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Abstract 
Among the different types of algorithms proposed to test 
Static Random Access Memories (SRAMs), March Tests 
have proven to be faster, simpler and regularly 
structured. New memory production technologies 
introduce new classes of faults usually referred to as 
Dynamic Memory Faults. A few March Tests for dynamic 
fault, with different fault coverage, have been published. 
In this paper we propose new March Tests targeting 
Unlinked Dynamic Faults with lower complexity than 
published ones. Comparison results show that the 
proposed March Tests provide the same fault coverage of 
the known ones, but they reduce the test complexity, and 
therefore the test time 
 

1. Introduction 
Silicon area is now so cheap and integration technologies 
so advanced that one can embed in a System-On-a-Chip 
(SOC) all the components and functions that historically 
were placed on a hardware board. Within SOCs memories 
are the densest components.  The International 
Technology Roadmap for Semiconductors 2004 [1] 
forecasts that embedded memories will reach 90% of 
chips area surface in ten years. It is thus common finding, 
on a single chip, tens of memories of different types, 
sizes, access protocols and timing; moreover they can 
recursively be embedded in embedded cores. 

Memory defects strongly depend on the target 
technology. Every time a new technology is introduced, 
new defects appear and new fault models must be 
defined. In the last years, the so called Static Faults (e.g., 
stuck-at faults, coupling fault ...) [2] have been the 
predominant fault type. They are characterized by being 
sensitized by the execution of just a single memory 
operation. New faulty behaviors occur in latest 

technologies [3] [4]. As an example, a write operation on 
a memory cell, immediately followed by a read operation, 
may cause the cell to flip. On the contrary, if just a single 
write or a single read, or a read which does not 
immediately follow a write are performed, the cell does 
not flip. These behaviors cannot be modeled as Static 
Faults since they require more than one operation to be 
sensitized, and are referred to as Dynamic Faults. The set 
of possible Dynamic Faults is theoretically unlimited and 
wherever a new fault is observed a new custom test 
algorithm has to be designed. 

Although ad-hoc testing strategies are needed to address 
the peculiar set of faults that can affects SRAMs, their 
regular structure allows adopting particularly simple 
algorithms, the most popular one being March Tests [5]. 
While several March Tests targeting Static Faults have 
been proposed [6] [7] [8] [9] [10] [11] [2], few March 
Tests have been developed to detect Dynamic Faults. [12] 
presents March RAW1 and RAW, of length 13n and 26n, 
respectively; the former one covers single-cell dynamic 
faults whereas the latter one detects two-cell dynamic 
fault (See Section 2). In [13] a modified March C- of 
length 10n is presented, to cover Dynamic Read 
Destructive Faults (See Section 2). This test must be 
customized resorting to the knowledge of the physical 
layout of the memory under test, in order to modify the 
address order of each March Element. 

In the present paper we introduce two new March Tests 
(March AB, March AB1) targeting the same set of 
dynamic faults addressed by March RAW1 and RAW. 
March AB and March AB1 provide the same fault 
coverage of March RAW and RAW1 with a reduced 
complexity. To better identify the target faults, a 
taxonomy of possible dynamic faults is presented, and 
each addressed fault is modeled resorting to the Fault 
Primitive formalism introduced in [14].  
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To systematically prove the efficiency of the proposed 
March Tests, for each fault model the coverage 
conditions, i.e., the sequence of memory operations 
needed to sensitize and detect the fault effects, have been 
defined. We thus proved that both March AB and March 
AB1 respect the coverage conditions for each fault in 
their fault list. Furthermore, we compared their fault 
coverage with already published algorithms. The 
correctness of the proposed tests has been also proved by 
fault simulation experiments performed using an in-house 
developed memory fault simulator [15]. 

The paper is structured as follows: Section 2 introduces 
the Fault Primitive formalism and the dynamic fault 
taxonomy; Section 3 presents the new March Tests. 
Section 4 details the complete list of the coverage 
conditions. Comparisons evaluations are reported in 
Section 5, while Section 6 summarizes the main 
contributions and outlines future research activities. 

2. Dynamic Faults Taxonomy 
Usually, for test purposes, faults in memories are modeled 
as Functional Faults. A Functional Fault Model (FFM) is 
a deviation of the memory behavior from the expected 
one under a set of performed operations [14]. A FFM 
usually involves one or more Faulty Memory Cells (FC) 
classified in two categories: Aggressor cells (a-cells), i.e., 
the memory cells that sensitize a given FFM and Victim 
cells (v-cells), i.e., the memory cells that show the effect 
of a FFM. A Dynamic Fault (DF) is a FFM that requires 
two or more memory operations, sequentially applied, in 
order to be sensitized. FFM can be described by a set of 
Fault Primitives (FPs) [14]. A Fault Primitive is a triplet 
<S/F/R> representing the difference between an expected 
(good) and the observed (faulty) memory behavior where: 
S is a sequence of m operations needed to sensitize the 
given fault, F is the faulty behavior, i.e. the value (state) 
stored in the victim cells after applying S, and R is the 
sequence of values read on the aggressor cell when 
applying S. Dynamic Faults are modeled by FPs with m > 
1. The cardinality of the Dynamic Fault Set (DFS) is 
infinite, being the number of possible operations not 
limited. The DFS is usually split in subsets, each 
including the FFMs requiring the same number of 
operations to be sensitized.  Thus “2-operations DFS” 
identifies the set of DFs that require the application of 
two memory operations to be sensitized (m = 2) whereas 
the “m-operation DFS” corresponds to a generic dynamic 
fault set.  

It has been proved that the probability of a DF decreases 
when m increase [16]. 2-operations DFs are the most 
popular in state-of the-art memories. Thus, in the sequel, 
we will focus on 2-operations DFS, only. We also focus 
on unlinked DFs, thus assuming each FFM be 

independent from each other. FFMs belonging to the 2-
operations DFS can be additionally clustered according to 
the number of Faulty Memory Cells (#FC) involved in the 
fault. Two main categories are thus possible. The former 
one is characterized by #FC = 1 (single-cell 2-operations 
DFS); in this case the same memory cell acts as a-cell and 
v-cell at the same time. The latter one occurs when 
#FC≥2 (two-or-more-cells fault). We restrict the second 
category by considering #FC=2 (two-cells 2-operations 
DFS) since it is the most relevant one when the a-cell 
address differs from v-cell address [12]. 

 

The Single-cell 2-operations DFS is characterized by 
#FC=1 and m=2. By considering all the possible 
combination of operations, one obtains an amount of 30 
FPs, representing the fault space. In [14] each FP has 
been verified using simulation, obtaining three different 
groups of realistic FPs corresponding to three different 
FFMs: Dynamic Read Disturb Fault (dRDF), where a 
write operation immediately followed by a read changes 
the logical value stored in the memory cell and returns an 
incorrect output; Dynamic Deceptive Read Disturb Fault 
(dDRDF) where a write operation immediately followed 
by a read changes the logical value stored in the memory 
cell, but returns the expected output; and Dynamic 
Incorrect Read Disturb Fault (dIRF) in which a write 
operation immediately followed by a read does not 
change the logical value stored in the memory cell, but 
returns an incorrect output. Table 1 shows the FPs that 
model these FFMs. Left and right columns report the 
name of the dynamic FFM and the list of FPs, 
respectively. Each FFM is composed of 4 FPs. 

Two-cells 2-Operations DFS is characterized by #FC=2 
and m=2. In this case, we have to distinguish between 
how many operations are applied on the a-cell and how 
many on the v-cell. Moreover, we have to consider the 
mutual position of aggressor and victim cell, e.g., if 
“a<v” or “v>a”, where “a < v” means that the address of 
the a-cell is lower than the address of the v-cell. An 
exhaustive list of 192 FPs that covers all the 2-operations 
two-cells DFS is given in [14]. Only a subset of these has 
been demonstrated to be realistic [14] [12] and we shall 
focus on this subset, only. The functional fault models 
considered are:  

• Dynamic Disturb Coupling Fault (dCFds) where a 
write operation followed immediately by a read 
operation performed on the a-cell causes the v-cell to 
flip; 

• Dynamic Read Disturb Coupling Fault (dCFrd) where 
a write operation immediately followed by a read 
performed on the v-cell when the a-cell is in a given 
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state changes the logical value stored in the memory 
cell, and return an incorrect output; 

• Dynamic Deceptive Read Disturb Coupling Fault 
(dCFdrd) in which a write operation immediately 
followed by a read performed on the v-cell when the 
a-cell is in a given state changes the logical value 
stored in the memory cell, but return the expected 
output.Dynamic Incorrect Read Disturb Coupling 
Fault (dCFir) where a write operation immediately 
followed by a read performed on the v-cell when the 
a-cell is in a given state does not affect the logical 
value stored in the memory cell, but returns an 
incorrect output.   

Table 2 shows the FPs that compose each FFM; each 
functional fault is composed of 8 FP. 

 
FFM Fault Primitives 
dRDF <0w0r0/1/1>,<1w1r1/0/0>,<0w1r1/0/0>,<1w0r0/1/1> 

dDRDF <0w0r0/1/0>,<1w1r1/0/1>,<0w1r1/0/1>,<1w0r0/1/0> 
dIRF <0w0r0/0/1>,<1w1r1/1/0>,<0w1r1/1/0>,<1w0r0/0/1> 

Table 1: Single-cell 2-operations Dynamic FFM 
 
FFM Fault Primitives 

dCFds <0w0r0;0/1/->,<0w0r0;1/0/->,<1w1r1;1/0/->,<1w1r1;0/1/-> 
<0w1r1;0/1/->,<1w0r0;1/0/->,<0w1r1;1/0/->,<1w0r0;0/1/-> 

dCFrd <0;0w0r0/1/1>,<1;0w0r0/1/1>,<1;1w1r1/0/0>,<0;1w1r1/0/0> 
<0;0w1r1/0/0>,<1;0w1r1/0/0>,<1;1w0r0/1/1>,<0;1w0r0/1/1> 

dCFdrd <0;0w0r0/1/0>,<1;0w0r0/1/0>,<1;1w1r1/0/1>,<0;1w1r1/0/1> 
<0;0w1r1/0/1>,<1;0w1r1/0/1>,<1;1w0r0/1/0>,<0;1w0r0/1/0> 

dCFir <0;0w0r0/0/1>,<1;0w0r0/0/1>,<1;1w1r1/1/0>,<0;1w1r1/1/0> 
<0;0w1r1/1/0>,<1;0w1r1/1/0>,<1;1w0r0/0/1>,<0;1w0r0/0/1> 

Table 2: Two-cells 2-operations Dynamic FFM 
 

3. March Tests 
This section presents the two new March Tests AB and 
AB1 targeting the FFMs introduced in Section 2. 

 As pointed out in [5], a March Test is a test algorithm 
composed of a sequence of March Elements (ME). Each 
March Element is a sequence of memory operations 
applied sequentially on a certain memory cell before 
proceeding to the next one. The way in which one moves 
from a certain address to another one is called Address 
Order (AO). The AO characterizes each ME.  

Not necessarily an up/down AO means that the ME starts 
from the lowest/highest memory address to the 
highest/lowest address; one can choose an arbitrary AO 
as increasing AO, without reducing the fault coverage of 
a given March Test [17]; the constraints is that the 
decreasing AO must be the exactly reverse of the 
increasing AO. Hereinafter, we denote a March Test 
using a ‘{…}’ bracket, and a March Element using a 
‘(…)’ bracket. The i-th operation is defined as opi where 
opi∈{wd, rd}, d∈{0,1} in which ‘rd’ means “read the 

content of the memory cell and verify that its value is 
equal to d ”. The complexity of a March Test is defined as 
the number of memory operations included in it.  

We obtained the new March Tests AB and AB1 by using 
the automatic March Test generation algorithm 
introduced in [18].  

Figure 1 shows the March AB1, with a complexity of 
11n. March AB1 is able to detect faults belonging to the 
single-cell 2-operations DFS introduced in Section 2. 
Compared with the March RAW1, the state-of-the-art 
algorithm to target the same set of faults with a 
complexity of 13n, March AB1 reaches the same results 
but reduces the test length by two operations.  

Figure 2 shows the March AB, with a complexity of 22n. 
March AB is able to detect the two-cells 2-operations 
DFS introduced in Section 2. If compared with March 
RAW (26n), the state-of-the-art algorithm to target two-
cells 2-operations DFs, it provides the same fault 
coverage reducing the test length by 4 operations.  

The generation process allows also the definition of a set 
of Fault Coverage Conditions (FCC) needed to cover 
each of the FFMs described in Section 2.  Each FCC 
covers one or more FPs. It specifies the March Elements 
that a March Test has to include to detect the target FP. In 
the sequel of the paper we will introduce the coverage 
conditions for the set of dynamic faults listed in Section 2 
to prove that the new generated March Tests satisfy all 
the conditions. 

 

{c(w0)  ⇔(w1,r1,w1,r1,r1)  c (w0,r0,w0,r0,r0) } 

    M1              M2  M3 
Figure 1:  March AB1 O(n) = 11n 

 

{c(w1) ⇓ (r1,w0,r0,w0,r0) ⇓(r0,w1,r1,w1,r1) ⇑(r1,w0,r0,w0,r0)  

     M1        M2         M3                     M4 

⇑(r0,w1,r1,w1,r1)    c(r1)} 

          M5               M6 
Figure 2:  March AB O(n) = 22n 

4. Fault Coverage Condition 
Fault Coverage Conditions (FCC) can be directly derived 
from the Functional Fault Model (FFM) definitions and in 
particular from the Fault Primitives (FPs) composing each 
FFM. 

FCCs are expressed using the March Test notation by 
adding the following symbols: 
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• ‘…’: any operation 

• ‘OP(d)’: every operations using the value d, d ∈ 
{0,1} (e.g. OP(1) means w1 or r1) 

• ‘(…)*’: the operations included in bracket can be 
repeated 0 or more times 

• ‘(…)+’: the operations included in bracket can be 
repeated one or more times 

• ‘[…]’: includes one relation between two or more 
March Elements. A relation is specified by the 
logical operators between March Elements (AND, 
OR). As an example, the coverage condition [M1 
M2 OR M3 M4] AND M5, where Mi is a March 
Element, means that the March Test has to include 
M1 M2 AND M5 or M3 M4 AND M5. Note that 
the sequence Mi Mj in a FCC means that the 
March Test must contain Mi immediately followed 
by Mj. 

4.1 Single-Cell Coverage Conditions 
By analyzing the FPs introduced in Section 2, we can 
compact their notation as shown in Table 3, where  
x∈{0,1} and y=not(x). 

 

FFM Fault Primitives 
Fault 
Primitives 

(compact) 

dRDF 
<0w0r0/1/1>,<1w1r1/0/0>, 

<0w1r1/0/0>,<1w0r0/1/1> 

<xwxrx/y/y> , 

<xwyry/x/x> 

dDRDF 
<0w0r0/1/0>,<1w1r1/0/1>, 

<0w1r1/0/1>,<1w0r0/1/0> 

<xwxrx/y/x>, 

 <xwyry/x/y> 

dIRF 
<0w0r0/0/1>,<1w1r1/1/0>, 

<0w1r1/1/0>,<1w0r0/0/1> 

<xwxrx/x/y>, 

<xwyry/y/x> 

Table 3: Single-cell 2-operations Dynamic FFM (compact 
notation) 

 

Figure 3 shows the list of FCCs for the single-cell 2-
operations DFS covering FPs in Table 3.  

As an example, FP1=<0w0r0/1/1> is covered by FCC1. 
The March Test c(w0) c(w0,r0) fulfill FCC1. The former 
March Element initializes the memory array to 0, whereas 
the latter one includes the operations w0,r0 that excite and 
observe FP1. In a similar way we can build a March Test 
for each FP. 

Figure 3 shows that FP=<xwxrx/x/y> is detected by FCC1 
or FCC3 and FP=<xwyry/y/x> is detected by FCC2 or 
FFC4. Since each FFM is composed of several FPs, in 
order to cover the whole FFM the March Test must 

include all the FCCs of the FPs composing the FFM. 
Table 4 reports, for each FFM (column 1), the related set 
of FPs (column 2) and, for each FP, the relative FFCs 
(column 3). 

FCC1:  

[c((…)*,OP(x)) c(wx,rx,(…)*) or c( (...)*,OP(x),wx,rx,(…)*)] 

 

FCC2:  

[c((…)*,OP(x)) c(wy,ry,(…)*) or c((...)*,OP(x),wy,ry,(…)*)] 

 

FCC3:   

[c((...)*,OP(x)) c(wx,rx,rx,(…)*) or c((...)*,OP(x)) c(wx,rx) 
c(rx,(…)*) or c((...)*,OP(x),wx,rx,rx,(…)*) or c((...)*,OP(x), wx,rx) 
c(rx (…)*)] 

 

FCC4:  

[c((...)*,OP(x)) c((wy,ry) +,ry,(…)*) or c((...)*,OP(x)) c((wy,ry)+) 
c(ry,(…)*) or  c((...)*,OP(x), (wy,ry)+,ry,(…)*) or  c((...)*,OP(x), 
(wy,ry) +) c(ry,(…)*)] 

Figure 3:  Single-Cell Fault Coverage Conditions 

 
FFM FP FFC 

<0w0r0/1/1> FFC1 

<1w1r1/0/0> FFC1 

<0w1r1/0/0> FFC2 
dRDF 

<1w0r0/1/1> FFC2 

<0w0r0/1/0> FFC3 

<1w1r1/0/1> FFC3 

<0w1r1/0/1> FFC4 
dDRDF 

<1w0r0/1/0> FFC4 

<0w0r0/0/1> FFC1 or FFC3 

<1w1r1/1/0> FFC1 or FFC3 

<0w1r1/1/0> FFC2 or FFC4 
dIRF 

<1w0r0/0/1> FFC2 or FFC4 

Table 4: Condition for detecting single-cell dynamic fault 

4.2. Two-cell coverage conditions 
The coverage conditions for two-cell DFs are more 
complex than those for single-cells. The main reason is 
that one has to take in account the relation between 
aggressor and victim cells. As shown in Section 2, the 
possible relations are:  “a<v” and “v>a”; each condition 
has to cover both of them. To tackle the problem we had 
to specify the address order in the MEs. The complete list 
of two-cell FCCs is shown in Figure 4.  
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FCC5:  
[c((…)*,OP(x))⇑(rx,(…)*,wx,rx,(…)*) and c((…)*,OP(x))⇓(rx,(…)*,wx,rx,(…)*) ]  or 
[c((…)*,OP(y))⇑((…)*,OP(x),wx,rx)⇑(rx,(…)*) and c((…)*,OP(y))⇓((…)*,OP(x),(wx,rx) ⇓(rx,(…)*)] 
 
FCC6:  
[c((…)*,OP(y))⇑(ry,(…)*,OP(x),wx,rx) and  c((…)*,OP(y))⇓(ry,(…)*,OP(x),wx,rx)] or 
[⇑((…)*,OP(x),wx,rx,(…)*,OP(y))⇑(ry,(…)*)and ⇓((…)*,OP(x),wx,rx,(…)*,OP(y))⇓(ry,(…)*)] 
 
FCC7: 
[c((…)*,OP(x)) ⇑(rx,(…,OP(x))*,wy,ry,(…)*) and c((…)*,OP(x)) ⇓(rx,(… ,OP(x))*,wy,ry, (…)*)] or 
[c((…)*,OP(x)⇑((…,OP(x))*,wy,ry,OP(x))⇑(rx, (…)*) and c((…)*,OP(x)⇓((…,OP(x))*,wy,ry,OP(x))⇓(rx, (…)*)] 
 
FCC8:  
[c((…)*,OP(x) ⇑(rx,(…,OP(x))*,wy,ry,(...,OP(y))*) ⇑(ry,(…)*)  and  c((…)*,OP(x))  ⇓(rx,(…,OP(x))*,wy,ry,(...,OP(y))*) ⇓(ry,(…)*)] or 
[c((…)*,OP(y)) ⇑((…)*,OP(x),wy,ry)⇑(ry,(…)*,) and  c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry) ⇓(ry,(…)*)] 
 
FCC9:  
[c((…)*,OP(x)) c((…,OP(x))*,wx,rx,(...,OP(x))*)] or [c((…)*,OP(x)) ⇑((…,OP(x))*,wx,rx,(...)*,OP(y)) and  c((...)*,OP(x)) ⇓((…,OP(x))*, 
wx,rx,(...)*,OP(y))] or [⇑((…)*,OP(x), wx,rx,(...,OP(x))*) and  ⇓((…)*,OP(x), wx,rx,(...,OP(x))*)]  
 
FCC10:  
[c((…)*,OP(y)) c((…)*,OP(x),wx,rx, (…)*,OP(y))] or [⇑((…)*,OP(x),wx,rx, (…)*,OP(y)) and  ⇓ ((…)*,OP(x),wx,rx, (…)*,OP(y))] or 
[c((…)*,OP(y)) ⇑((…)*,OP(x),wx,rx, (…)*) and c((…)*,OP(y)) ⇓((…)*,OP(x),wx,rx, (…)*)]  
 
FCC11:  
[c((…)*,OP(x)) ⇑((…,OP(x))*,wy,ry, (…)*) and c((…)*,OP(x)) ⇓((…,OP(x))*,wy,ry, (…)*)] or [c((…)*,OP(y)) ⇑((…)*,OP(x),wy,ry, 
(…)*,OP(x)) and c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry, (…)*,OP(x))] 
 
FCC12:  
[c((…)*,OP(y)) c( (…)*,OP(x),wy,ry,(...,OP(y))*)] or [c((…)*,OP(y)) ⇑((…)*,OP(x),wy,ry, (…)*) and c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry, 
(…)*)] or [c((…)*,OP(y)) ⇑((…)*,OP(x),wy,ry, (…)*) and c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry, (…)*)] 
 
FCC13:  
[c((…)*,OP(x)) c((…,OP(x))*,wx,rx) c(rx,(…)*)]or [c((…)*,OP(x)) c((…,OP(x))*,wx,rx,rx, (…)*)]or [c((…)*,OP(y)) 
⇑((…)*,OP(x),wx,rx)⇑(rx,(…)*) and c((…)*,OP(y)) ⇓((…)*,OP(x),wx,rx) ⇓(rx, (…)*)] 
 
FCC14:  
[c((…)*,OP(y)) c((…)*,OP(x),wx,rx,rx, (…)*,OP(y))]or [c((…)*,OP(y)) ⇑((…)*,OP(x),wx,rx)⇑ (rx, (…)*) and c((…)*,OP(y)) 
⇓((…)*,OP(x),wx,rx) ⇓(rx,(…)*)] 
 
FCC15:  
[c((…)*,OP(x)) ⇑((…,OP(x))*,(wy,ry) +) ⇑(ry,(…)*) and c((…)*,OP(x)) ⇓((…,OP(x))*,(wy,ry) +) ⇓(ry,(…)*)] or [c((…)*,OP(y)) 
⇑((…)*,OP(x),wy,ry,ry, (…)*,OP(x)) and c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry,ry, (…)*,OP(x))] 
 
FCC16:  
[c((…)*,OP(y)) c((…)*,OP(x),wy,ry,ry,(...,OP(y))*)] or [((…)*,OP(x)) ⇑((…,OP(x))*,(wy,ry) +) ⇑(ry, (…)*) and                                         
c((…)*,OP(x)) ⇓((…,OP(x))*,(wy,ry) +) ⇓(ry, (…)*)] 

Figure 4: Two Cell Fault Coverage Condition 
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As for single cells, each FCC covers a single FP by 
specifying the March Element that a March Test must 
include to detect the target FP. 

The dCFds (see Section 2) is composed of  
<xwxrx;x/y/->, <xwxrx;y/x/->, <xwyry;x/y/-> and 
<xwyry;y/x/->; dCFrd (Section 2) is composed of 
<x;xwxrx/y/y>, <y;xwxrx/y/y>,    <x;xwyry/x/x> and 
<y;xwyry/x/x>; dCFdrd (Section 2.2) is composed of 
<x;xwxrx/y/x>, <y;xwxrx/y/x>,    <x;xwyry/x/y> and 
<y;xwyry/x/y>; dCFir (Section 2.2) is composed of 
<x;xwxrx/x/y>, <y;xwxrx/x/y>,  <x;xwyry/y/x> and 
<y;xwyry/y/x>. FP=<x;xwxrx/x/y> is detected by FCC9 
or FCC13,  FP=<y;xwxrx/x/y> is detected by FCC10 or 
FFC14, FP=<x;xwyry/y/x> is detected by FCC11 or 
FFC15 finally FP=<y;xwyry/y/x> is detected by FCC12 
or FFC16. Table 4 reports for each fault model 
(column 2) its set of FP (column 3) and for each FP 
the relative fault coverage conditions (column 4). 

 
FFM FP FFC 

<xwxrx;x/y/-> FFC5 
<xwxrx;y/x/-> FFC6 
<xwyry;x/y/-> FFC7 

dCFds 

<xwyry;y/x/-> FFC8 
<x;xwxrx/y/y> FFC9 
<y;xwxrx/y/y> FFC10 
<x;xwyry/x/x> FFC11 dCFrd 

<y;xwyry/x/x> FFC12 
<x;xwxrx/y/x> FFC13 
<y;xwxrx/y/x> FFC14 
<x;xwyry/x/y> FFC15 dCFdrd 

<y;xwyry/x/y> FFC16 
<x;xwxrx/x/y> FFC9 or FFC13 
<y;xwxrx/x/y> FFC10 or FFC14 
<x;xwyry/y/x> FFC11 or FFC15 dCFir 

<y;xwyry/y/x> FFC12 or FFC16 
Table 5: Condition for detecting two-cell dynamic faults 

 

5. Comparing March Tests 
In this section we compare the proposed March Tests 
(March AB, March AB1) with the following published 
March Tests:  

• March C- [19]: {c(w0) ⇑(r0,w1) ⇑(r1,w0) ⇓(r0,w1) 
⇓(r1,w0)  c(r0)}  

• March RAW1 [12]: {c(w0) c( w0,r0) c(r0) c( 
w1,r1) c(r1) c(w1,r1) c(r1) c( w0,r0) c(r0)}  

• March SS [8]: {c(w0) ⇑(r0,r0,w0,r0,w1) 
⇑(r1,r1,w1,r1,w0) ⇓(r0,r0,w0,r0,w1)  
⇓(r1,r1,w1,r1,w0) c(r0)}  

• March RAW [12]: {c(w0) ⇑(r0,w0,r0,r0,w1,r1) 
⇑(r1,w1,r1,r1,w0,r0) ⇓(r0,w0,r0,r0,w1,r1) 
⇓(r1,w1,r1,r1,w0,r0)  c(r0)} 

Each March algorithm has been simulated by using the 
memory fault simulator presented in [15]. Table 6 
summarizes the fault coverage percentage obtained by 
every test.  

In Table 7 and 8, for each FCC introduced in Section 4 
and for each of the considered March Tests we identify 
the ME where the FCC appears. 

Both tables use the following notation:  
‘Mi’ (i=1,2…,z) denote the i-th March Element, 
‘Mi:Mj’ denotes that FCC occurs between i-th ME and 
j-th ME;  instead ‘Mi,Mj’ denotes that  the FCC 
occurrence appear both in Mi and Mj. 

We compare our tests with March RAW and March 
RAW1 [12] since they are explicitly designed to cover 
the same set of dynamic fault targeted by March AB 
and March AB1. We also consider March C- since in 
[13] using an address order customized on the physical 
layout of the memory it is used to detect dynamic 
faults. Nevertheless, in our experiments, we consider 
only the classic March C- to show that, without any 
information about the memory layout, the fault 
coverage becomes very marginal (around 0,39%) 
(Table 6).  

Of particular interest is the comparison with March SS 
[8], originally designed to cover the full set of memory 
static faults. As shown in Table 6, March AB has the 
same complexity of March SS, it covers the same set 
of static faults but it covers dynamic faults, as well. 
Furthermore, due to its regular and symmetric 
structure, March AB becomes a natural candidate for 
memory BIST architectures, making our solution very 
attractive for the industry. 

Comparison results show that the proposed March 
Tests provide the same fault coverage of the known 
ones, but they reduce the test complexity, and 
therefore the test time. 
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Single-cell Two-cell 

MT O(n) dRDF dDRDF dIRF dCFds dCFrd dCFrdr dCFir 

C- 10n 0.39% 0.39% 0.39% 0.83% 0.39% 0.39% 0.39% 
AB1 11n 100% 100% 100% 0% 50% 50% 50% 
RAW1 13n 100% 100% 100% 0% 50% 50% 50% 
SS 22n 25% 0.39% 25% 50% 50% 0.39% 50% 
AB 22n 100% 100% 100% 100% 100% 100% 100% 
RAW 26n 100% 100% 100% 100% 100% 100% 100% 

Table 6: Simulation results 
 

Single-cell 
MT O(n) FFC1 FFC2 FFC3 FFC4 

C- 10n - - - - 

AB1 11n M2,M3 M1:M2, M2:M3 M2,M3 M1:M2, M2:M3 

RAW1 13n M1:M2,  6:M7 M3:M4,M8:M9 M1:M2:M3,M5:M6:M7 M3:M4:M5, 
M7:M8:M9 

SS 22n M2,M3,M4,M5  - - - 

AB 22n M2,M3,M4,M5 M2,M3,M4,M5 M2:M3,M3:M4,M4:M5
,M5:M6 

M2:M3,M3:M4,M4:M5
,M5:M6 

RAW 26n M2,M3,M4,M5 M2,M3,M4,M5 M2,M3,M4,M5 M2:M3,M4:M5,M5:M6 

Table 7: Evidence of single-cell FCCs 
 

Two-cell (FFC) 
MT O(n) 5 6 7 8 9 10 11 12 13 14 15 16 

C- 10n - - - - - - - - - - - - 
AB1 11n - - - - M2,M3 - - - M2,M3 - - - 

RAW1 13n 
- - - - M1,M2 - - - M1:M2:M3

, 
M5:M6:M7 

- - - 

SS 22n 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M2,M3, 
M4,M5 

- - M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

- - - - - - 

AB 22n 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M2,M3 
M4,M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

RAW 26n 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

M1:M2, 
M2:M3, 
M3:M4, 
M4:M5 
 

Table 8: Evidence of two-cell FCCs 
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6. Conclusions 
 

This paper proposed two new March Tests targeting 
dynamic memory faults. March AB and March AB1 have 
the same fault coverage of already published algorithms 
(March RAW and March RAW1) addressing the same 
fault list but they reduce the complexity of 4 and 2 
operations respectively. The proposed March Tests have 
been obtained by applying an automatic March Tests 
generation algorithm. 

To prove the correctness of the new March Tests the 
coverage conditions needed to detect each fault in the 
fault list have been proposed. 

In addition, the comparison between March AB and the 
well-known March SS for static fault shows that March 
AB has the same length of March SS but it improves the 
fault coverage by detecting both static and dynamic 
faults, making our solution very attractive industrially.  

 

7. References 
[1] International Technology Roadmap for Semiconductors, 

“International technology roadmap for semiconductors 
2004 Update”, http://public.itrs.net/Home.htm, 2004 

[2] A. J. van de Goor, “Testing Semiconductor Memories: 
theory and practice”, Wiley, Chichester (UK), 1991 

[3]  S. Hamdioui, R. Wadsworth, J.D. Reyes, A. J. van de 
Goor, “Importance of Dynamic Faults for new SRAM 
Technologies”, ETW 2003, 8th IEEE European Test 
Workshop, 2003, pp. 29 -34 

[4] Z. Al-Ars, Ad J. van de Goor, “Static and Dynamic 
Behavior of Memory Cell Array Opens and Shorts in 
Embedded DRAMs”, DATE 2001, IEEE Design 
Automation and Test in Europe, 2001,  pp. 496-503. 

[5]  A. J. van de Goor, “Using March Tests to Test SRAMs”, 
IEEE Design & Test of Computers, Volume: 10 Issue: 1, 
March 1993 pp: 8 –14. 

[6] R.D. Adams and E.S. Cooley, “Analysis of a Deceptive 
Destructive Read Memory fault Model and Recommended 
Testing”, NATW 1996. 5th IEEE North Atlantic Test 
Workshop, 1996  

[7]  R. Dekker, F. Beenker, L. Thijssen, “A Realistic Fault 
Model and Test Algorithms for Satic Random Acces 
Memory”,  IEEE Transaction on Computer-Aided 
Design, Volume: 9, Issue: 6, June 1990 

[8]  S. Hamdioui, Ad J. van de Goor, M. Rodgers, “March SS: 
A Test for All Static Simple RAM Faults”, MTDT 2002: 
IEEE International Workshop on Memory Technology, 
Design and Testing, 2002 pp. 95 – 100. 

[9] M. Marinescu, “Simple and Efficient Algorithms for 
Functional RAM Testing”, ITC 1982, IEEE  International 
Test Conference, 1982, pp. 236-239. 

[10]  R. Nair, “An Optimal Algorithm for Testing Stuck-at 
Faults Random Access Memories”, IEEE Transaction on 
Computer, Vol. C-28, No. 3, 1979, pp. 258-261. 

[11]  D.S. Suk, S.M. Reddy, “A March Test for Functional 
Faults in Semiconductors Random-Access Memories”, 
IEEE Transaction on Computer, Vol C-30, No. 12, 1981,  
pp. 982-985. 

[12]  S. Hamdioui, Z. Al-Ars, A. J. van de Goor, “Testing Static 
and Dynamic Faults in Random Access Memories”, VTS 
2002, 20th IEEE VLSI Test Symposium, 2002, pp. 

[13] L. Dilillo,P. Girard, S. Pravossoudovitch, A. Virazel, S. 
Borri, M. Hage-Hassan, “Dynamic read destructive fault 
in embedded-SRAMs: analysis and march test solution”, 
ETS 2004, 9th  IEEE European Test Symposium, 2004, pp. 
140-145. 

[14]  A. J. van de Goor, Z. Al-Ars, “Functional Memory Faults: 
A Formal Notation and a Taxonomy”, VTS 2000, 18th 
IEEE VLSI Test Symposium, 2000, pp. 281-289. 

[15]  A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, 
“Specification and design of a new memory fault 
simulator”, ATS 2002, 11th IEEE Asian Test Symposium, 
2002.pp. 92 – 97. 

[16] Z. Al-Ars and A.J. van de Goor, “Approximating Infinite 
Dynamic Behavior for DRAM Cell Defects”, VTS 2002, 
20th IEEE VLSI Test Symposium, 2002, pp.401-406. 

[17]  D. Niggemeyer, M. Redeker, J. Otterstedt, “Integration of 
non-classical faults in standard March tests”, MTDT 1998, 
IEEE International Workshop on Memory Technology, 
Design and Testing, 1998, pp. 91 -96 

[18]  A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto, 
“Automatic March Tests Generation for Static and 
Dynamic Faults in SRAMs”, ETS 2005, 10th IEEE 
European Test Symposium, 2005. 

[19] M. Marinescu, “Simple and Efficient Algorithms for 
Functional RAM Testing”, Proc. Int. Test Conf., 1982, 
pp.236-239. 




