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Abstract The paper presents a passive elasto-magnetic suspension based on rare-earth permanent
magnets: the dynamical system is described with theoretical and numerical nonlinear models, whose
results are validated through experimental comparison. The goal is to minimize the dependence on
mass of the natural frequency of a single degree of freedom system. For a system with variable
mass, static configuration and dynamical behaviour are compared for classic linear elastic systems,
for purely magnetic suspensions and for a combination of the two. In particular the dynamics
of the magneto-mechanic interaction is predicted by use of nonlinear and linearised models and
experimentally observed through a suitable single degree of freedom test rig.
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1 Introduction

It is well known that in traditional single degree of freedom (sdof) elastic systems the natural
frequency is inversely proportional to the square root of mass. For many applications, such as
for suspensions, it may be interesting to develop passive systems whose natural frequency is inde-
pendent of mass. In the automotive field some examples can be found where it is interesting to
have a frequency that does not depend on the load (Sternberg, 1976; Bunne and Jable, 1996); the
authors suggest the use of air suspensions to achieve this goal. Fujita et al. (1997) propose to use
passive permanent magnets in order to improve the dynamic performances of passenger seats. In
fact, whereas for a single degree of freedom system with linear elastic springs a relevant decrease
of resonance with respect to a mass increment is evinced, a magnetic spring allows to obtain the
opposite effect, due to the nonlinear nature of the magnetic repulsive force.

The original contribution of this research lays in the idea of coupling traditional springs with
magnets: the aim is to minimize the dependence on mass of the natural frequency of a sdof system
with variable mass, thus obtaining an adaptive passive suspension, practically resonance-invariant
with respect to mass changes.

The need for passive magnetic forces suitable for the purpose implies the usage of rare-earth per-
manent magnets, sintered from Samarium-Cobalt or Neodymium-Iron-Boron; nowadays these ma-
terials permit to reach the highest residual magnetic induction and hysteresis energy (Coey, 2002)
and are applied in passive mechanical field such as viscous-type dissipative elements in magnetic
dampers and eddy current brakes (Nagaya et al., 1984), or as nonlinear magneto-elastic springs in
magnetic bearings, suspensions and levitation devices (Yonnet, 1978). Permanent magnets allow
enhancing the characteristics of reliability, thermal stability and proportionality of viscous damp-
ing elements, practically in absence of mechanical friction (Nagaraj, 1988); moreover stiffening and
damping properties may be easily modified by varying the air-gap between the magnets (Bonisoli
and Vigliani, 2003).

The paper presents a theoretical model that describes the dynamic behaviour of a sdof system
equipped with a traditional linear elastic spring coupled to a magnetic spring. Magnetic interactions
are estimated by means of non linear empirical formulas derived through a magnetic model based
on the analogy of the equivalent currents method (Nagaraj, 1988; Bonisoli and Vigliani, 2003).

The dynamics of magneto-mechanics interaction is analysed by use of nonlinear and linearised
models. Thus, static configuration and dynamic behaviour are evaluated for classic linear elastic
systems, for purely magnetic suspensions and for a combination of the two. State space and
frequency response are investigated respectively for non-zero initial conditions and by applying
sweep excitations in order to underline the influence of nonlinearities on the system response. By
using the linearised system, the frequency response is computed for different values of geometrical
and inertial properties of the system. Then the minimization of the resonance variability of the
model is discussed.

Theoretical and numerical results are then verified and compared with the experimental data
obtained from a suitable sdof test rig in order to verify the attainment of the desired goal of
minimising the natural frequency variation with respect to mass changes.

2 Magneto-elastic adaptive suspension

The magneto-elastic suspension shown in Fig.1 is a sdof system with the elastic element consisting
in a traditional linear spring mounted in parallel with a nonlinear magnetic spring. Its dynamic
behaviour is described by the following nonlinear equation:

mẍ+ k (x− l0) + Fm +mg = 0 (1)

where x is the position of the suspended mass, k is the linear spring stiffness, l0 is the spring
rest length, g = 9.81 m/s

2
is the gravity constant, m is the mass of the system and the magnetic

repulsive force Fm is modelled through an empirical formula, having form

Fm = − A

(x+B)
n , (2)

where parameters A, B and n may be evaluated through magnetic models based on equivalent
currents method (Nagaraj, 1988; Bonisoli and Vigliani, 2003) or, alternatively, A, B may be exper-
imentally determined by a least square error approach and n is an integer, set equal to 3 (Bonisoli
and Vigliani, 2003).
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Figure 1: Model (left) and experimental set-up (right) of the elasto-magnetic suspension

The static equilibrium configuration xe can be easily determined:

xe = −B + n

√
A

mg
(1 + α) = l0 −

mg

k

α

1 + α
, (3)

where α is the non-dimensional elasto-magnetic ratio between the elastic force Fk and the
magnetic force Fm computed at the equilibrium position, i.e.:

α =
Fk

Fm
= −k (xe − l0) (xe +B)

n

A
. (4)

Hence, obviously, for α = +∞ the system has only a traditional elastic spring (A = 0), while for
α = 0 only a magnetic spring is present (k = 0). Positive values of α correspond to configurations
where the elastic spring is compressed (i.e. xe < l0), while negative values match the conditions in
which large magnetic repulsive forces lead the elastic spring to work in extension (i.e. xe > l0).

3 Nonlinear analysis

Eq.(1) is a nonlinear differential equation that can be studied by means of well-known nonlinear
analysis techniques (Guckenheimer and Holmes, 1990; Nayfeh and Mook, 1979). A qualitative
analysis highlights that the conservative mechanical system described in eq.(1) has potential energy
F (x):

F (x) =

∫
f(x) dx =

k

2
(x− l0)

2
+

1

n− 1

A

(xe +B)
n−1 +mg x+D (5)

where D is an integration constant. It is evident that, for all the values of the positive integer
n, in the range x ≥ 0 the potential energy F (x) has a minimum: therefore each level curve ẋ vs. x
of the phase diagram consists of a single closed trajectory surrounding the centre (corresponding
to the minimum of F (x), where the curve degenerates into a singular point). The stability analysis
also reveals that the system has only one stable (in the sense of Lyapunov) equilibrium point in

the field where physical solutions are acceptable (i.e. x ≥ 0); in fact, it holds df(x)
dx

∣∣∣
x=xe

> 0.

To test the system dynamic behaviour, let a harmonic oscillation be applied to the basis of the
model, i.e. the basis moves with law y = y0 cos(Ωt). Hence, the system dynamic equilibrium, in
presence of a dissipative term λ, is described by

ξ̈ + λξ̇ +
k

m
ξ − A

m (xe +B)
n

[(
ξ

xe +B
+ 1

)−n

− 1

]
= −ÿ, (6)

that can be studied with nonlinear analysis techniques. Feeny et al. (2001) analysed a similar
magneto-elastic system by means of the harmonic-balance method; instead the authors adopt
here a multiple scales nonlinear method (Nayfeh and Mook, 1979). To this aim, eq.(6) can be
approximated with:

ξ̈ + λξ̇ + a ξ + b ξ2 + c ξ3 = Ω2y0 cos (Ωt) , (7)
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where

a =
k

m
+

nA

m (xe +B)
n+1 , b = − n(n+ 1)A

2m (xe +B)
n+2 , c =

n(n+ 1)(n+ 2)A

6m (xe +B)
n+3 (8)

Higher order terms di, which obviously depend only on the magnetic effect, can be evaluated
through expression:

di = (−1)i−1

A

i−1∏
r=0

(n+ r)

i!m (xe +B)
n+i

, i > 1. (9)

The natural frequency of the nonlinear system described by eq.(7) is

ω =
√
a

(
1 +

9ac− 10b2

24a2
ε2ν2

)
+ o(ε3), (10)

thus proving its dependence on motion amplitude (parameters ε and ν depend on initial con-
ditions and on motion amplitude). Nonlinear analysis also allows to determine the presence of
superharmonic and subharmonic resonances and to investigate jump phenomena. In particular,
the conditions for jump to occur are given by the following relation between parameters a, b and
c:

p =
9ac− 10b2

24a2
=
n(n+ 1)(n+ 2)A

16 (xe +B)
n+3

k − n(2n− 1)A

3(n+ 2) (xe +B)
n+1

k +
nA

(xe +B)
n+1

. (11)

If parameter p is positive, then nonlinearities have a hardening effect; for negative values of p a
softening behaviour takes place, while a null value of p corresponds to the condition for which the
effects of quadratic and cubic nonlinearities cancel each other. In particular, if only the traditional
elastic spring is present (α→ +∞, A = 0), parameter p is thoroughly null, while a purely magnetic
system presents a softening behaviour for n > 1/2.

For the elasto-magnetic system parameter p does not possess a constant sign, as shown in Fig.2
(plotted in the case of k = 2098 N/m for the different values of n found in the literature), hence
proving a complex dynamical behaviour. For little values of the air gap, p is negative because
α ∼= 0 and the nonlinear system shows softening characteristics; conversely, for large air gaps,
p ∼= 0, because for α → +∞ the system magnetic nonlinearities play a very poor role and the
system behaviour is almost linear. In the intermediate range, three regions can be identified: a
first one where parameter p shows a positive maximum, corresponding to a hardening behaviour;
a second region where p is negative (softening system); finally, a third region where the quadratic
and cubic terms of nonlinearities approximately annihilate each other (p ∼= 0), thus leading to a
linear behaviour. It is worth noting that while the qualitative nonlinear behaviour of the forces
does not depend on the value of n, yet both the value xe at which the hardening - softening passage
takes place and the maximum of parameter p are influenced by the value of n.

Figure 2: Nonlinear parameter p vs. xe Figure 3: System free response from non-zero
initial conditions
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Due to the presence of quadratic and cubic nonlinearities, the dynamic system shows superhar-
monic resonances taking place at twice and three times the first natural frequency. Moreover the
quadratic term b is responsible for the drift ξd of the centre of the motion, showing that oscillations
are not centred in the stable equilibrium point.

Fig.3 shows the system free response from non-zero initial conditions in the three cases under
analysis (purely elastic, purely magnetic and a combination of the two), whose parameters are set
to possess the same linearised natural frequency fn = ωn/2π = 4.84 Hz, in presence of a viscous
damping, that is set equal to the value experimentally determined. For an initial displacement
ξ = 20 mm, it is clearly visible the non-symmetric behaviour in the elasto-magnetic and purely
magnetic system: this effect decreases with the oscillations amplitude, thus proving that nonlinear-
ities depend on motion amplitude. In the given configuration, the elasto-magnetic system presents
a hardening behaviour with natural frequency larger than that shown by the traditional elastic
system, while the purely magnetic system has a softening behaviour. According to eq.(10), the
analytical model predicts respectively a 6% increase of frequency for the hardening system and a
11% decrease for the softening case.

Figure 4: Comparison of elastic characteristics Figure 5: Variability of the natural frequency
with mass

Fig.4 shows the elastic characteristics respectively for linear elastic, magneto-elastic and purely
magnetic system: it is evident the hypothesis under which the models are compared, i.e. that the
system presents the same tangent in the static equilibrium configuration (the natural frequency is
the same for all the linearised models). When the magneto-elastic characteristic is approximated
through a polynomial expansion, some difficulties arise in describing the softening effects associated
with small air gaps. In fact, odd Taylor’s expansions (third or fifth order) can describe only
locally the softening behaviour, because the curves become hardening for large displacement; on
the contrary, even expansions (fourth or, even worse, second order) are stable only locally. For
hardening nonlinear systems, however, third and fifth order expansions give satisfactory results in
matching the non symmetric behaviour.

4 Linearised analysis

When studying the dynamics of the system in the neighbourhood of the static equilibrium position
xe, equation (1) can be linearised; thus its natural frequency ωn can be expressed as a function of
the characteristics of both magnetic and elastic springs:

ωn =

√
k

m
+

nA

m (x+B)
n+1 =

√
k

m
+
nA

m

[
A

mg
(1 + α)

]−n+1
n

. (12)

It is worth noting that the presence of an elastic spring alone obviously implies ωn ∝ 1/
√
m,

while a system equipped with only a magnetic spring is characterised by an opposite behaviour,
its natural frequency being directly proportional to a function of the system mass; in particular,
it holds: ωn ∝ 2n

√
m, since a change in the system mass is compensated by the strongly nonlinear

magnetic force, whose slope increases with smaller air gap between permanent magnets.
Hence, through a suitable setting of the elastic and magnetic springs, it is possible to design

an adaptive suspension for which the linearised system natural frequency variability with mass
is minimized (solid line in Fig.5). Moreover, the plot in Fig.5 shows that mass changes equal to
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±50% lead to natural frequency variations of +5%, while for a system equipped only with elastic
springs the frequency changes would be in the range −20%÷+40%.

Figure 6: Transmissibility of diffetrent models Figure 7: System free response for the elasto-
magnetic suspension

Let now the system undergo vibrations caused by a harmonic oscillation y = y0 cos(Ωt); then,
the non-dimensional transmissibility of the linearised model is

T (Ω) =
ξ0
y0

=
1 +  2ζ

Ω

ωn

1− Ω2

ω2
n

+  2ζ
Ω

ωn

, (13)

that is plotted in Fig.6: it is evident that the system with elasto-magnetic springs behaves
like a passive adaptive suspension, practically independent on mass changes. The plots refer to
the system used for experimental comparison, with design frequency f?n = 5 Hz (m? = 8.15 kg,
A = 1.43 ·10−3 Nm3, B = 19.7 mm, n = 3, k = 2098 N/m, l0 = 19 mm, x?e ≈ 10 mm). Three plots
for each kind of suspension (elastic, magnetic and elasto-magnetic) are represented, for different
values of the mass, i.e.: 0.5 m?, m?, 1.5 m? (in the elasto-magnetic case, the plots are evaluated
with α? = 0.348).

5 Experimental comparison

Numerical results are validated by means of an experimental rig (Fig.1) devoted to study the
system frequency response and transmissibility. The test bench is a sdof system constituted of
three parallel plates: an upper plexiglass plate free to move in a vertical plane along four cylindrical
bars and in which permanent magnets can be placed; a lower aluminium plate that can be fixed to
a reference plane or to a shaker; an intermediate smaller plexiglass plate used as housing for the
opposite permanent magnets and whose vertical position can be adjusted by means of a nut-screw
in order to obtain the desired air gap between the magnets. The upper plate can be sustained
by four traditional springs, by two (or more) magnets in repulsion, or by a combination of the
two systems. The bench also permits to vary the air gap between the magnets, thus allowing to
vary the magnetic contribution to the total elastic force. It is worth noting that the materials of
the bench are chosen to prevent magnetic interferences to influence the system dynamics: in fact,
aluminium plates, that are sensitive to magnetic fields, are positioned at a distance large enough
to avoid magnetic interactions. The bench is used to test the dynamic behaviour in the range 2-16
Hz: the signals from two accelerometers (fixed to the lower and upper plates) and from a resistive
displacement transducer, measuring the relative displacement between the two free parallel plates,
are used to build the transmissibility response.

Different configurations are tested (with one or two magnetic pairs) to underline the effects of
nonlinearities on the system dynamic behaviour; moreover also the suspended mass may be varied,
adding calibrated weights. Relative velocity ξ̇ is determined as the numerical derivative of the
relative displacement with suitable filtering of the reconstructed signal. Different tests are driven
on the test bench to investigate the dynamical behaviour of the suspension: the system natural
characteristics are evaluated by means of the analysis of non-zero initial conditions free response,
while the system response to external excitations is studied with frequency sweep oscillations of
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the reference plate. The analysis of the experimental data underlines the relevant effect of non-
linearities, in good agreement with the analytical results. Fig.7 plots the time series of relative
displacement ξ from non-zero initial conditions when the system is equipped with a traditional
linear elastic springs and with two magnetic pairs. Under the hypothesis that dissipative phenom-
ena are viscous, damping can be estimated through the well-known logarithmic decrement method
applied to one or more maxima. With decreasing amplitude the non symmetric behaviour of the
oscillations in the negative semi-plane vanishes, thus confirming the displacement dependent na-
ture of the nonlinearity. For small amplitude also Coulomb friction phenomena arise; the validity
range of the viscous type model for the damping is bounded with dashed vertical lines.

In Fig.8 an example of the jump phenomena is described: the continuous line corresponds to
the sweep with increasing frequency, while the dashed line is relative to the decreasing frequency
sweep. This plot proves the hardening nature of the nonlinearities of the elasto-magnetic system
(m = 8.15 kg, k = 2098 N/m, l0 = 19 mm, A = 1.43 · 10−3 Nm3, B = 19.7 mm, n = 3, y0 = 0.254
mm, computed value of p = 6.2 m−2) and the existence of a dynamical instability area in the
frequency range 5.3-6.1 Hz. It is worth noting the correspondent amplitude jump of nearly one
decade, clearly observable thanks to the limited damping of the system and to the quasi-stationary
frequency variation. The softening behaviour of the purely magnetic suspension (m = 9.25 kg,
A = 2.26 · 10−3 Nm3, B = 18.8 mm, n = 3, y0 = 0.127 mm, computed value of p = −488.6 m−2)
is plotted in Fig.9 (left). Finally, for the elasto-magnetic case with y0 = 0.127 mm, Fig.9 (right)
shows superharmonic resonances, approximately at twice and three times the natural frequency.

Figure 8: Experimental hardening jump modulus (left) and phase (right)

Figure 9: Experimental softening jump modulus (left) and superharmonic resonances (right)

5.1 Linearised model: numeric-experimental comparison

The analytic-experimental comparison of the resonance-invariant properties of the elasto-magnetic
suspension is obtained by identifying the natural frequency ωn and the viscous damping parameter
ζ of the linearised system. Fig.10 and 11 show the results for the experimental design configuration
m? = 8.15 kg, k = 2098 N/m, l0 = 19 mm, A = 1.43 ·10−3 Nm3, B = 19.7 mm, n = 3, α? = 0.348,
f?n = 5 Hz. The dependence of natural frequency on the system mass is drastically reduced for the
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elasto-magnetic suspension, in excellent accordance with the numerical model (solid line in fig.10).
Furthermore, transmissibility T (Ω) proves that a suspension equipped with elasto-magnetic springs
effectively behaves like a passive adaptive suspension, practically independent on mass changes.
The three plots are relative to the system possessing respectively the design mass m? and mass
values about ±40% with respect to m?.

Figure 10: Natural frequency vs. mass for the
elasto-magnetic suspension (circles refer to ex-
perimental data)

Figure 11: Experimental transmissibility of the
elasto-magnetic suspension

6 Conclusions

The proposed model of magneto-elastic suspension proves to possess a natural frequency nearly in-
sensitive to considerable mass changes (±50%). Numerical and experimental results are in excellent
accordance; moreover also the results derived from nonlinear dynamic analysis are experimentally
verified. Hence it is reasonable to believe that these results can be applied to complex passive
systems, in which it is important to keep a constant value of the natural frequency independently
of the system mass. Such innovative suspensions represent an interesting basis for the development
of passive adaptive application in automotive or aerospace field, especially for systems subject to
strong mass changes.
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