Best
Heur

Best LB

E-n22-k4-s14-19 2 498.81 551.95 3.1 523.61 1.0 523.61 4.08 498.76 0.00% 4.98%
E-n22-k4-s17-19 2 512.80 512.81 13.8 521.84 5.4 512.81 19.21 512.75 0.00% 0.01%
E-n22-k4-s19-21 2 520.41 527.57 2.8 527.57 2.0 527.57 4.75 520.36 0.00% 1.39%
E-n33-k4-s16-22 2 675.36 674.71 3.0 672.19 15.6 672.19 18.57 634.26 6.48% 5.98%
E-n33-k4-s16-24 2 669.60 668.82 4.7 674.69 0.9 668.82 5.52 622.88 7.50% 7.38%
E-n33-k4-s19-26 2 680.38 744.42 1.8 680.38 5.2 680.38 7.01 648.16 4.97% 4.97%
E-n33-k4-s22-26 2 680.90 735.25 1.9 680.38 4.9 680.38 6.79 650.39 4.69% 4.61%
E-n33-k4-s24-28 2 675.95 702.86 8.1 692.66 6.6 692.66 14.75 633.67 6.67% 9.31%
E n33 k4 s25 28 2 651 25 682 42 3 5 650 55 12 0 650 55 15 47 616 59 5 62% 5 51%E-n33-k4-s25-28 2 651.25 682.42 3.5 650.55 12.0 650.55 15.47 616.59 5.62% 5.51%
E-n51-k5-s12-18 2 705.52 719.64 16.9 692.54 21.2 692.54 38.04 661.35 6.68% 4.72%
E-n51-k5-s12-41 2 823.05 743.91 13.8 708.29 22.2 708.29 36.04 635.67 29.48% 11.42%
E-n51-k5-s12-43 2 710.39 711.73 4.8 712.48 9.2 711.73 13.94 688.09 3.24% 3.44%
E-n51-k5-s39-41 2 845.94 742.07 7.8 729.94 27.9 729.94 35.71 679.80 24.44% 7.38%
E-n51-k5-s40-41 2 827.77 733.60 7.7 732.42 10.5 732.42 18.16 669.74 23.60% 9.36%
E-n51-k5-s40-43 2 906.68 803.24 18.6 757.30 25.7 757.30 44.33 707.85 28.09% 6.99%
Me 16.16 8.41% 4.86%

(b) - Set 3

• pseudocost-based branching scheme with priority on zkj variables;
• global time limit (heuristics and Branch and Cut) equal to 10000 seconds.

The results are summarized in Table 8, where the meaning of the columns is the same as in Table
6. As one can notice, initializing the Branch & Cut with the heuristics supports in both finding
new integer solutions and improving the final lower bound, as the mean gap is reduced to 2% in
Set 2 and 4% in Set 3. The effect is particularly relevant on 4-satellite instances in Set 2. Moreover,
the behavior of the results is more stable as the number of satellites increases (compare the results
of the instances with 4 satellites in Set 2).

In order to confirm the behavior, we tested the same procedure (math-heuristics and exact model)
on the larger instances of Set 4 with 50 customers and 5 satellites. These instances present different
realistic distribution both of customers and satellites. Their results are summarized in Table 9,
where the meaning of the columns is the same as in Table 6. From the results, we can see that the
mean gap is larger, but still limited to 11%. Moreover, preliminary tests by Perboli et al., 2010
show that this gap is mainly due to the model relaxation and that it can be still slightly reduced
by a Branch & Cut procedure involving cuts based on CVRP, the network flow formulation, and
the connectivity of the transportation system graph (Perboli et al., 2010). On the other hand, the
solution quality obtained by applying the math-heuristics is quite satisfactory (most of the initial
solutions found on Set 4 by the heuristics are slightly improved by the Branch & Cut).
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Table 8 Results of the Branch & Cut with heuristic initial solution: results on MIP model on
Set 2 and Set 3.

E-n22-k4-s6-17 2 417.07 417.07 0.00% E-n22-k4-s13-14 2 526.10 526.10 0.00%
E-n22-k4-s8-14 2 384.96 384.95 0.00% E-n22-k4-s13-16 2 521.04 521.04 0.00%
E-n22-k4-s9-19 2 470.60 470.60 0.00% E-n22-k4-s13-17 2 496.34 496.34 0.00%
E-n22-k4-s10-14 2 371.50 371.50 0.00% E-n22-k4-s14-19 2 498.81 498.81 0.00%
E-n22-k4-s11-12 2 427.22 427.22 0.00% E-n22-k4-s17-19 2 512.80 512.80 0.00%
E-n22-k4-s12-16 2 392.78 392.78 0.00% E-n22-k4-s19-21 2 520.41 520.41 0.00%
E-n33-k4-s1-9 2 730.16 730.16 0.00% E-n33-k4-s16-22 2 672.17 634.09 6.01%
E-n33-k4-s2-13 2 714.64 703.87 1.53% E-n33-k4-s16-24 2 668.81 625.73 6.88%
E-n33-k4-s3-17 2 707.49 695.77 1.69% E-n33-k4-s19-26 2 680.89 648.20 5.04%
E-n33-k4-s4-5 2 785.33 767.43 2.33% E-n33-k4-s22-26 2 680.89 652.12 4.41%
E-n33-k4-s7-25 2 756.85 744.40 1.67% E-n33-k4-s24-28 2 672.60 633.03 6.25%
E-n33-k4-s14-22 2 779.05 766.77 1.60% E-n33-k4-s25-28 2 653.67 615.87 6.14%
E-n51-k5-s2-17 2 597.49 582.21 2.63% E-n51-k5-s12-18 2 692.56 662.16 4.59%
E-n51-k5-s4-46 2 530.76 520.96 1.88% E-n51-k5-s12-41 2 716.58 646.50 10.84%
E-n51-k5-s6-12 2 554.81 531.83 4.32% E-n51-k5-s12-43 2 712.48 690.28 3.22%
E-n51-k5-s11-19 2 581.64 559.85 3.89% E-n51-k5-s39-41 2 729.94 682.98 6.88%
E-n51-k5-s27-47 2 538.20 527.32 2.06% E-n51-k5-s40-41 2 732.42 678.19 8.00%
E-n51-k5-s32-37 2 552.28 548.31 0.72% E-n51-k5-s40-43 2 757.30 709.46 6.74%
E-n51-k5-s2-4-17-46 4 541.07 515.67 4.93% Mean 4.17%
E-n51-k5-s6-12-32-37 4 538.82 512.81 5.07%

Best 
Bound

GapGap Instance SatellitesInstance Satellites Final 
Solution

Best 
Bound

Final 
Solution

E n51 k5 s6 12 32 37 4 538.82 512.81 5.07%
E-n51-k5-s11-19-27-47 4 531.12 519.59 2.22%
Mean 2.03%

(b) - Set 3(a) - Set 2

Table 9 Results of the Branch & Cut with heuristic initial solution: results on
MIP model on Set 4.

Cuts

Instance50-s5-37.dat 5 1259.56 4615 1731.94 1587.95 1587.95 1405.64 12.97%
Instance50-s5-38.dat 5 972.86 3296 1434.98 1186.02 1185.58 1076.48 10.14%
Instance50-s5-39.dat 5 1239.73 4685 1591.48 1525.24 1525.24 1421.58 7.29%
Instance50 s5 40 dat 5 970 86 3418 1358 79 1226 79 1199 42 1068 57 12 25%

Best 
Bound

First Bound
No Cuts

GapInstance Satellites Diving SC Final 
Solution

Instance50-s5-40.dat 5 970.86 3418 1358.79 1226.79 1199.42 1068.57 12.25%
Instance50-s5-41.dat 5 1356.84 2863 1726.04 1726.04 1703.03 1541.88 10.45%
Instance50-s5-42.dat 5 1000.03 3034 1345.51 1324.38 1223.09 1097.89 11.40%
Instance50-s5-43.dat 5 1124.13 4532 1607.46 1453.11 1453.11 1283.21 13.24%
Instance50-s5-44.dat 5 843.92 3024 1394.63 1063.64 1039.39 935.42 11.12%
Instance50-s5-45.dat 5 1118.27 3906 1624.3 1497.91 1484.64 1299.06 14.29%Instance50 s5 45.dat 5 1118.27 3906 1624.3 1497.91 1484.64 1299.06 14.29%
Instance50-s5-46.dat 5 853.99 1193 1244.13 1173.12 1095.69 930.53 17.75%
Instance50-s5-47.dat 5 1230.77 3880 1627.83 1620.7 1598.88 1444.15 10.71%
Instance50-s5-48.dat 5 893.37 3039 1209.89 1122.18 1096.96 998.69 9.84%
Instance50-s5-49.dat 5 1196.22 7207 1610.03 1508.87 1479.16 1339.67 10.41%
Instance50-s5-50.dat 5 879.14 2096 1392.03 1170.89 1090.60 968.47 12.61%

0 1 111 00 1 3 1 9 3 1 6 12 1 36 30 1310 90 9 %Instance50-s5-51.dat 5 1117.00 5143 1495.43 1456.12 1436.30 1310.90 9.57%
Instance50-s5-52.dat 5 895.08 3314 1185.05 1191.93 1128.33 1003.03 12.49%
Instance50-s5-53.dat 5 1240.22 4795 1611.89 1569.59 1552.75 1450.87 7.02%
Instance50-s5-54.dat 5 928.90 1898 1189.14 1189.14 1135.39 1034.88 9.71%
Mean 11.29%

8. Conclusions
In this paper, we introduced a new family of VRP models, the Two-Echelon VRP. In particular, we

considered the Two-Echelon Capacitated VRP, giving a MIP formulation and valid inequalities for

it. The model and the inequalities have been tested on new benchmarks derived from the CVRP

instances according to the literature, showing a good behavior of the model for small and medium

sized instances. Moreover, two different heuristics based on the MIP model have been presented.

Both heuristics present good performance both from the computational and the solution quality

point of view.

Presently, new clustering-based heuristics for the problem have been developed (Crainic et al.,

2008), as well as larger instance sets of up to 200 customers and 7 satellites (Crainic et al., 2010).

Moreover, in Crainic et al., 2010 the reader can find an in-depth analysis of the impact of customer

and satellite realistic distributions, as well as a comparison of the standard VRP approach with

the 2E-CVRP.
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Gonzáles Feliu for his contribution to a previous version of the paper.

This project has been partially supported by the Ministero dell’Istruzione, Università e Ricerca
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