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A Nonlinear Transport Problem of Monochromatic Photons
in Resonance with a Gas

G. Lauro*, R. Monaco' and M. Pandolfi Bianchi'

*Dipartimento di Matematica Applicata “G. Sansone™, Universita di Firenze, Firenze, Italy
TPolitecnico di Torino, Torino, Italy

Abstract. A transport problem arising from the dynamics of a gas in a radiation field, recently modelled in kinetic theory,
is formulated and the trend to equilibrium of the gas-photon system is studied. A computational technique matching relevant
mathematical aspects of differential quadrature and spectral methods is applied. The numerical results are then compared with
those of other models known in literature.

INTRODUCTION

Aim of the present paper is to provide a numerical analysis of a nonlinear transport problem arising in the dynamics
of a gas imbedded in a monochromatic radiation field. The gas particles are endowed with two levels of internal
energy, the fundamental and the excited one. Besides the elastic collisions, the gas particles may experience inelastic
interactions, passing from an energy level to the other. Absorption, stimulated and spontaneous emission processes are
taken into account in the interaction between photons and gas particles.

In this paper, the set of moment equations, namely the macroscopic conservation equations, derived from the
kinetic equations given in Ref. [1], is considered under the assumption that the characteristic relaxation time of elastic
collisions is much smaller than the one relevant to inelastic and gas-radiation interaction.

An initial boundary value problem in a slab is formulated for the nonlinear system of the moment equations and
radiative transfer equation, with the aim of studying the trend to equilibrium of the gas-photon system. In unbounded
domains such a trend has been shown in Ref. [2].

A numerical technique, proposed in Ref. [3], based on the spectral approximation of the solution expanded in terms
of Legendre polynomials, transforms the original set of partial differential equations into a set of ordinary differential
equations to be numerically solved with pertinent initial conditions. Numerical results are then given and compared
with those obtained for the same physical problem, treated in Refs. [4], [5], [6] by means of simplified versions of the
moment equations.

GOVERNING EQUATIONS

Consider, in slab geometry, a gas with particles endowed with two internal energy levels in presence of a monochro-
matic radiation field. With reference to papers [2], [4], the closed set of moment equations of the gas system is derived
in a dimensionless and rescaled form:
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Besides the moment equations, the model includes the radiative transfer equation:
ol al - o e f
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The dimensionless state variables (nf,n®,u,T,1) are, respectively, the number density of gas molecules with internal
energy at the fundamental () and excited (°) level, the mean velocity of the gas, the absolute temperature and the

radiation intensity of the monochromatic field of photons. The parameters n, J;, i = 1,2, and o are given by
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where n;, I, are given reference values of the total number density of the gas particles and the radiation intensity,
respectively. In particular, according to paper [4], let I, = % o, B being the so-called Einstein coefficients which
account for absorption and emission rates. Moreover, hv is the photon energy, c the speed of light, and y; , y» are the
inelastic frequencies of the atom-atom collisions, which are positive constants under the assumption of Maxwellian
molecules interaction law.

Note that nf, n®, uand T depend ont € R, and x € R, whereas | depends also on y = cos 8, 6 € [0,271] being the
angle between the x-axis and the velocity of photons. In addition J is the integrated radiation intensity, defined as

tl(t,x,u)du. (7

Observe that the presence of J in Egs. (1), (2) implies that the model equations actually constitute an integro-differential
system and thus differ from the ones of papers [2], [4] and [5], where the Eddington approximation [7] has been used.
As shown in paper [1], Egs. (1-5) admit an equilibrium solution given by
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which corresponds to the thermodynamical equilibrium of the system.

INITIAL-BOUNDARY VALUE PROBLEM

An initial-boundary value problem, in line with the one studied in the above mentioned papers [4], [5] and there solved
for a simplified version of model (1-5), can now be formulated in the slab [—1, 1] for the gas-photon system governed
by Egs. (1-5), with assigned conditions as follows.
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These data correspond to the following physical situation. At t = 0, the gas, with number densities né and ng, is in
absolute equilibrium at a temperature Top; the boundaries of the slab are perfectly reflecting walls for the gas-particles
and perfectly reflecting mirrors for the radiation field, so that this one is in equilibrium with the gas at the intensity Io.
In data (9-13) the expressions of n€ and lg are in agreement with the hypothesis of absolute equilibrium.

= Boundary conditions

Vt>0: ux=-1)=ux=1)=0 (14)
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These data correspond to the following. For t = 0% the mirrors are removed and successively the gas, Vt > 0, is
subjected to a radiation intensity 1*(u), Vu < 0, on the wall at x = 1, and to zero radiation intensity, Yu > 0, on the
other wall at x = —1; conversely, Vt > 0, the gas-particles can never cross the walls, as stated by (14).
More in detail, conditions (15),(16) express that the the wall at x = —1 is thermically insulated, since no radiation
source is present at x = —1 as stated in (17), whereas the wall at x = 1 is accomodated at the temperature T* in
equilibrium with the radiation source of intensity I* presentat x = 1.

Such a physical problem has its origin in paper [8] and has been considered in book [6], as well.

APPROXIMATION METHOD

The method here proposed to construct an approximated solution to the initial-boundary value problem (1-5), (9-
17) adapts the differential quadrature techgnique, recently reviewed in [9], to spectral methods, for what attains the
truncated series expansion of the solution in the basis of Legendre orthogonal polynomials. In order to apply the
method, it is convenient first to rewrite system (1-5) in vector form.
Let g denote the state variable (nf,n® u,T,1); the system of Egs. (1-5), recalling definition (7) of the integrated
radiation intensity J, can be rewritten as

dg
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with initial data
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The approximated solution to Eq. (18) has the spectral representation
M
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where Ln(x), m = 1...M, are the orthogonal Legendre polynomials of degree m, and the vectors cm(t) =
(crfn, ce,cy,ch. ck) are the expansion coefficients, given by

2m+1 1
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The x— dimension of the slab, namely the interval [—1,1], is discretized with (N — 1) sub-intervals by N equally
spaced nodes xj, i=1,...,N. Note that the number N of the nodes does not depend on the maximum degree M of
the Legendre polynomials. The space derivative of the state variable g is approximated in the nodes by
Jdgi _ dg,. MdLm_ _M _
FV &(Xnt) ~ nZoW(XI)Cm(t) = rTZoalmcm(t): (22)

where ajm, define a [N x (M + 1)] matrix <7 given by
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which can be computed once forall. Hence, Eq. (18), by taking into account Egs. (21-23), is transformed into the set
of ordinary differential equations

dg _
dt
where g = g(x;,t) and J = J(x;,t). The time depending coefficients co(t),...,cm(t) must be computed at each time

Gi(t,gl,...,gN,Jl,...,JN,Co(t),...,CM(I),Xi,JZf), i=1,...,N (24)

step through their definition (21). The initial data for system (24) are supf)lied by condition (19) discretized in each
node. On the other hand, the boundary conditions (14-17) will be naturally included in the initial value problem,
according to a procedure which will be shown in the next section.

COMPUTATIONAL SCHEME

The procedure outlined above is now applied to problem (1-5), (9-17), leading to the formulation of five ordinary
differential systems with pertinent initial data. As it will be shown, the number of equations of each system depend on
the assigned boundary conditions.

o Equations for the number densitiesn® and ne.
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The initial data to be joined to Egs. (25), (26), taking into account conditions (9-10), are

f f f -
n; (0) = ny, nF(0) = n§=ng eXp(T—O)- (27)

Since no boundary conditions are prescribed for Egs. (1-2), the index i actually ranges from 1 to N.

o Equation for the mean velocity u.

du __, % claim—0 % T aim+ — % (cf+c8)a (28)
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The initial data to be joined to this equation are u;j(0) = 0. Since the boundary conditions (14) are applied to the first
node x3 = —1 and to the last one xn = 1, solutions u; and uy are directly given by us(t) =0, un(t) =0, Vt > 0.
Thus the index i in Egs.(28) ranges, this time, from 2 to N — 1.

o Equation for thetemperatureT.
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with initial data T;(0) = To. Since the boundary condition (16) is applied to the last node xy = 1, it is immediate to

write

B 1
log(1+2)’

so that the index i varies from 1to N — 1, only. Conversely, boundary condition (15), which is of Neumann type, has
no direct influence on the number of solutions to be computed, because it needs to be treated in a different way.
By taking into account the derivative expansion (22), we can write

Tn() =T* vt >0, (30)
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Let us underline that, in this case, the boundary condition implies that the unknown coefficients to be computed are
only cg,...,cﬁl_l. In addition, note that formula (31) has been arranged in such a way, since in the Legendre basis
one has ajm # 0.

o Equation for theradiation intensity.

First of all let us discretize the variable 8, 8 € [0, 271, in an even number K of equally spaced angles 8%, k=1,... K.
In order to avoid particles grazing the walls, namely particles moving in the direction of the y-axis, the discretization
of 8 must be performed in such a way that the variables " = cos 8% never vanish. Accordingly the radiation intensity
field will be discretized by 1(x,t, u*) = 1¥(x,t), k=1,...,K. Then the form of Eq. (5), in each node x;, is

b

di _ —pk % cKaim+ne+ IX(nf—n'). (32)
dt % m | I | |
The initial data (13) assume the form
1
Kt=0)=lp= —F——. (33)
' exp(+£) —1

For what concerns the boundary conditions (17), let us first introduce two sets of indexes S, € N and S_ C N such
that

keS,= >0, k=1,...,
K
keS-= <0, k=7 +L...K

Thus it is immediate to write
vt > 0, keS,: IKt)=0; keS_: Kb =1" (34)

The index i in Egs. (32) runs from 2 to N when k € S and from 1 to N — 1 whenk € S_. Consequently the number of
equations (32) is K(N — 1).
The knowledge in each node of Ii"(t) allows to compute, by a numerical quadrature on the variable p, the integrated

radiation intensity in each node as
1

306,0) = Ji() :27'[/ L, t, ) d s, (35)
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which appears in Egs. (25), (26).

NUMERICAL RESULTS

Numerical results have been obtained using a 4!"-order Runge-Kutta routine to integrate Eqgs. (25), (26), (28), (29),
and (32). Computation of the integral terms (35), concerning the radiation intensity, have been performed via a Gauss-
Legendre formula, based on the same discretization points, as those in Eq. (32).

The purposes of this section consist both in validating the proposed numerical method, through the qualitative evolution
of the system described in Ref. [8], and in comparing the quantitative results of the present model with those obtained
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FIGURE 1. a) Profiles of T,J and b) profiles of nf,n® versus x, at t = .5, for Ty =1

[

5 1
J
nt
I T I
ne

P I —

1} o}
-1 a) X 1 -1 b) X 1

FIGURE 2. a) Profiles of T,J and b) profiles of nf,n® versus x, at t = 1.45, for To = 1

in previous studies. As proven in Ref. [5], and shown in Ref. [8], the initial boundary value problem formulated in this
paper presents an evolution towards a stationary equilibrium state for all the relevant macroscopic observables, i.e. nf,
n€ T and J. In particular, when the stationary state is reached, temperature and integrated radiation intensity have an
increasing monotone profile from the left boundary at x = —1 to the right one at x = 1.
Conversely, the maximum values of nf and n®, due to a small negative mean gas velocity, shift from the right to the
left boundary and when total density has its maximum at x = —1, then the process becomes stationary and u vanishes
again.
Such a behaviour is well represented by Fig. 1a and Fig. 2a for temperature Tand intensity J and by Fig. 1b and Fig.
2b for numerical densities of the two populations n, né.
In particular, Figs. 1 are printed at time t = 0.5 (transient behaviour), while Figs. 2 show the stationary state att = 1.45.
The initial data used to obtain both Figs. 1 and Figs. 2 are: nf=07,To=1.
Relaxation to equilibrium is a bit faster when Ty is higher (and, consequently, 1o is smaller) and the profiles reach a
slightly different shape.
This situation is shown by Fig. 3a, printed at t = 1.2 for To = 1.5.
The initial datum on n’ does not affect the rapidity of relaxation.
All figures have been obtained for the same value |* = 2 at the boundary x = 1.

As mentioned before, in paper [5] a simplified version of macroscopic equations has been used to solve the same
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FIGURE 3. a) Profiles of T,J versus x, att = 1.2, for To = 1.5; b) this model (solid line) compared with that of [5] (dot line)

physical problem. Such a version did not consider the equation for the gas mean velocity (i.e. u = 0 Vt,x) and that for
ne, since it was supposed that for each x € [~1,1], n®=ng — nf, being no = n{ +n¢.

In paper [5] the results of that model were compared with those obtained in book [6], at least for the radiation intensity,
since Chandrasekhar model did not consider an evolution equation for the temperature.

In Fig. 3b, for the same data as in Figs. 2, we report the stationary profiles of T and J, for the present model (solid
lines) and for that of [5] (dot lines).
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