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A time-varying inertia pendulum: analytical 

modelling and experimental identification 

A. Bellino, A. Fasana, E. Gandino, L. Garibaldi, S. Marchesiello
*
 

Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino 

C.so Duca degli Abruzzi 24, 10129 Torino, Italy 

Abstract 

In this paper two of the main sources of non-stationary dynamics, namely the time- 

variability and the presence of nonlinearity, are analyzed through the analytical and 

experimental study of a time-varying inertia pendulum. The pendulum undergoes large 

swinging amplitudes, so that its equation of motion is definitely nonlinear, and hence 

becomes a nonlinear time-varying system. The analysis is carried out through two 

subspace-based techniques for the identification of both the linear time-varying system and 

the nonlinear system. 

The flexural and the nonlinear swinging motions of the pendulum are uncoupled and are 

considered separately: for each of them an analytical model is built for comparisons and the 

identification procedures are developed. The results demonstrate that a good agreement 
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between the predicted and the identified frequencies can be achieved, for both the 

considered motions. In particular, the estimates of the swinging frequency are very accurate 

for the entire domain of possible configurations, in terms of swinging amplitude and mass 

position. 

Keywords 

Pendulum; moving mass; nonlinear identification; time-varying analysis. 

1. Introduction 

During the last years, many efforts have been spent in studying non-stationary signals. 

Within this topic, two fundamental sources of non-stationarity are the time-variability and 

the presence of nonlinearity. 

Classical examples of time-varying systems are absorber springs with non-constant 

stiffness, or fuel tanks, characterized by mass variation. Another important class of time-

varying systems is the case of moving loads: if a structure is travelled by a load whose mass 

is not negligible with respect to the structure mass, then the dynamical properties of the 

system change with time. Typical case is a train crossing a railway bridge.  

One of the first works on the identification of time-varying systems was conducted by Liu 

[1, 2], where the concept of pseudo-natural frequencies was introduced, that are obtained by 

the time-varying state transition matrix. Tasker [3] proposed a recursive algorithm, based 

on subspace methods, to identify the state matrices and successively to determine the modal 

parameters. Other important approaches are those based on the Kalman Filter [4], or the 

parametric methods, as for example the FS-TARMA [5], which is an extension of the 

classical ARMA techniques. 
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In [6], a Short-Time Stochastic Subspace Identification (ST-SSI) approach has been 

defined, based on the “frozen” technique, where the classical subspace identification [7] is 

applied to successively windowed parts of the signal. 

The ST-SSI method can be applied to different kinds of non-stationary systems in order to 

estimate the instantaneous frequencies of the signal. For example, it has been used to 

estimate the frequency in nonlinear systems, as well as in practical systems showing 

nonlinear effects, such as pre-stressed concrete beams tested in laboratory, in which a 

softening nonlinearity was identified [8]. In a similar way, an input-output linear system 

subspace identification method has been applied in [9] for characterization of nonlinear 

dynamical structural systems: time-varying instantaneous natural frequencies and mode 

shapes of nonlinear civil structures are extracted. 

However, instead of extracting a series of time-varying linear models, the identification of a 

whole parametric nonlinear model is an important instrument for many purposes. For 

example, it would allow for treating nonlinearities in possibly damaged structures [10], or 

attaining improved predictions of vibration response amplitude, which is an issue for 

accurate long term fatigue estimates. Any nonlinear method is requested to correctly 

identify the classes of nonlinearity present and possibly to quantify the extent of their force 

contributions. Nonlinear system identification has been thoroughly investigated in recent 

years and many efforts have been spent leading to a large number of methods. A 

comprehensive list describing the past and recent developments is given in [11].  

Among them, the Conditioned Reverse Path (CRP) method [12, 13] is based on the 

construction of a hierarchy of uncorrelated response components in the frequency domain, 

allowing the estimation of the coefficients of the nonlinearities away from the location of 
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the applied excitation. 

The Nonlinear Identification through Feedback of the Outputs (NIFO) [14] is a frequency 

domain method which has demonstrated some advantages with respect to the CRP, mainly 

due to the lighter conceptual and computing effort. This method exploits the spatial 

information and interprets nonlinear forces as unmeasured internal feedback forces. 

Starting from the basic idea of NIFO, the Nonlinear Subspace Identification (NSI) method 

has been developed [15] and improved [16] for identifying large systems with lumped 

nonlinearities. NSI is a time domain method which exploits the robustness and the high 

numerical performances of the subspace algorithms. In order to extend the NSI method to 

be applied also on realistic large nonlinear engineering structures, a modal counterpart has 

been developed in [17]. 

In the present paper, both the ST-SSI and the NSI methods are applied to the experimental 

case of a pendulum with time-varying inertia. Moreover, a nonlinear behaviour is expected, 

since the swinging angles are large. 

The analysis and simulation [18] of mechanical systems with imposed relative motion of 

components is challenging: time-varying inertia, created by a part that slides along a 

rotating member, reveals the Coriolis-type effects present in the system. This relative 

movement can excite but also reduce the structure vibration, providing new means or 

techniques for active attenuation of vibrations. An example of such a technique, in which a 

mass moving radially is treated as a controller to attenuate the pendulum swings, was 

demonstrated in [19]. 

The concept of controlling the motion of a system through mass reconfiguration has been 

examined in [20] using a variable length mathematical pendulum. The control of angular 
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oscillations is accomplished by sliding the end mass towards and away from the pivot. A 

variable length pendulum has also been considered in [21], where a rigorous qualitative 

investigation of its equation is carried out without any assumption on small swinging 

amplitudes. The exact and approximate study of the nonlinear pendulum can be found in 

various recent papers; most of them deal with obtaining analytical approximate expressions 

for the large-angle pendulum period [22, 23]. Among the few papers devoted to obtaining 

approximate solutions (the angular displacement as a function of time), [24] derives an 

accurate expression in terms of elementary functions. 

The paper starts with an overview of the ST-SSI and the NSI methods; then, in Section 3, 

the experimental setup is described and the fundamental relationships about the dynamics 

of the pendulum are extracted. In Section 4, a model for the pendulum is proposed for the 

flexural vibrations and successively the identified frequencies are compared to those 

obtained by the Rayleigh-Ritz approach. In Section 5, the swing motion of the pendulum is 

considered, firstly with a fixed mass and then with a moving mass travelling on it. The final 

results show that the identified swinging frequency and the theoretical one are very similar. 

2. Methodology 

Before discussing the experimental application, it is necessary to briefly introduce the 

identification methods that can be used in this particular case. To the authors’ knowledge, 

there are no methodologies able to perform a reliable identification by taking the two 

effects into account, therefore an explanation of two methods, one specific for linear time-

varying systems and one ad hoc for nonlinear systems, is proposed. 

Both the presented procedures are based on the subspace methods introduced by Van 

Overschee and De Moor [7]. 
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2.1. ST-SSI method 

The procedure for the identification of linear time-varying systems is called Short-Time 

Stochastic Subspace Identification (ST-SSI) [6, 25]. The idea is to divide the signal in 

many parts and consider the system as time-invariant in each time interval: the process is 

called frozen technique. 

If  the output data are measured at discrete times with a sampling interval t  and the input 

is a discrete signal characterised by a zero-order hold between consecutive sample points, 

the corresponding discrete-time state-space representation of a general linear time-varying 

system at a time instant trt   is: 
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 (1) 

where A(r) and B(r) are not constant and in general their closed forms are unknown [2]; 

)(rx  is the state vector, )(ru  the input vector and )(ry  the output vector; )(rw  and )(rv  are 

process error and measurement error, respectively. 

The frozen technique considers the state matrices as constant during each time step so that 
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The complete time record is split into time windows (frozen system) almost completely 

overlapping except for a sampling period   (or its multiple). 

The natural frequencies are extracted by calculating the eigenvalues of the identified matrix 

A  in every window. The length of the window Lf  is usually chosen as short as possible, in 

order to consider a brief time interval and hopefully a time-invariant system. This is the 

main reason why the data-driven approach [7] is preferred with respect to the covariance-

driven one [26], which needs more samples to obtain accurate results. 
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For these reasons, the ST-SSI method can be used to analyse non-stationary systems that 

are regarded as time-invariant in each user-defined short time-interval, provided they 

change “slowly” with time. The term “slowly” here mainly means that their time variations 

are by far longer than their dynamics, i.e. the frequency ranges are well apart. 

2.2. NSI method 

The procedure for the identification of nonlinear systems is called Nonlinear Subspace 

Identification (NSI) [15]. A dynamical system with h  degrees of freedom and with lumped 

nonlinear springs and dampers can be described by the following equation of motion: 

 , (3) 

where M , vC  and K  are the mass, viscous damping and stiffness matrices respectively, 

 tz  is the generalised displacement vector and  tf  the generalised force vector, both of 

dimension h , at time t . Each of the p  nonlinear components depends on the scalar 

nonlinear function , which specifies the class of the nonlinearity (e.g., Coulomb 

friction, clearance, quadratic damping, etc.), and on a scalar coefficient 
j . The vector njL , 

whose entries may assume the values 1, -1 or 0, is related to the location of each nonlinear 

element. 

According to Eq. (3), the original system may be regarded as subjected to the external 

forces  tf  and the internal feedback forces due to nonlinearities  tfnl , expressed as the 

sum of the p  nonlinear components. 

As shown in [15], matrices A , B , C  and D  of the discrete state-space model written in 

the same form as Eq. (2) can be defined from the equation of motion in Eq. (3). Observe 
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that the input vector is defined as       Tp
T

rgrgrfru  1)(  and the 

information about nonlinearities is only contained in matrices B  and D . 

The nonlinear identification procedure is based on the computation of system parameters, 

once the state space matrices have been estimated by a subspace method [7] in the time 

domain. In fact, system parameters (included in KCM v ,,  and j ) are contained in the 

matrix  

     BAzICDH E
1

 ,        tjz  exp  (4) 

which is invariant under the similarity transformation corresponding to the application of a 

subspace method [15]. 

Without an applied force, a different type of analysis can be performed by considering the 

system as subject to initial conditions or impulsive excitation. This situation has been 

studied in [17] for SDOF systems and, in general, the exact nonlinear coefficients j  

cannot be obtained. However, in this particular case the system is a pendulum and its 

equation of motion allows some considerations about nonlinearity, which will be described 

in Section 5. 

In general, if the force contribution due to nonlinearities is constant with respect to the 

linear one, the NSI method can be extended over the entire time history, without loss of 

effectiveness. In the present case, the lack of a forcing term leads the swinging amplitudes 

of the pendulum to decrease so that the contribution of nonlinearities (which are due to 

large amplitudes) is also decreasing. For this reason, the NSI method is applied over a 

certain number of windows in time. In particular, as shown in Section 5, the windows will 

be selected where the amplitudes are large, i.e. where the nonlinear contribution is 
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sufficiently high to be clearly identified. 

3. Experimental set up 

The structure under testing is a pendulum with time-varying inertia: a disk on a cart can 

travel along it through a runner, while the pendulum is swinging. Moreover, this structure 

cannot be considered simply as a linear time-variant system, since for large swinging 

amplitudes the equation of motion of the pendulum has to be considered as nonlinear. 
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Fig. 2. Complete structure. At the top, the plate added to the system to enforce the clamp is highlighted. The travelling 

mass and the counterweight are observable on the left and on the right, respectively. 

3.1. Description 

An overview of the design of the structure is presented in this section, together with a 

description of the instrumentation used for acquiring data. The measured characteristics of 

the considered elements, such as mass and dimensions, are defined in next section, where 

the equation of motion is introduced. 

The pendulum is constituted by an aluminium runner along which a cart can slide, as 

represented in Fig. 1. The cart has two screw holes for mounting an added mass which can 
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slide on the pendulum, thus varying its inertia. 

Moreover, in order to avoid a non optimal clamp between the runner and the shaft due to 

the large deformability of aluminium, a small plate has been added to the system to enforce 

the clamp. 

The travelling mass is a steel disk, whose motion is regulated by a counterbalancing mass 

driven by hand without affecting the pendulum swing. This counterweight is connected to 

the moving mass through a system of pulleys and a cable that can be considered as non-

extendable. The complete structure is shown in Fig. 2, with the sensors described in next 

section. The main supports, plates, pulleys, bearings and precision shaft are observable. 

3.1.1. Instrumentation 

The sensors can be seen in Fig. 2. A triaxial and four monoaxial accelerometers have been 

mounted along the beam: information about their masses and positions is given in Table 1. 

Their characteristics will be useful for elaborating some considerations about the parameter 

updating that is performed in Section 5.1. 

The triaxial accelerometer is a PCB 356B18 piezoelectric sensor (ICP). It has not been used 

for the analyses presented in this paper but its mass has to be considered in Section 5.1, 

since the sensor was included in the setup during all measurements. 

Each monoaxial accelerometer is a Brüel&Kjær 4507 B 004 piezoelectric sensor. These 

sensors are used to measure the transversal vibrations of the pendulum, for performing the 

ST-SSI analysis of Section 4. 

A direct measure of the angular position of the pendulum is given by a Penny+Giles 

SRS280 sealed rotary sensor, with an accuracy of ±1% over 100°, connected to the 

precision shaft. 
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A Celesco PT1A linear potentiometer, with a maximum extension of 1.2 m, has been 

connected to the counterweight (see Fig. 2). The position of the travelling mass along the 

runner can be simply obtained from this measure. 

All signals have been acquired with a sampling frequency of 256 Hz. The signals have been 

measured by using an OROS acquisition system, with 32 channels and anti-aliasing filter. 

 

3.2. Equation of motion 

In this section, the pendulum with a travelling mass is considered as vibrating in two 

directions: in the flexural direction (the z  axis in Fig. 3) the system behaves as a linear 

continuous beam, while in the orthogonal direction y  the swinging pendulum can be 
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considered as a simple nonlinear SDOF system, since the flexural stiffness along this 

direction is very high. In the following, these two motions will be referred to as “flexural” 

and “swinging” motion respectively. 

Note that the two motions can be considered as uncoupled: flexural vibrations are 

influenced by the effect of an axial force (tensile positive) due to gravity. For the beam of 

this experimental application the contribution of gravity, which depends on )(t  (Fig. 3), 

can be considered as negligible on the basis of results in [27]. 

From the rotational equilibrium of the system shown in Fig. 3, the equation of the 

“swinging” motion can be derived as follows: 

      (5) 

in which the subscripts p , b  and m  refer to the plate, the beam and the travelling mass, 

respectively. The angle swept by the pendulum is indicated by )(t . Other terms appearing 

in Eq. (5) are the position )(ts  of the travelling mass, the acceleration of gravity 81.9g  

m/s
2
 and a viscous damping coefficient vc . 

For each component of the system, the properties have been measured and are reported in 

Table 2; their moments of inertia have been computed with respect to the pivot point O  as 

follows: 

   222
0

12

1
pppppp dmbamI   (6a) 

 
22

0
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1
bbbbb dmLmI   (6b) 

 222
0 )()(

2

1
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When the travelling mass is fixed on the beam, then sts )( , ṡ(t)=0 and the following 

restricted forms of Eq. (5) are considered: 

 

                                                                   (7)  

 

where mbp IIII  00  and bbpp gdmgdmP  . 

Table 2. Characteristics of the components. 

Component Mass (kg) Sizes (m) 

Centre of mass 

distance from O  (m) 

Plate 0.0713 044.0pa ,  063.0pb  01.0pd  

Beam 0.29 1bL  5.0bd  

Travelling Mass 0.5025 05.0mr  )(ts  
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3.2.1. Swinging frequency 

When the swings are not “small”, i.e. the linearization  sin  of Eq. (5) is not possible, 

the swinging period of the pendulum depends on its angular amplitude. An analytical 

expression of the swinging frequency of the undamped pendulum is: 

 
)()(

1

2
)(

0 kKsT
sff


 , (8) 

where 0T  is the period for “small” swings and )(kK  is the incomplete elliptic integral of 

the first kind. The complete procedure for deriving Eq. (8) is described in Appendix A. 

In order to derive an analytical representation of frequency for large swings in presence of 

small damping, in this paper we simply extend Eq. (8) by considering the swinging 

frequency as “instantaneous”: for each value of time t  the pendulum is seen as a new 

system having a new maximum amplitude 0 , which implies a new value of )(kK  and 

consequently a new value of )(tf  in Eq. (8). 

The meaning of )(0 t  is shown in Fig. 4: it can be seen as a time-varying maximum 

amplitude. Note that )(0 t  can be computed (for example, by interpolation of 

maxima/minima) only a posteriori, after having full knowledge of the time history of )(t . 

Then, the new definition of frequency is given as follows: 

 
))(()(

1

2
))(,()(

0

0
tkKsT

tsftf


  , (9) 

where )2)(sin()( 0 ttk  . 

A nonlinear effect can then be observed in Eq. (9): the large swings of the pendulum affect 

the elliptic integral ))(( tkK . Moreover, this nonlinear contribution is decreasing in time, 

since the maximum amplitude is reduced by damping, and the frequency tends to the value 
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)(1 00 sTf   assumed for small swings. An example of this latter effect is given in Fig. 5, 

where Eq. (9) is used to compute the frequency for the mass in a fixed position 5.0s  m. 

3.2.2. Baseline frequencies for fixed mass positions 

Eq. (9) is useful as an analytical “expectation” that can be adopted for comparisons with the 

identified results of Section 5. In particular, in order to analyse the cases with the travelling 

mass, a representation of some curves, for fixed values of s , can be used as a baseline grid. 

This is shown in Fig. 6, in which the frequencies are plotted as a function of the maximum 

amplitude of swing, for 10 equally spaced mass positions s . It can be observed that the 10 

curves have the same behaviour, as expected. Moreover, if a fixed value of 0  is 

considered, the frequencies are not monotonic with the position s . In fact, they are 

increasing for values of s  between 0.95 m and 0.25 m, but then they start decreasing for 

15.0s  m and 0.05 m. This is due to the values assumed by the characteristics of the 

components (Table 2) and is confirmed by showing in Fig. 7 the behaviour of the small-

swings frequency 0f  as a function of s : 

 
20

2

1
)(

smI

sgmP
sf

m

m







. (10) 
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Fig. 6. Representation of the time-varying frequencies as a function of the maximum amplitude )(0 t , for different 

fixed mass positions s  (indicated in meters on the figure). 
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This function has a maximum at about 237.0s  m so that there are values of frequency 

that can be associated to two different mass positions. This might lead to extra difficulties 

in interpreting the results. 

4. Flexural vibrations 

In this section, the flexural vibrations of the pendulum are considered. First of all, the 

theoretical model representing the flexural motion of the structure under study is presented; 

successively the unknown physical parameters are estimated and a procedure based on the 

Rayleigh-Ritz method is applied to extract the analytical “frozen” frequencies. Finally, 

these frequencies are compared with those obtained by the ST-SSI method. 

4.1. Beam model with no added mass 

The pendulum, in the transversal plane, can be considered as an Euler-Bernoulli beam with 

a rotational spring with stiffness K , to take into account the fact that the clamping 
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condition is not perfect. 

The effective beam length cannot be considered equal to 1bL  m because there is a 

metallic plate, with a length equal to 063.0pb  m, that limits the flexural vibrations of the 

pendulum (see Fig. 2). Moreover, as done in [28] for cables of a bridge, it is generally 

useful to consider an equivalent length eqL  corresponding to the identified natural 

frequencies and to the other parameters of the system. The representation of the model is 

proposed in Fig. 8. This is valid only for the flexural motion, because the metallic plate 

does not influence the swings in the other plane (apart from its added inertia). 

The general mode shape of the beam is of the form 

        xDxCxBxAx  sinhcoshsincos)(   (11) 

where EI24    and the boundary conditions are the following: 

 0)0(           )0(')0('' 
EI

K
  (12a) 

 0)('' eqL        0)(''' eqL  (12b) 

4.2. Estimation of unknown parameters 

In addition to the unknown equivalent length, the clamping condition is not known as often 

happens in real applications, and the area moment of inertia of the beam is difficult to be 

estimated because of its complex geometry (see Fig. 1). Then, three physical parameters are 

considered as unknowns: 

 eqL : equivalent length of the beam  

 k : normalized rotational stiffness of the beam 

 EI : bending stiffness of the beam 
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The parameter k  is usually considered in these cases instead of K  [29], because it gives an 

idea of the “degree of clamping”. With this coefficient, it is possible to consider all the 

intermediate configurations between the simply support case ( 0k ) and the perfect clamp 

case ( 1k ). The relationship between K  and k  is: 

 
)1(

1 4

k

k

LEI

K

eq 



 (13) 

The natural frequencies are obtained by means of the following formula: 

 


EIz
f r

r
2

2

  (14) 

where rz  are the zeros of the determinant of the matrix defined by imposing the conditions 

expressed by Eq. (12) to the mode shapes of Eq. (11), and   is the mass per unit of length 

of the beam. 

Now, let us consider an experimental test in which the pendulum is not swinging and there 

are no added masses on it. In this configuration, the pendulum can be considered as the 

beam described in this chapter. 

Considering that the clamp is not perfect, the equivalent length eqL  has been taken equal to 

0.85 m. In order to estimate k  and EI , a double iteration has been applied on different 

values of the physical unknowns. The best values are chosen as those minimizing the 

difference with the first three natural frequencies identified with the classical subspace 

methods [7]. The optimization procedure leads to the following parameters: 

 07.0k ,       5.20EI  N
.
m

2
 (15) 

In Table 3 the identified frequencies are listed together with the frequencies calculated with 

the optimal values. 
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4.3. Identification of the flexural frequencies  

The ST-SSI method has been used for the identification of the natural frequencies in the 

case of load moving on the pendulum, because the system is time-varying. They are 

extracted by considering the signals recorded by the four monoaxial accelerometers 

introduced in Section 3.1.1. 

By referring to Eq. (2), the output signals y  correspond to the four recorded accelerations, 

while 0u , meaning that no inputs have been applied. About the identification, the signals 

have been decimated with a factor of 10. Moreover, 80 samples are considered in each 

window, corresponding to a time duration of 3.125 s, with an overlap of 79 samples. With 

these parameters, each window included from 8 to 15 periods of the first natural frequency. 

The identified frequencies are successively compared with those obtained by the Rayleigh-

Ritz method, a well known approach in the field of dynamics [30]. All the analytical 

developments are presented in Appendix B. 

Two cases, among the several created in the laboratory, are represented. They are named: 

 01: the mass is moving upward  

 02: the mass is moving at first downward and successively upward  
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In Figs. 9a and 9b, the signals of the linear potentiometer are shown for cases 01 and 02. In 

particular, the positions of the mass are depicted by inverting the axis scale, in order to 

agree with the direction of )(ts  in Fig 3.  

In Fig. 9c (case 01), the identified frequency is increasing while in Fig. 9d (case 02) the 

frequency is initially decreasing and then increasing. The estimations follow the 

corresponding trends of the mass positions. They are very clear and it is possible to note 

that the range of variation of the frequency is very large: this is due to the heavy travelling 

load, its mass being almost twice the mass of the beam. 

The identified frequency can be displayed as a function of the mass position on the 

pendulum. In this way, both cases show the same trend, as can be seen in Fig. 10. The 

frequencies are compared with the theoretical curve obtained with the Rayleigh-Ritz 

method. The difference among this curve and the identified frequencies is quite small, and 

the error is mainly due to a couple of reasons: 

 the Rayleigh-Ritz method does not take into account the dynamic effect due to the 

relative velocity ṡ of the travelling mass. 

 the physical parameters linked to the mass, e.g. the moment of inertia dI , can be 

slightly different from the nominal values.  
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Fig. 9. Positions of the mass and corresponding identified first flexural frequency, for two different cases: (a)-(c) case 01; 

(b)-(d) case 02. 

 

Fig. 10. Flexural vibrations: comparison among the identified frequencies (ST-SSI) of two experimental cases (01 and 02) 

and the theoretical curve obtained with the Rayleigh-Ritz method 
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5. Motion of the pendulum 

The swinging motion has been analysed by applying the NSI and the ST-SSI methods 

separately. This is due to the main drawback affecting them when studying such a time-

variant and nonlinear system: both methods cannot distinguish the time-variant 

contribution from the nonlinear one, since the effect of both contributions consists of 

swinging frequency variations.  

As a consequence, the study of the swinging motion has been divided into two parts. In the 

first one, dedicated to the fixed mass case, the NSI method is used to identify the nonlinear 

contribution and the “underlying” linear frequency: to validate the method, the results are 

compared with the known actual values. Then, the system parameters are updated to build a 

new NSI-based model. In the second part, which focuses on the swings in presence of a 

moving mass, the ST-SSI method is applied: as a reference, the baseline frequencies 

described in Section 3.2.2 are computed by using the previously updated parameters, so that 

all information given in Table 2 is no more needed (except for the value mm  of the 

travelling mass). 

5.1. Fixed mass: the NSI method 

In this section, the NSI method is applied in order to identify the system parameters as only 

depending upon the nonlinear effects due to the large swings. To this aim, the travelling 

mass has been fixed along the beam in two different positions, namely 91.0s  m and 

5.0s  m, so that the starting point is Eq. (7). Moreover, in order to apply the NSI method, 

it is useful to consider the Taylor expansion of the sine (for 0 ): 
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By truncating the expansion in Eq. (16) to 2n  (for this value the level of accuracy is 

excellent, when 2  ), Eq. (7) can be written as: 

  (17) 

where 
)!12(

)1(






j

j

j  for 2,1j  are the coefficients of the nonlinear terms in the Taylor 

expansion. In this way, the linear part of the equation and the nonlinear feedback force can 

be separated as seen in Section 2.2: 

  (18) 

From Eq. (18), the discrete state-space model defined in Section 2.2 can be identified by 

means of subspace methods [7], by only using the system output vector )(ty   measured 

by the rotary sensor described in Section 3.1.1 and the input (feedback forces) 

 Tttu 53 )()(   . The natural frequency of the “underlying” linear system (i.e. linear 

part of the equation of motion) can be extracted by calculating the eigenvalues of the 

identified matrix A : in the case of a pendulum, the linear frequency sought for is equal to 

the frequency 0f  of “small” swings. 

The identification of the nonlinear coefficients should be carried on as follows, by 

exploiting the method used in [17] and the particular form of the nonlinear coefficients 

defined through Eqs. (16) and (17). In fact, they are defined as totjj P   for 2,1j , so 

they are both dependent on totP . Eq. (4) turns into    21  HHHE  , where )(H  is 

the FRF of the “underlying” linear system. 
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Fig. 11. Estimates of the sinusoidal term. (a) 91.0s  m. (b) 5.0s  m. The actual value sin  is represented with 

a dashed line. A magnification for large amplitudes is also shown. 

 

In particular, when 0  then 
1

)0(


 totPH  and an estimate of the coefficients defining 

the Taylor expansion of the sine in Eq. (16) can be obtained as 

    210  EH . (19) 
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The NSI method as described above has been repeatedly applied to several time records 

where the nonlinear contribution was more important. N  overlapping time windows of 30 

seconds each, covering a range of decreasing amplitudes from 70 to 45 degrees, have been 

selected: in particular, 20N  for the case 91.0s  m and 11N  for 5.0s  m, since for 

the latter the range of amplitudes is swept faster. The results are presented hereafter. 

The nonlinear terms are reconstructed by using the Taylor expansion in Eq. (16) of the sine, 

with the estimated values 1  and 2  obtained through Eq. (19). Fig. 11 shows a 

comparison between the actual value of sin  and the estimated Taylor expansion, for the 

first window (i.e. largest amplitudes). Note that similar results, in terms of accuracy, are 

obtained for each of the windows used. In Fig. 11a the case 91.0s  m is presented: good 

agreement can be seen, with an error of 2% in correspondence with the maximum value of 

 . In Fig. 11b the case 5.0s  m is presented: excellent agreement can be seen, with an 

error of 1%. 

In Fig. 12 the identified natural frequencies of the “underlying” linear system with fixed 

mass in 91.0s  m (Fig. 12a) and 5.0s  m (Fig. 12b) are shown. For each window, an 

estimate of the frequency is obtained (represented by a circle) and a comparison with the 

expected value 0f  (the red dashed line), computed from the nominal values in Table 2, is 

also given.  
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Fig. 12. Estimates of the frequency of oscillations (represented by circles). (a) 91.0s  m. (b) 5.0s  m. The 

“expected” (nominal) value 0f  is represented with a red dashed line. The updated value upf ,0  is represented with a blue 

dash-dotted line 

 

The identified values are placed along a constant line, thus validating the removal of the 

nonlinear contribution carried out by the NSI method, but a bias can be observed 
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(especially in Fig. 12b). This is caused by inaccuracies in the characteristics of the 

components or by the presence of instrumentation (accelerometers, cables). An updating 

procedure is then performed, in order to build a new model (the blue dash-dotted line on 

Fig. 12) based on identified results. In more detail, consider Eq. (10), which defines the 

swinging frequency for small amplitudes, and assume that the values of I  and P  have to 

be updated to fit the identified model. In the identification step, the NSI estimates 

)(ˆˆ
0,0 jj sff   for two fixed mass positions 91.01 s  m and 5.02 s  m have been 

obtained: in order to have a single value for each position, the mean value over the N  

identified estimates is computed. By assuming that the moving mass 5025.0mm  kg is 

also known, the following system of equations can be obtained from Eq. (10), in the new 

unknowns upI  and upP : 
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. (20) 

A comparison between the nominal and the updated values is given in Table 4: as expected, 

the updated quantities are higher because of the influence of instrumentation. 
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Fig. 13. Comparison of two cases with fixed mass on the pendulum (in 0.91 m and 0.50 m respectively) with the 

theoretical frequencies calculated on the same mass position. 

 

As a further control, the contributions accI  and accP  due to the accelerometers can be 

evaluated by considering the information given in Table 1: 
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These quantities are in good agreement with I  and P  shown in Table 4, this 

highlighting the contribution of the accelerometers in the dynamics of the pendulum. 
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In order to validate the updated model, a first step consists of computing the new values of 

the “expected” swinging frequency for both the cases 91.0s  m and 5.0s  m. It is 

called updated frequency and it is defined through Eq. (10) as 

 
 
 2,0

2

1
)(

smI

sgmP
sf

mup

mup

up






. (22) 

In Fig. 12  the updated frequency (the blue dash-dotted line) and the NSI estimates are 

compared: an excellent agreement can be observed, confirming the accuracy of the 

identified model. 

In this way, by parameter identification (for the nonlinear terms) and updating (for the 

linear terms) a general model representing the experimental pendulum with fixed mass is 

defined: 

  (23) 

At this point, all information given in Table 2 is no more needed (except for the value mm  

of the travelling mass): the updated parameters upI  and upP  can be used to compute the 

baseline frequencies of Eqs. (9) and (10), as a reference for the application of ST-SSI. 

5.1.1. Estimation of the frequencies with ST-SSI 

To identify the swinging frequencies the ST-SSI method is finally applied to the angular 

position signal. In this case, the identified values can be depicted as a function of the 

amplitude 0  and compared with the baseline frequencies described in Section 3.2.2. The 

results are plotted in Fig. 13, where the theoretical curves have been calculated for two 

different positions of the mass (0.50 m and 0.91 m), for different angular amplitudes. 
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Fig. 14. Nonlinear oscillations for cases M1 (a-c-e) and M2 (b-d-f): time evolution of the oscillation angle (a-b), of the 

mass position (c-d) and frequencies calculated with ST-SSI, compared with the theoretical ones (e-f). 

 

The ST-SSI identification is applied on signals decimated with a factor of 12. 60 samples 

are considered in each window, corresponding to a time duration of 2.81 s, with an overlap 
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of 59 samples. With these parameters, each window included from 1.5 to 2 periods of the 

first natural frequency. 

The identified and theoretical frequencies of the nonlinear pendulum are very close, 

confirming that the adopted model is able to predict the evolution of the frequencies, in the 

case of swings with a fixed mass on the pendulum. 

5.2. Moving mass: the ST-SSI method 

Let us consider two cases, in which the load is travelling on the pendulum, this producing 

both nonlinear and time-varying effects: 

 case M1: the mass is moving upward 

 case M2: the mass is moving firstly upward and then downward 

 

Fig. 15. Nonlinear oscillations: comparison among the frequencies of the experimental cases M1/M2 and the baseline 

frequencies built for ten different load positions. The diamonds on the experimental curves highlight specific mass 

positions, measured by the linear potentiometer. 

For both cases, the time histories of the angle and the load position are shown in Fig. 14, 

together with the frequencies identified by means of the ST-SSI method and compared to 
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those obtained by applying Eqs. (9) and (10) with the updated parameters upI  and upP .  

In order to have a final visualization, Fig. 15 shows the identified frequencies and compares 

them with the baseline frequencies f  introduced in Section 3.2. Ten different mass 

positions on the pendulum (from 0.05 m to 0.95 m) have been plotted to verify the 

correspondence among frequency, angle amplitude and mass position (in a certain time 

instant) for the theoretical and the identified models. Some mass positions measured by the 

linear potentiometer have been marked on the graph by means of diamonds, both for the 

case M1 and the case M2. The identified values are very close to the predicted frequencies, 

for both the experiments. 

6. Conclusions 

The paper is focused on the experimental study of a time-varying inertia pendulum; for 

large swinging amplitudes its equation of motion must definitely include the nonlinear 

terms. It hence becomes a nonlinear time-varying system which is analysed through the 

application of two techniques for the identification of linear time-varying systems (ST-SSI) 

and nonlinear systems with constant coefficients (NSI). 

The flexural motion is studied by proposing a model of a beam travelled by a moving load, 

while the nonlinear equation of the swinging motion is inspected in order to obtain the 

theoretical (baseline) frequency as depending on the amplitude of swings and on the load 

position. These models are built for comparing the theoretical results with the outcome of 

the identification procedures herewith developed. 

In particular, when studying the flexural motion only the ST-SSI method has been applied, 

since the system is linear time-variant. Both the NSI and the ST-SSI methods have been 
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applied in studying the swinging motion, as follows: (1) with fixed mass, the NSI method is 

used to identify the nonlinear contribution and the “underlying” linear frequency: to 

validate the method, the results are compared with the known actual values; (2) the 

frequency is adopted to update the system parameters and to build a new model; (3) the 

updated parameters are used to compute the baseline frequencies, as a reference for the 

application of ST-SSI. 

The paper demonstrates that a good agreement between the predicted and the identified 

frequencies can be achieved, for the entire domain of possible configurations, in terms of 

swinging amplitude and mass position. The paper is also one of the first studies for such a 

kind of nonlinear and variable mass system, which has not been fully treated in literature 

yet; in this sense, it opens new scenarios to a number of further investigations, including a 

closer interaction between nonlinear and time variant behaviour, and the role of the speed 

of the travelling mass. 

Appendix A: swinging frequency of the undamped pendulum 

In the following, the behaviour of the undamped pendulum in case of large swings is 

studied, with fixed mass, in order to achieve an analytical expression of its time-varying 

frequency [22]. The starting point is Eq. (7), with the assumption that 0vc . 

Consider the energy balance for the undamped pendulum (the time dependency is omitted 

from now on), in which 0  stands for the maximum amplitude (note that 0  in 0 ): 

  (A.1a) 

By using the trigonometric identity )2(sin21cos 2   , we obtain 
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  (A.1b) 

and then 
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By integrating both sides of Eq. (A.2) between 0 and 0 , a quarter of the period T  is 

obtained on the left and then: 

 













0

0

2

1

202

2
sin

2
sin2






d
P

I
T

tot

tot  (A.3) 

We can now apply the following relations (note that 0T  is the period for “small” swings) 
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   (A.4) 

to rewrite Eq. (A.3) as 
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0 kKTT


  (A.5) 

where )2sin( 0k  and 
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k

d
kK ,            for 1k    and     0  (A.6) 

is the incomplete elliptic integral of the first kind. This integral can be approximated, for 

example, by expanding the integrand function in power series or by using an accurate 

arithmetic-geometric mean [23]. The analytical expression of the swinging frequency is 

obtained by simply inverting Eq. (A.5). 
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Appendix B: application of the Rayleigh-Ritz method 

The Rayleigh-Ritz method has been applied on the model considered in Section 4.3. 

The contributions of potential energy are due to the bending stiffness of the beam and to the 

rotational spring: 
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where ),( txv  is the transverse displacement of the beam. 

The terms related to the kinetic energy are linked to the mass per unit of length of the beam, 

to the mass and moment of inertia of the moving load, respectively. 
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where s  is the load position along the beam. 

According to the Rayleigh-Ritz method, an approximate solution of the eigenvalue problem 

can be constructed in the form of the linear combination 
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where ia  are unknown constant coefficients and )(xi  are trial functions. A good choice 
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are the polynomials: 
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where n  is the number of polynomial terms. The first two derivatives are: 
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Since the Rayleigh’s quotient R  can be written as 
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then the reference equation is 
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In the Rayleigh-Ritz method the unknown coefficients ra  are determined so that the 

Rayleigh’s quotient is stationary. This is equivalent to 
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Therefore it is necessary to calculate the derivatives of the numerator Q  and denominator 

P  with respect to the coefficients and then build the following eigenvalues problem: 

      aMaK
~~

  (B.8) 

where   collects the squares of the angular frequencies. 
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Let us analyze each term separately, starting from the numerator, which includes two terms. 
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In the case 1 ji , there is an additional term in Eq. (B.9c) equal to K2 , which comes 

from Eq. (B.9b). 

The denominator includes three terms. 
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The frequencies are calculated by applying Eq. (B.8) with Eq. (B.9c) and Eq. (B.10d). 
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