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Phonons in conventional and auxetic honeycomb lattices

A. Sparavigna
Dipartimento di Fisica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

�Received 2 July 2007; revised manuscript received 14 August 2007; published 12 October 2007�

The modes of vibrations of conventional and auxetic honeycomb structures are studied by means of models
where lattices are represented by planar networks, in which rodlike particles are linked by strings. In these
structures, the translational and rotational degrees of freedom are strongly coupled. The auxetic network is
obtained by modifying a model proposed by Evans et al. in 1991 �Nature �London� 353, 124 �1991��, and is
used to explain the negative Poisson’s ratio of auxetic materials. Auxetics are materials with a negative Poisson
elastic parameter, meaning that they have a lateral extension, instead of shrinking, when they are stretched. The
phonon dispersions obtained in the case of the auxetic model are compared with those of a conventional
honeycomb network, where rigid rodlike particles are inserted. The behavior of the rotational dispersions can
explain some experimental observations on the properties of sound propagation in the auxetic materials.

DOI: 10.1103/PhysRevB.76.134302 PACS number�s�: 63.20.�e

I. INTRODUCTION

Auxetic materials are characterized by a Poisson ratio,
that is, the relative transverse strain divided by relative axial
strain, which turns out to be negative.1 This property means
that auxetic materials exhibit lateral extension, instead of
shrinking, when they are stretched. Although a negative
Poisson ratio is not forbidden by thermodynamics, this prop-
erty is not usually acknowledged in the behavior of elastic or
crystalline materials, but it is, in fact, displayed by many
elemental materials2 and several man-made compounds,
from the molecular scale up to the macroscopic scale, cov-
ering the major classes of materials, such as metals, ceram-
ics, polymers, and composites.3,4 Foams with auxetic struc-
tures built with polymeric materials are well known,5–7 and
are used in the production of seals, gaskets, energy absorp-
tion components, and sound-proofing materials. Filter and
drug-release materials will soon be produced, inserting aux-
etic fibers in technical textiles.8 Natural auxetic materials and
structures are occurring in biological systems, in the skin and
bone tissues, and in crystalline membranes, as Bowick et al.
showed recently.9 Let us remember just one example of natu-
ral crystalline membrane, the cytoskeleton of the red blood
cells,10,11 which is a fishnetlike network of triangular
plaquettes formed by proteins.

A two-dimensional model for an auxetic mechanical sys-
tem was proposed in Ref. 1 and is shown in Fig. 1. In this
figure, the auxetic honeycomb structure is on the right, in
comparison with the conventional honeycomb lattice on the
left. This auxetic model was introduced to explain in an easy
way the behavior of a material with a negative Poisson ratio.
The structure is a reentrant honeycomb network, where the
links L� are rigid rods: we can immediately observe that
when the network is stretched parallel to L�, the structure
expands instead of shrinking in the transverse direction.

We can imagine an auxetic behavior in models where
rigid parts are included, preventing the collapse of the struc-
ture in the direction perpendicular to the direction of stretch.
To study the vibrations of such structures, the interactions
among rigid extended masses, for instance, rodlike particles,
can be represented by elastic fibers or strings. An auxetic

two-dimensional membrane will then be a network of fibers
linking rodlike particles, where the junctions between fibers
and particles are the sites of a two-dimensional lattice. We
will discuss both conventional and auxetic honeycomb lat-
tices with rodlike particles. These structures are very impor-
tant in understanding the behavior of translational and rota-
tional modes, which are equivalent in such lattices to the
acoustic and optical modes of crystalline materials.

Moreover, experiments show that auxetic structures ab-
sorb noise and vibrations more efficiently than nonauxetic
equivalents:6,12 an explanation for this behavior can be found
in the presence of rigid and massive units, with low energy
rotational modes, the optical modes in such lattices.13 The
existence of complete band gaps in the vibration spectra,
that is, of intervals of frequencies where no propagating
phonons exist, can be supposed too. In crystalline lattices,
for instance, optical branches stand separate from acoustic
branches in all the directions of phonon propagation.14,15

Three-dimensional elastic media can show band gaps
too,16,17 and for this reason, they are called “phononic crys-
tals,” as the photonic crystals display band gaps for light
waves.18,19

The approach we follow in calculations was recently pro-
posed by Martinsson and Movchan;20 these authors studied

FIG. 1. The conventional and auxetic honeycomb structures.
The mechanical stability requires the application of external stresses
in the horizontal and vertical directions in the conventional lattice
and at least a vertical stretching stress in the auxetic lattice. For the
auxetic lattice, the Poisson coefficient is negative: when the lattice
is stretched, it expands instead of shrinking. L� is the length of rigid
rods in the auxetic mesh.
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the phonon dispersions for membranelike lattices with sev-
eral structures but pointlike particles, finding phononic band
gaps.

II. FLEXIBLE AND RIGID PARTS IN THE MESH

To understand the behavior of a mechanical two-
dimensional mesh including rigid extended particles, let us
start from a one-dimensional model, a chain composed of
rigid rodlike particles and string linking the particles, where
L� is the length of the rigid masses M, and L the length of the
strings between masses �see Fig. 2�. I will be the moment of
inertia. The chain vibrations that we are considering are
those perpendicular to the chain. In fact, there are two pos-
sible directions perpendicular to the chain, but we consider
only one direction because they are degenerate. The unit
cells of the lattice have positions given by means of the
primitive lattice vector �L+L��. For simplicity, L=L�. In the
chain, the two points within the basis are denoted by 0 and B.
The positions of the lattice sites �0� are given with indices
i , i+1, i+2, . . .. The mass per unit length of the rigid rod is
��. Ropes have a linear density �. Due to the geometry, To is
the equilibrium axial force in each string of the chain.

Let us investigate the harmonic vibrations of the chain
supposed to be infinite with displacements of lines and nodes
0, B in the transversal direction. Let us indicate with b the
two possible determinations 0 and B. ui,b is the displacement
from the equilibrium position of one of the two nodes in the
basis at the lattice reticular position i. With wji,B0, it is called
the displacement of a string connecting a node i in the lattice
with the nearest neighbor node j. A linear coordinate �
ranges from zero to the length Lji,B0 of the string. For strings,
the equation in the case of transverse vibrations is the usual
wave equation, with a phase velocity v=�To /�. Solving the
equation of motion for the strings, we have20

wji,B0��� = ui,B cos���� +
uj,0 − ui,B cos��L�

sin��L�
sin���� �1�

and, in the case of a time-harmonic oscillation of frequency
�, �=� /v. The dynamic force that the string exerts at node
0 is equal to

f = �− To
dwji,B0

d�
�

�=0
= To

�

�

ui,B cos��L� − ui,0

sin��L�
. �2�

Assuming the rodlike particles in the chain as rigid masses,
we write the equations for the motion of the center of mass
and for rotation around it in a plane perpendicular to the
chain. In the case of small displacements, equations are the
following:

d2�ui,B + ui,0�
dt2 =

To

M
�dwij,B0

d�
+

dwij�,B0

d�
� , �3�

d2�ui,B − ui,0�
dt2 =

L2To

2I
�dwij,B0

d�
−

dwij�,B0

d�
� −

LTo

2I
�ui,B − ui,0� ,

�4�

where index j denotes the lattice point connected with site i
on the right, and index j� the site connected with i on the
left of the rigid particle. Let us remember that
dwij,B0 /d� , dwij�,B0 /d� are proportional to the force compo-
nents perpendicular to the chain, as from Eq. �2�, and then
pulling the rigid body. The force component parallel to the
chain is considered equal to To. In Eq. �4�, the first contribu-
tion on the right-hand side �rhs� represents the torque of the
dynamic forces f on the rigid mass; the second contribution
represents the torque of axial tension To on the rodlike par-
ticle. In Fig. 2, a diagram shows forces on the rodlike par-
ticle. Figure 2�b� illustrates how the axial forces produce a
torque on the rodlike mass when the mass is not in equilib-
rium position.

If we are looking for Bloch waves with wave vector k, it
is possible to write for each lattice site:

ui,0 = u0 exp�i�t − 2ikL�, ui,B = uB exp�i�t − 2ikL� �5�

and then the dispersion relations for the frequency � can be
obtained from the dynamic equations �3� and �4� of the rods.
To study translational and rotational modes, a very useful
approach is the use of the Bogoliubov transformation. The
Bolgoliubov rotation of u0 ,uB is the following:

u0 = � + i�, uB = � − i� �6�

and then we have the translation and rotation degrees of free-
dom explicitly coupled in a system of two equations:

− M�2� =
To

�S
	���cos�kL� − C� + �� sin�kL�
 ,

− 2
I

L2�2� =
To

�S
	− ���cos�kL� + C� − S� + �� sin�kL�
 ,

�7�

where C=cos��L� and S=sin��L�. For sin��L�=0, for any �
standing wave, modes exist corresponding to the internal vi-
bration of the strings with no associated nodal displacements.
Let us consider the reduced frequency 	=� /�o, where �o
=To /Mv. The reduced dispersion relations of the chain as
functions of the wave number k are shown in Fig. 3 for
different values of ratio I /ML2. This ratio can be hardly
greater than 1, but, to understand the behavior of dispersion

FIG. 2. The chain with rigid particles in the upper part �L is the
length of rods and strings�. �a� The dynamic forces acting on the
rigid particle and �b� the axial tension of ropes.
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relations, curves for high values are reproduced too. It is
interesting to note the existence of a gap in the phonon dis-
persions between acoustic and optical modes.

III. HONEYCOMB LATTICES

A two-dimensional model will be a planar membrane, for
instance, with a honeycomb structure, is shown in Fig. 4 on
the left: the lattice is described by means of a convenient set
of primitive vectors �l1 , l2�, giving the lattice reticular posi-
tions. In the case of the honeycomb structure, the lattice has
a basis with two nodes in the unit cell.

A mechanical model of the lattice can be made with rigid
rodlike particles, with length L and mass per unit length ��,
and ropes with length L and linear density �. The honeycomb
lattice shown in Fig. 4 on the left has rigid connections be-
tween sites, substituting all the bonds parallel to one of the
lattice directions. The lattice has one rod per unit cell, and

the structure is centered orthorhombic with space group
C2mm.

It is straightforward to investigate the harmonic vibrations
of this two-dimensional honeycomb mesh if the mesh is sup-
posed to be infinite with displacements of lines and nodes in
the direction perpendicular to its plane. As in the case of the
one-dimensional lattice, ui,b is the displacement of one of the
nodes in the lattice basis from the equilibrium position. The
same is true for wji,bb�, which is the displacement of a string
linking a node in the lattice cell with the nearest neighbor
node. If we are looking for Bloch waves with wave vector k,
it is possible to write the displacements as

ui,0 = u0 exp�i�t − ik · l1�, ui,B = uB exp�i�t − ik · l2� .

�8�

If the basis has two sites, the dispersion relations for the
frequency � are obtained solving the following equations of
rod dynamics:

− �2�ui,B + ui,0� =
To

M
�
j,j�

�dwij,B0

d�
+

dwij�,0B

d�
� ,

− �2�ui,B − ui,0� =
L2To

2I
�
j,j�

�dwij,B0

d�
−

dwij�,0B

d�
�

−
L

2I��
j,j�

To,���ui,B − ui,0� , �9�

where j , j� are the indices of nearest neighbor sites, as in the
one-dimensional chain. The second term on the rhs of the
second equation contains the component To,� of forces, par-
allel to the axial direction of the rod in its equilibrium con-
figuration. For the honeycomb cell, To,�=To cos�
 /3�.

In the case of the honeycomb lattice, there are two forces
applied to each end of the rod, 0 or B: the contribution of the
components of these two forces is positive, giving then a
resulting torque which stabilizes the rodlike oscillators.
Equation �9� becomes

− �2�ui,B + ui,0� =
To

M
�
j,j�

�dwij,B0

d�
+

dwij�,0B

d�
� ,

− �2�ui,B − ui,0� =
L2To

2I
�
j,j�

�dwij,B0

d�
−

dwij�,0B

d�
�

−
LTo

2I
�ui,B − ui,0� . �10�

The dispersion relations for the frequency � can be easily
obtained by solving system �10� or the following equations,
rewritten after the Bogoliubov rotation:

− M�2� =
To

vS
	���cos�k · l1� + cos�k · l2� − C�

+ ���sin�k · l1� + sin�k · l2��
 ,

FIG. 3. Reduced frequency of phonon dispersions as a function
of the wavelength for different values of ratio I /ML2. Some values
of the ratio are reported near the corresponding curves. Note the
behavior of the optical mode for high values of I /ML2.

FIG. 4. The conventional honeycomb structure on the left and
the auxetic mesh on the right, with the primitive lattice points
�black dots�, the points of the basis �white dots�, and a set of two
lattice vectors convenient for calculations. Thick lines represent the
rigid rodlike particles; thin lines represent the ropes. The three di-
rections OX, OC, and OY are displayed, along which dispersion
relations are evaluated.
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− 2
I

L2�2� =
To

vS
− ���cos�k · l1� + cos�k · l2� + C�

− S� cos�


3
� + ���sin�k · l1� + sin�k · l2��� ,

�11�

where C=cos��L� and S=sin��L�. The reduced frequency is
	=� /�o �where �o=To /Mv�: the reduced frequency can be
evaluated for different values of the ratio I /ML2 as a func-
tion of the wave vector k, in the directions OX, OC, and OY,
where O is the center of the Brillouin zone. The lower bands
are shown in Fig. 5.

IV. AUXETIC REENTRANT HONEYCOMB LATTICES

As told in the Introduction, a two-dimensional model for
an auxetic mechanical system is that proposed in Ref. 4 and
shown on the right of Fig. 1. The cell is a reentrant honey-
comb cell and if it is composed of rigid units of length L and
L�, when the lattice is stretched, it expands instead of shrink-
ing. A model composed of ropes with length L and rodlike
particles L�, as in the case of the conventional honeycomb
structure, is not suitable for discussing the vibrations, as we
immediately explain.

Let us actually consider a two-dimensional honeycomb
lattice where, in the honeycomb cell, a rigid unit L� is in-
serted as shown on the right part of Fig. 4. As in the case of
the conventional honeycomb lattice, there is one rod per unit
cell and the structure is centered orthorhombic with symme-
try C2mm. The mechanical stability is ensured by external
stresses: in the case of the auxetic honeycomb lattice, an
additional horizontal compressive stress may be needed to

ascertain the proportion of the lattice parameters characteris-
tic of the structure.

On points 0 or B of the rigid masses, three ropes and three
forces are acting. A force is parallel to the rod, then To,�

=To; the other two have components To,� =To cos�2
 /3�, but
are negative with respect to the rod axis. If only these two
forces were present in the model, the resulting torque in Eq.
�9� would be destabilizing the acoustic oscillations of the
membrane, in the case of oscillations with the wave vector k
in the X direction.

Moreover, in the model in Fig. 4 on the right, the strings
parallel to the rigid masses can have a different tension TX

=�To. These ropes have a sound speed v2=��To /� different
from the sound speed v1=�To /� of the other ropes. The re-
duced frequency we use in the calculations is 	=� /�o, with
�o=To /Mv1. Equation �9� must be rewritten in the following
form:

− �2�ui,B + ui,0� =
To

M
�
j,j�

�dwij,B0

d�
+

dwij�,0B

d�
�

+
�To

M
�
k,k�

�dwik,B0

d�
+

dwik�,0B

d�
� ,

− �2�ui,B − ui,0�

=
L�2To

2I
�
j,j�

�dwij,B0

d�
−

dwij�,0B

d�
� +

L�To

2I
�ui,B − ui,0�

+
L�2�To

2I
�
k,k�

�dwik,B0

d�
−

dwik�,0B

d�
� −

L��To

2I
�ui,B − ui,0� ,

�12�

where indices j , j� are used when sites are connected by
ropes with tension To, and k ,k� when sites are connected
with ropes with tension TX=�To. Note the different signs
from Eq. �10�. The approach to solve system �12� with the
Bogoliubov transformation can be proposed too. As a result,
we have the following equations:

− M
F

To
�2� = ���c1 + c2 − C + �

F

F�
�c3 − C���

+ ���s1 + s2 + �
F

F�
s3� ,

−
I

L�2

F

To
�2� = − ���c1 + c2 + C + �

F

F�
�c3 + C���

+
F

L�
� cos




3
− �

F

L�
� + ���s1 + s2 + �

F

F�
s3� ,

�13�

where C=cos��1L�, S=sin��1L�, C�=cos��2L�, S�
=sin��2L�, F=v1S, F�=v2S�, C�=cos��2L�, �1=� /v1, and
�2=� /v2. The coefficients containing the wave number are
c1=cos�k · l1�, s1=sin�k · l1�, c2=cos�k · l2�, s2=cos�k · l2�, c3

=cos�k · �l1+ l2��, and s3=sin�k · �l1+ l2��.

FIG. 5. Reduced phonon dispersions for the conventional hon-
eycomb lattice in the case of different values of ratio I /ML2. Some
values of the ratio are reported near the corresponding curves. For
the Y direction, the acoustic mode does not change when I /ML2

changes. In fact, the rodlike masses are viewed by the waves in this
direction as pointlike masses.
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Figure 6 shows the reduced phonon dispersions of the
auxetic honeycomb lattice for values of ratio I /ML�2 ranging
from 0.1 to 10, and for �=1. As we did when studying the
chain, we consider also high values of � to show the behavior
of dispersions. In both models, conventional and auxetic
honeycomb, the rodlike masses are viewed by the waves in
the lattice Y direction as pointlike ones.

When parameter � is increased, we see a complete band
gap between acoustic and rotational modes, and this is
shown in Fig. 7 in the case of I /ML�2=1. The threshold
value is �th=5 for I /ML�2=1. Reducing the value of ratio
I /ML�2, the threshold value is lower, �=1.7 for I /ML�2

=0.1. The increase of tension TX produces a growth of rota-
tional frequencies, while, in the Y direction, the acoustic
branch remains almost unchanged. Let us note that the prop-
erty of being auxetic is not, by itself, responsible for the
absolute gap shown in Fig. 7. An analogous effect can be
achieved by introducing stretched horizontal strings or

springs between the rods in the conventional honeycomb
structure. The stretched string would then exert a force, in-
creasing the frequency of the rotational mode.

In honeycomb lattices, a complete band gap between
translational �acoustic� and rotational �optical� modes can
then be observed if the axial tension TX of strings aligned in
the X direction is increased with respect to the axial tension
To over a threshold value depending on ratio I /ML�2. On the
contrary, it is impossible to obtain a gap in the Y direction
lowering the value of I /ML�2: acoustic and rotational
branches are always crossed even if this ratio goes to zero.

The behavior of the conventional honeycomb model
shown in Fig. 4 on the left is more or less the same, but the
rotational frequencies are higher by about 15% if compared
with those in Fig. 6 of the auxetic honeycomb model. This is
in agreement with experiments showing that auxetic struc-
tures absorb vibrations more efficiently than nonauxetic
equivalents,12 due to the presence of lower rotational ener-
gies. It would be better to estimate the Poisson ratio of the
meshes, for a proper comparison of dispersions, but the es-
timation requires a study of in-plane strains of membranes,
that is, of in-plane vibrations not discussed in this paper.

V. AUXETIC MEMBRANES

We have seen that by adjusting the lattice parameters and
interactions, that is, by changing elastic properties or densi-
ties of ropes, it is possible to change deeply the phonon
dispersions of the mesh. Of course, different and more com-
plex auxetics must be proposed and studied to understand the
behavior of these structures in an exhaustive way. If we con-
sider as “auxeticlike” two-dimensional structures those struc-
tures which do not collapse when stretched along one of the
in-plane directions, several membranes can be proposed, but
it is necessary to insert some rigid parts in their meshes.

FIG. 8. The phonon dispersions for the square lattice depicted in
the upper part of the figure. If rods parallel to the X direction have
a mass different from that possessed by the rods parallel to the Y
direction, a complete band gap appears �mass ratio equal to 1 for
curve �a�, and equal to 2 for curve �b��.

FIG. 6. Reduced phonon dispersions for the auxetic lattice for
different values of the ratio I /ML�2 �parameter �=1�. Some values
of the ratio are reported near the corresponding curves. For the Y
direction, the acoustic mode does not change when the ratio I /ML�2

changes.

FIG. 7. Reduced phonon dispersions of the auxetic lattice with
ratio I /ML�2=1 for different values of parameter �. Values of the
parameter are reported near the corresponding curves. In the Y di-
rection, if ��5, acoustic and optical modes are not crossed. Let us
note the softening of the acoustic phonon with the decreasing ten-
sion parameter �.
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Let us consider, for instance, the square lattice in the up-
per part of Fig. 8. The thick lines represent the rodlike par-
ticles, which have different orientations in the plane of the
lattice. In this case, the lattice basis contains two rigid rods.
In the lower part of the figure, the phonon dispersions are
shown. If rod masses in the lattice basis are different, a com-
plete band gap appears, in agreement with the behavior of
crystalline systems and mechanical systems with pointlike
masses proposed in Ref. 20.

More complex two-dimensional structures can be pro-
posed, for instance, the structure in Ref. 21 or the membrane

in Ref. 13. In this reference, the in-plane vibrations of rect-
angular rigid particles connected by harmonic elements are
discussed. Of course, different approaches to the problem of
vibrations of auxetic structures are possible: for instance, a
solution based on finite elements to solve a macroscopic me-
chanical system.22 These studies are, in fact, very important
for the development and applications of auxetics. The aim of
this paper is instead the investigation of the role played by
rodlike particles in the lattice vibrations and the creation of
auxetic counterparts, inserting rigid particles in lattices.
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