
Paper 33.3 INTERNATIONAL TEST CONFERENCE
 0-7803-9039-3/$20.00 © 2005 IEEE

1

March AB, March AB1:

New March Tests for Unlinked Dynamic Memory Faults

A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
E-mail {benso, bosio, dicarlo, dinatale, prinetto}@polito.it

http://www.testgroup.polito.it

Abstract
Among the different types of algorithms proposed to test
Static Random Access Memories (SRAMs), March Tests
have proven to be faster, simpler and regularly
structured. New memory production technologies
introduce new classes of faults usually referred to as
Dynamic Memory Faults. A few March Tests for dynamic
fault, with different fault coverage, have been published.
In this paper we propose new March Tests targeting
Unlinked Dynamic Faults with lower complexity than
published ones. Comparison results show that the
proposed March Tests provide the same fault coverage of
the known ones, but they reduce the test complexity, and
therefore the test time

1. Introduction
Silicon area is now so cheap and integration technologies
so advanced that one can embed in a System-On-a-Chip
(SOC) all the components and functions that historically
were placed on a hardware board. Within SOCs memories
are the densest components. The International
Technology Roadmap for Semiconductors 2004 [1]
forecasts that embedded memories will reach 90% of
chips area surface in ten years. It is thus common finding,
on a single chip, tens of memories of different types,
sizes, access protocols and timing; moreover they can
recursively be embedded in embedded cores.

Memory defects strongly depend on the target
technology. Every time a new technology is introduced,
new defects appear and new fault models must be
defined. In the last years, the so called Static Faults (e.g.,
stuck-at faults, coupling fault ...) [2] have been the
predominant fault type. They are characterized by being
sensitized by the execution of just a single memory
operation. New faulty behaviors occur in latest

technologies [3] [4]. As an example, a write operation on
a memory cell, immediately followed by a read operation,
may cause the cell to flip. On the contrary, if just a single
write or a single read, or a read which does not
immediately follow a write are performed, the cell does
not flip. These behaviors cannot be modeled as Static
Faults since they require more than one operation to be
sensitized, and are referred to as Dynamic Faults. The set
of possible Dynamic Faults is theoretically unlimited and
wherever a new fault is observed a new custom test
algorithm has to be designed.

Although ad-hoc testing strategies are needed to address
the peculiar set of faults that can affects SRAMs, their
regular structure allows adopting particularly simple
algorithms, the most popular one being March Tests [5].
While several March Tests targeting Static Faults have
been proposed [6] [7] [8] [9] [10] [11] [2], few March
Tests have been developed to detect Dynamic Faults. [12]
presents March RAW1 and RAW, of length 13n and 26n,
respectively; the former one covers single-cell dynamic
faults whereas the latter one detects two-cell dynamic
fault (See Section 2). In [13] a modified March C- of
length 10n is presented, to cover Dynamic Read
Destructive Faults (See Section 2). This test must be
customized resorting to the knowledge of the physical
layout of the memory under test, in order to modify the
address order of each March Element.

In the present paper we introduce two new March Tests
(March AB, March AB1) targeting the same set of
dynamic faults addressed by March RAW1 and RAW.
March AB and March AB1 provide the same fault
coverage of March RAW and RAW1 with a reduced
complexity. To better identify the target faults, a
taxonomy of possible dynamic faults is presented, and
each addressed fault is modeled resorting to the Fault
Primitive formalism introduced in [14].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11384493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Paper 33.3 INTERNATIONAL TEST CONFERENCE 2

To systematically prove the efficiency of the proposed
March Tests, for each fault model the coverage
conditions, i.e., the sequence of memory operations
needed to sensitize and detect the fault effects, have been
defined. We thus proved that both March AB and March
AB1 respect the coverage conditions for each fault in
their fault list. Furthermore, we compared their fault
coverage with already published algorithms. The
correctness of the proposed tests has been also proved by
fault simulation experiments performed using an in-house
developed memory fault simulator [15].

The paper is structured as follows: Section 2 introduces
the Fault Primitive formalism and the dynamic fault
taxonomy; Section 3 presents the new March Tests.
Section 4 details the complete list of the coverage
conditions. Comparisons evaluations are reported in
Section 5, while Section 6 summarizes the main
contributions and outlines future research activities.

2. Dynamic Faults Taxonomy
Usually, for test purposes, faults in memories are modeled
as Functional Faults. A Functional Fault Model (FFM) is
a deviation of the memory behavior from the expected
one under a set of performed operations [14]. A FFM
usually involves one or more Faulty Memory Cells (FC)
classified in two categories: Aggressor cells (a-cells), i.e.,
the memory cells that sensitize a given FFM and Victim
cells (v-cells), i.e., the memory cells that show the effect
of a FFM. A Dynamic Fault (DF) is a FFM that requires
two or more memory operations, sequentially applied, in
order to be sensitized. FFM can be described by a set of
Fault Primitives (FPs) [14]. A Fault Primitive is a triplet
<S/F/R> representing the difference between an expected
(good) and the observed (faulty) memory behavior where:
S is a sequence of m operations needed to sensitize the
given fault, F is the faulty behavior, i.e. the value (state)
stored in the victim cells after applying S, and R is the
sequence of values read on the aggressor cell when
applying S. Dynamic Faults are modeled by FPs with m >
1. The cardinality of the Dynamic Fault Set (DFS) is
infinite, being the number of possible operations not
limited. The DFS is usually split in subsets, each
including the FFMs requiring the same number of
operations to be sensitized. Thus “2-operations DFS”
identifies the set of DFs that require the application of
two memory operations to be sensitized (m = 2) whereas
the “m-operation DFS” corresponds to a generic dynamic
fault set.

It has been proved that the probability of a DF decreases
when m increase [16]. 2-operations DFs are the most
popular in state-of the-art memories. Thus, in the sequel,
we will focus on 2-operations DFS, only. We also focus
on unlinked DFs, thus assuming each FFM be

independent from each other. FFMs belonging to the 2-
operations DFS can be additionally clustered according to
the number of Faulty Memory Cells (#FC) involved in the
fault. Two main categories are thus possible. The former
one is characterized by #FC = 1 (single-cell 2-operations
DFS); in this case the same memory cell acts as a-cell and
v-cell at the same time. The latter one occurs when
#FC≥2 (two-or-more-cells fault). We restrict the second
category by considering #FC=2 (two-cells 2-operations
DFS) since it is the most relevant one when the a-cell
address differs from v-cell address [12].

The Single-cell 2-operations DFS is characterized by
#FC=1 and m=2. By considering all the possible
combination of operations, one obtains an amount of 30
FPs, representing the fault space. In [14] each FP has
been verified using simulation, obtaining three different
groups of realistic FPs corresponding to three different
FFMs: Dynamic Read Disturb Fault (dRDF), where a
write operation immediately followed by a read changes
the logical value stored in the memory cell and returns an
incorrect output; Dynamic Deceptive Read Disturb Fault
(dDRDF) where a write operation immediately followed
by a read changes the logical value stored in the memory
cell, but returns the expected output; and Dynamic
Incorrect Read Disturb Fault (dIRF) in which a write
operation immediately followed by a read does not
change the logical value stored in the memory cell, but
returns an incorrect output. Table 1 shows the FPs that
model these FFMs. Left and right columns report the
name of the dynamic FFM and the list of FPs,
respectively. Each FFM is composed of 4 FPs.

Two-cells 2-Operations DFS is characterized by #FC=2
and m=2. In this case, we have to distinguish between
how many operations are applied on the a-cell and how
many on the v-cell. Moreover, we have to consider the
mutual position of aggressor and victim cell, e.g., if
“a<v” or “v>a”, where “a < v” means that the address of
the a-cell is lower than the address of the v-cell. An
exhaustive list of 192 FPs that covers all the 2-operations
two-cells DFS is given in [14]. Only a subset of these has
been demonstrated to be realistic [14] [12] and we shall
focus on this subset, only. The functional fault models
considered are:

• Dynamic Disturb Coupling Fault (dCFds) where a
write operation followed immediately by a read
operation performed on the a-cell causes the v-cell to
flip;

• Dynamic Read Disturb Coupling Fault (dCFrd) where
a write operation immediately followed by a read
performed on the v-cell when the a-cell is in a given

Paper 33.3 INTERNATIONAL TEST CONFERENCE 3

state changes the logical value stored in the memory
cell, and return an incorrect output;

• Dynamic Deceptive Read Disturb Coupling Fault
(dCFdrd) in which a write operation immediately
followed by a read performed on the v-cell when the
a-cell is in a given state changes the logical value
stored in the memory cell, but return the expected
output.Dynamic Incorrect Read Disturb Coupling
Fault (dCFir) where a write operation immediately
followed by a read performed on the v-cell when the
a-cell is in a given state does not affect the logical
value stored in the memory cell, but returns an
incorrect output.

Table 2 shows the FPs that compose each FFM; each
functional fault is composed of 8 FP.

FFM Fault Primitives
dRDF <0w0r0/1/1>,<1w1r1/0/0>,<0w1r1/0/0>,<1w0r0/1/1>

dDRDF <0w0r0/1/0>,<1w1r1/0/1>,<0w1r1/0/1>,<1w0r0/1/0>
dIRF <0w0r0/0/1>,<1w1r1/1/0>,<0w1r1/1/0>,<1w0r0/0/1>

Table 1: Single-cell 2-operations Dynamic FFM

FFM Fault Primitives

dCFds <0w0r0;0/1/->,<0w0r0;1/0/->,<1w1r1;1/0/->,<1w1r1;0/1/->
<0w1r1;0/1/->,<1w0r0;1/0/->,<0w1r1;1/0/->,<1w0r0;0/1/->

dCFrd <0;0w0r0/1/1>,<1;0w0r0/1/1>,<1;1w1r1/0/0>,<0;1w1r1/0/0>
<0;0w1r1/0/0>,<1;0w1r1/0/0>,<1;1w0r0/1/1>,<0;1w0r0/1/1>

dCFdrd <0;0w0r0/1/0>,<1;0w0r0/1/0>,<1;1w1r1/0/1>,<0;1w1r1/0/1>
<0;0w1r1/0/1>,<1;0w1r1/0/1>,<1;1w0r0/1/0>,<0;1w0r0/1/0>

dCFir <0;0w0r0/0/1>,<1;0w0r0/0/1>,<1;1w1r1/1/0>,<0;1w1r1/1/0>
<0;0w1r1/1/0>,<1;0w1r1/1/0>,<1;1w0r0/0/1>,<0;1w0r0/0/1>

Table 2: Two-cells 2-operations Dynamic FFM

3. March Tests
This section presents the two new March Tests AB and
AB1 targeting the FFMs introduced in Section 2.

 As pointed out in [5], a March Test is a test algorithm
composed of a sequence of March Elements (ME). Each
March Element is a sequence of memory operations
applied sequentially on a certain memory cell before
proceeding to the next one. The way in which one moves
from a certain address to another one is called Address
Order (AO). The AO characterizes each ME.

Not necessarily an up/down AO means that the ME starts
from the lowest/highest memory address to the
highest/lowest address; one can choose an arbitrary AO
as increasing AO, without reducing the fault coverage of
a given March Test [17]; the constraints is that the
decreasing AO must be the exactly reverse of the
increasing AO. Hereinafter, we denote a March Test
using a ‘{…}’ bracket, and a March Element using a
‘(…)’ bracket. The i-th operation is defined as opi where
opi∈{wd, rd}, d∈{0,1} in which ‘rd’ means “read the

content of the memory cell and verify that its value is
equal to d ”. The complexity of a March Test is defined as
the number of memory operations included in it.

We obtained the new March Tests AB and AB1 by using
the automatic March Test generation algorithm
introduced in [18].

Figure 1 shows the March AB1, with a complexity of
11n. March AB1 is able to detect faults belonging to the
single-cell 2-operations DFS introduced in Section 2.
Compared with the March RAW1, the state-of-the-art
algorithm to target the same set of faults with a
complexity of 13n, March AB1 reaches the same results
but reduces the test length by two operations.

Figure 2 shows the March AB, with a complexity of 22n.
March AB is able to detect the two-cells 2-operations
DFS introduced in Section 2. If compared with March
RAW (26n), the state-of-the-art algorithm to target two-
cells 2-operations DFs, it provides the same fault
coverage reducing the test length by 4 operations.

The generation process allows also the definition of a set
of Fault Coverage Conditions (FCC) needed to cover
each of the FFMs described in Section 2. Each FCC
covers one or more FPs. It specifies the March Elements
that a March Test has to include to detect the target FP. In
the sequel of the paper we will introduce the coverage
conditions for the set of dynamic faults listed in Section 2
to prove that the new generated March Tests satisfy all
the conditions.

{c(w0) ⇔(w1,r1,w1,r1,r1) c (w0,r0,w0,r0,r0) }

 M1 M2 M3
Figure 1: March AB1 O(n) = 11n

{c(w1) ⇓ (r1,w0,r0,w0,r0) ⇓(r0,w1,r1,w1,r1) ⇑(r1,w0,r0,w0,r0)

 M1 M2 M3 M4

⇑(r0,w1,r1,w1,r1) c(r1)}

 M5 M6
Figure 2: March AB O(n) = 22n

4. Fault Coverage Condition
Fault Coverage Conditions (FCC) can be directly derived
from the Functional Fault Model (FFM) definitions and in
particular from the Fault Primitives (FPs) composing each
FFM.

FCCs are expressed using the March Test notation by
adding the following symbols:

Paper 33.3 INTERNATIONAL TEST CONFERENCE 4

• ‘…’: any operation

• ‘OP(d)’: every operations using the value d, d ∈
{0,1} (e.g. OP(1) means w1 or r1)

• ‘(…)*’: the operations included in bracket can be
repeated 0 or more times

• ‘(…)+’: the operations included in bracket can be
repeated one or more times

• ‘[…]’: includes one relation between two or more
March Elements. A relation is specified by the
logical operators between March Elements (AND,
OR). As an example, the coverage condition [M1
M2 OR M3 M4] AND M5, where Mi is a March
Element, means that the March Test has to include
M1 M2 AND M5 or M3 M4 AND M5. Note that
the sequence Mi Mj in a FCC means that the
March Test must contain Mi immediately followed
by Mj.

4.1 Single-Cell Coverage Conditions
By analyzing the FPs introduced in Section 2, we can
compact their notation as shown in Table 3, where
x∈{0,1} and y=not(x).

FFM Fault Primitives
Fault
Primitives

(compact)

dRDF
<0w0r0/1/1>,<1w1r1/0/0>,

<0w1r1/0/0>,<1w0r0/1/1>

<xwxrx/y/y> ,

<xwyry/x/x>

dDRDF
<0w0r0/1/0>,<1w1r1/0/1>,

<0w1r1/0/1>,<1w0r0/1/0>

<xwxrx/y/x>,

 <xwyry/x/y>

dIRF
<0w0r0/0/1>,<1w1r1/1/0>,

<0w1r1/1/0>,<1w0r0/0/1>

<xwxrx/x/y>,

<xwyry/y/x>

Table 3: Single-cell 2-operations Dynamic FFM (compact
notation)

Figure 3 shows the list of FCCs for the single-cell 2-
operations DFS covering FPs in Table 3.

As an example, FP1=<0w0r0/1/1> is covered by FCC1.
The March Test c(w0) c(w0,r0) fulfill FCC1. The former
March Element initializes the memory array to 0, whereas
the latter one includes the operations w0,r0 that excite and
observe FP1. In a similar way we can build a March Test
for each FP.

Figure 3 shows that FP=<xwxrx/x/y> is detected by FCC1
or FCC3 and FP=<xwyry/y/x> is detected by FCC2 or
FFC4. Since each FFM is composed of several FPs, in
order to cover the whole FFM the March Test must

include all the FCCs of the FPs composing the FFM.
Table 4 reports, for each FFM (column 1), the related set
of FPs (column 2) and, for each FP, the relative FFCs
(column 3).

FCC1:

[c((…)*,OP(x)) c(wx,rx,(…)*) or c((...)*,OP(x),wx,rx,(…)*)]

FCC2:

[c((…)*,OP(x)) c(wy,ry,(…)*) or c((...)*,OP(x),wy,ry,(…)*)]

FCC3:

[c((...)*,OP(x)) c(wx,rx,rx,(…)*) or c((...)*,OP(x)) c(wx,rx)
c(rx,(…)*) or c((...)*,OP(x),wx,rx,rx,(…)*) or c((...)*,OP(x), wx,rx)
c(rx (…)*)]

FCC4:

[c((...)*,OP(x)) c((wy,ry) +,ry,(…)*) or c((...)*,OP(x)) c((wy,ry)+)
c(ry,(…)*) or c((...)*,OP(x), (wy,ry)+,ry,(…)*) or c((...)*,OP(x),
(wy,ry) +) c(ry,(…)*)]

Figure 3: Single-Cell Fault Coverage Conditions

FFM FP FFC

<0w0r0/1/1> FFC1

<1w1r1/0/0> FFC1

<0w1r1/0/0> FFC2
dRDF

<1w0r0/1/1> FFC2

<0w0r0/1/0> FFC3

<1w1r1/0/1> FFC3

<0w1r1/0/1> FFC4
dDRDF

<1w0r0/1/0> FFC4

<0w0r0/0/1> FFC1 or FFC3

<1w1r1/1/0> FFC1 or FFC3

<0w1r1/1/0> FFC2 or FFC4
dIRF

<1w0r0/0/1> FFC2 or FFC4

Table 4: Condition for detecting single-cell dynamic fault

4.2. Two-cell coverage conditions
The coverage conditions for two-cell DFs are more
complex than those for single-cells. The main reason is
that one has to take in account the relation between
aggressor and victim cells. As shown in Section 2, the
possible relations are: “a<v” and “v>a”; each condition
has to cover both of them. To tackle the problem we had
to specify the address order in the MEs. The complete list
of two-cell FCCs is shown in Figure 4.

Paper 33.3 INTERNATIONAL TEST CONFERENCE 5

FCC5:
[c((…)*,OP(x))⇑(rx,(…)*,wx,rx,(…)*) and c((…)*,OP(x))⇓(rx,(…)*,wx,rx,(…)*)] or
[c((…)*,OP(y))⇑((…)*,OP(x),wx,rx)⇑(rx,(…)*) and c((…)*,OP(y))⇓((…)*,OP(x),(wx,rx) ⇓(rx,(…)*)]

FCC6:
[c((…)*,OP(y))⇑(ry,(…)*,OP(x),wx,rx) and c((…)*,OP(y))⇓(ry,(…)*,OP(x),wx,rx)] or
[⇑((…)*,OP(x),wx,rx,(…)*,OP(y))⇑(ry,(…)*)and ⇓((…)*,OP(x),wx,rx,(…)*,OP(y))⇓(ry,(…)*)]

FCC7:
[c((…)*,OP(x)) ⇑(rx,(…,OP(x))*,wy,ry,(…)*) and c((…)*,OP(x)) ⇓(rx,(… ,OP(x))*,wy,ry, (…)*)] or
[c((…)*,OP(x)⇑((…,OP(x))*,wy,ry,OP(x))⇑(rx, (…)*) and c((…)*,OP(x)⇓((…,OP(x))*,wy,ry,OP(x))⇓(rx, (…)*)]

FCC8:
[c((…)*,OP(x) ⇑(rx,(…,OP(x))*,wy,ry,(...,OP(y))*) ⇑(ry,(…)*) and c((…)*,OP(x)) ⇓(rx,(…,OP(x))*,wy,ry,(...,OP(y))*) ⇓(ry,(…)*)] or
[c((…)*,OP(y)) ⇑((…)*,OP(x),wy,ry)⇑(ry,(…)*,) and c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry) ⇓(ry,(…)*)]

FCC9:
[c((…)*,OP(x)) c((…,OP(x))*,wx,rx,(...,OP(x))*)] or [c((…)*,OP(x)) ⇑((…,OP(x))*,wx,rx,(...)*,OP(y)) and c((...)*,OP(x)) ⇓((…,OP(x))*,
wx,rx,(...)*,OP(y))] or [⇑((…)*,OP(x), wx,rx,(...,OP(x))*) and ⇓((…)*,OP(x), wx,rx,(...,OP(x))*)]

FCC10:
[c((…)*,OP(y)) c((…)*,OP(x),wx,rx, (…)*,OP(y))] or [⇑((…)*,OP(x),wx,rx, (…)*,OP(y)) and ⇓ ((…)*,OP(x),wx,rx, (…)*,OP(y))] or
[c((…)*,OP(y)) ⇑((…)*,OP(x),wx,rx, (…)*) and c((…)*,OP(y)) ⇓((…)*,OP(x),wx,rx, (…)*)]

FCC11:
[c((…)*,OP(x)) ⇑((…,OP(x))*,wy,ry, (…)*) and c((…)*,OP(x)) ⇓((…,OP(x))*,wy,ry, (…)*)] or [c((…)*,OP(y)) ⇑((…)*,OP(x),wy,ry,
(…)*,OP(x)) and c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry, (…)*,OP(x))]

FCC12:
[c((…)*,OP(y)) c((…)*,OP(x),wy,ry,(...,OP(y))*)] or [c((…)*,OP(y)) ⇑((…)*,OP(x),wy,ry, (…)*) and c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry,
(…)*)] or [c((…)*,OP(y)) ⇑((…)*,OP(x),wy,ry, (…)*) and c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry, (…)*)]

FCC13:
[c((…)*,OP(x)) c((…,OP(x))*,wx,rx) c(rx,(…)*)]or [c((…)*,OP(x)) c((…,OP(x))*,wx,rx,rx, (…)*)]or [c((…)*,OP(y))
⇑((…)*,OP(x),wx,rx)⇑(rx,(…)*) and c((…)*,OP(y)) ⇓((…)*,OP(x),wx,rx) ⇓(rx, (…)*)]

FCC14:
[c((…)*,OP(y)) c((…)*,OP(x),wx,rx,rx, (…)*,OP(y))]or [c((…)*,OP(y)) ⇑((…)*,OP(x),wx,rx)⇑ (rx, (…)*) and c((…)*,OP(y))
⇓((…)*,OP(x),wx,rx) ⇓(rx,(…)*)]

FCC15:
[c((…)*,OP(x)) ⇑((…,OP(x))*,(wy,ry) +) ⇑(ry,(…)*) and c((…)*,OP(x)) ⇓((…,OP(x))*,(wy,ry) +) ⇓(ry,(…)*)] or [c((…)*,OP(y))
⇑((…)*,OP(x),wy,ry,ry, (…)*,OP(x)) and c((…)*,OP(y)) ⇓((…)*,OP(x),wy,ry,ry, (…)*,OP(x))]

FCC16:
[c((…)*,OP(y)) c((…)*,OP(x),wy,ry,ry,(...,OP(y))*)] or [((…)*,OP(x)) ⇑((…,OP(x))*,(wy,ry) +) ⇑(ry, (…)*) and
c((…)*,OP(x)) ⇓((…,OP(x))*,(wy,ry) +) ⇓(ry, (…)*)]

Figure 4: Two Cell Fault Coverage Condition

Paper 33.3 INTERNATIONAL TEST CONFERENCE 6

As for single cells, each FCC covers a single FP by
specifying the March Element that a March Test must
include to detect the target FP.

The dCFds (see Section 2) is composed of
<xwxrx;x/y/->, <xwxrx;y/x/->, <xwyry;x/y/-> and
<xwyry;y/x/->; dCFrd (Section 2) is composed of
<x;xwxrx/y/y>, <y;xwxrx/y/y>, <x;xwyry/x/x> and
<y;xwyry/x/x>; dCFdrd (Section 2.2) is composed of
<x;xwxrx/y/x>, <y;xwxrx/y/x>, <x;xwyry/x/y> and
<y;xwyry/x/y>; dCFir (Section 2.2) is composed of
<x;xwxrx/x/y>, <y;xwxrx/x/y>, <x;xwyry/y/x> and
<y;xwyry/y/x>. FP=<x;xwxrx/x/y> is detected by FCC9
or FCC13, FP=<y;xwxrx/x/y> is detected by FCC10 or
FFC14, FP=<x;xwyry/y/x> is detected by FCC11 or
FFC15 finally FP=<y;xwyry/y/x> is detected by FCC12
or FFC16. Table 4 reports for each fault model
(column 2) its set of FP (column 3) and for each FP
the relative fault coverage conditions (column 4).

FFM FP FFC

<xwxrx;x/y/-> FFC5
<xwxrx;y/x/-> FFC6
<xwyry;x/y/-> FFC7

dCFds

<xwyry;y/x/-> FFC8
<x;xwxrx/y/y> FFC9
<y;xwxrx/y/y> FFC10
<x;xwyry/x/x> FFC11 dCFrd

<y;xwyry/x/x> FFC12
<x;xwxrx/y/x> FFC13
<y;xwxrx/y/x> FFC14
<x;xwyry/x/y> FFC15 dCFdrd

<y;xwyry/x/y> FFC16
<x;xwxrx/x/y> FFC9 or FFC13
<y;xwxrx/x/y> FFC10 or FFC14
<x;xwyry/y/x> FFC11 or FFC15 dCFir

<y;xwyry/y/x> FFC12 or FFC16
Table 5: Condition for detecting two-cell dynamic faults

5. Comparing March Tests
In this section we compare the proposed March Tests
(March AB, March AB1) with the following published
March Tests:

• March C- [19]: {c(w0) ⇑(r0,w1) ⇑(r1,w0) ⇓(r0,w1)
⇓(r1,w0) c(r0)}

• March RAW1 [12]: {c(w0) c(w0,r0) c(r0) c(
w1,r1) c(r1) c(w1,r1) c(r1) c(w0,r0) c(r0)}

• March SS [8]: {c(w0) ⇑(r0,r0,w0,r0,w1)
⇑(r1,r1,w1,r1,w0) ⇓(r0,r0,w0,r0,w1)
⇓(r1,r1,w1,r1,w0) c(r0)}

• March RAW [12]: {c(w0) ⇑(r0,w0,r0,r0,w1,r1)
⇑(r1,w1,r1,r1,w0,r0) ⇓(r0,w0,r0,r0,w1,r1)
⇓(r1,w1,r1,r1,w0,r0) c(r0)}

Each March algorithm has been simulated by using the
memory fault simulator presented in [15]. Table 6
summarizes the fault coverage percentage obtained by
every test.

In Table 7 and 8, for each FCC introduced in Section 4
and for each of the considered March Tests we identify
the ME where the FCC appears.

Both tables use the following notation:
‘Mi’ (i=1,2…,z) denote the i-th March Element,
‘Mi:Mj’ denotes that FCC occurs between i-th ME and
j-th ME; instead ‘Mi,Mj’ denotes that the FCC
occurrence appear both in Mi and Mj.

We compare our tests with March RAW and March
RAW1 [12] since they are explicitly designed to cover
the same set of dynamic fault targeted by March AB
and March AB1. We also consider March C- since in
[13] using an address order customized on the physical
layout of the memory it is used to detect dynamic
faults. Nevertheless, in our experiments, we consider
only the classic March C- to show that, without any
information about the memory layout, the fault
coverage becomes very marginal (around 0,39%)
(Table 6).

Of particular interest is the comparison with March SS
[8], originally designed to cover the full set of memory
static faults. As shown in Table 6, March AB has the
same complexity of March SS, it covers the same set
of static faults but it covers dynamic faults, as well.
Furthermore, due to its regular and symmetric
structure, March AB becomes a natural candidate for
memory BIST architectures, making our solution very
attractive for the industry.

Comparison results show that the proposed March
Tests provide the same fault coverage of the known
ones, but they reduce the test complexity, and
therefore the test time.

Paper 33.3 INTERNATIONAL TEST CONFERENCE 7

Single-cell Two-cell

MT O(n) dRDF dDRDF dIRF dCFds dCFrd dCFrdr dCFir

C- 10n 0.39% 0.39% 0.39% 0.83% 0.39% 0.39% 0.39%
AB1 11n 100% 100% 100% 0% 50% 50% 50%
RAW1 13n 100% 100% 100% 0% 50% 50% 50%
SS 22n 25% 0.39% 25% 50% 50% 0.39% 50%
AB 22n 100% 100% 100% 100% 100% 100% 100%
RAW 26n 100% 100% 100% 100% 100% 100% 100%

Table 6: Simulation results

Single-cell
MT O(n) FFC1 FFC2 FFC3 FFC4

C- 10n - - - -

AB1 11n M2,M3 M1:M2, M2:M3 M2,M3 M1:M2, M2:M3

RAW1 13n M1:M2, 6:M7 M3:M4,M8:M9 M1:M2:M3,M5:M6:M7 M3:M4:M5,
M7:M8:M9

SS 22n M2,M3,M4,M5 - - -

AB 22n M2,M3,M4,M5 M2,M3,M4,M5 M2:M3,M3:M4,M4:M5
,M5:M6

M2:M3,M3:M4,M4:M5
,M5:M6

RAW 26n M2,M3,M4,M5 M2,M3,M4,M5 M2,M3,M4,M5 M2:M3,M4:M5,M5:M6

Table 7: Evidence of single-cell FCCs

Two-cell (FFC)
MT O(n) 5 6 7 8 9 10 11 12 13 14 15 16

C- 10n - - - - - - - - - - - -
AB1 11n - - - - M2,M3 - - - M2,M3 - - -

RAW1 13n
- - - - M1,M2 - - - M1:M2:M3

,
M5:M6:M7

- - -

SS 22n

M1:M2,
M2:M3,
M3:M4,
M4:M5

M2,M3,
M4,M5

- - M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

- - - - - -

AB 22n

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M2,M3
M4,M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

RAW 26n

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

M1:M2,
M2:M3,
M3:M4,
M4:M5

Table 8: Evidence of two-cell FCCs

Paper 33.3 INTERNATIONAL TEST CONFERENCE 8

6. Conclusions

This paper proposed two new March Tests targeting
dynamic memory faults. March AB and March AB1 have
the same fault coverage of already published algorithms
(March RAW and March RAW1) addressing the same
fault list but they reduce the complexity of 4 and 2
operations respectively. The proposed March Tests have
been obtained by applying an automatic March Tests
generation algorithm.

To prove the correctness of the new March Tests the
coverage conditions needed to detect each fault in the
fault list have been proposed.

In addition, the comparison between March AB and the
well-known March SS for static fault shows that March
AB has the same length of March SS but it improves the
fault coverage by detecting both static and dynamic
faults, making our solution very attractive industrially.

7. References
[1] International Technology Roadmap for Semiconductors,

“International technology roadmap for semiconductors
2004 Update”, http://public.itrs.net/Home.htm, 2004

[2] A. J. van de Goor, “Testing Semiconductor Memories:
theory and practice”, Wiley, Chichester (UK), 1991

[3] S. Hamdioui, R. Wadsworth, J.D. Reyes, A. J. van de
Goor, “Importance of Dynamic Faults for new SRAM
Technologies”, ETW 2003, 8th IEEE European Test
Workshop, 2003, pp. 29 -34

[4] Z. Al-Ars, Ad J. van de Goor, “Static and Dynamic
Behavior of Memory Cell Array Opens and Shorts in
Embedded DRAMs”, DATE 2001, IEEE Design
Automation and Test in Europe, 2001, pp. 496-503.

[5] A. J. van de Goor, “Using March Tests to Test SRAMs”,
IEEE Design & Test of Computers, Volume: 10 Issue: 1,
March 1993 pp: 8 –14.

[6] R.D. Adams and E.S. Cooley, “Analysis of a Deceptive
Destructive Read Memory fault Model and Recommended
Testing”, NATW 1996. 5th IEEE North Atlantic Test
Workshop, 1996

[7] R. Dekker, F. Beenker, L. Thijssen, “A Realistic Fault
Model and Test Algorithms for Satic Random Acces
Memory”, IEEE Transaction on Computer-Aided
Design, Volume: 9, Issue: 6, June 1990

[8] S. Hamdioui, Ad J. van de Goor, M. Rodgers, “March SS:
A Test for All Static Simple RAM Faults”, MTDT 2002:
IEEE International Workshop on Memory Technology,
Design and Testing, 2002 pp. 95 – 100.

[9] M. Marinescu, “Simple and Efficient Algorithms for
Functional RAM Testing”, ITC 1982, IEEE International
Test Conference, 1982, pp. 236-239.

[10] R. Nair, “An Optimal Algorithm for Testing Stuck-at
Faults Random Access Memories”, IEEE Transaction on
Computer, Vol. C-28, No. 3, 1979, pp. 258-261.

[11] D.S. Suk, S.M. Reddy, “A March Test for Functional
Faults in Semiconductors Random-Access Memories”,
IEEE Transaction on Computer, Vol C-30, No. 12, 1981,
pp. 982-985.

[12] S. Hamdioui, Z. Al-Ars, A. J. van de Goor, “Testing Static
and Dynamic Faults in Random Access Memories”, VTS
2002, 20th IEEE VLSI Test Symposium, 2002, pp.

[13] L. Dilillo,P. Girard, S. Pravossoudovitch, A. Virazel, S.
Borri, M. Hage-Hassan, “Dynamic read destructive fault
in embedded-SRAMs: analysis and march test solution”,
ETS 2004, 9th IEEE European Test Symposium, 2004, pp.
140-145.

[14] A. J. van de Goor, Z. Al-Ars, “Functional Memory Faults:
A Formal Notation and a Taxonomy”, VTS 2000, 18th
IEEE VLSI Test Symposium, 2000, pp. 281-289.

[15] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto,
“Specification and design of a new memory fault
simulator”, ATS 2002, 11th IEEE Asian Test Symposium,
2002.pp. 92 – 97.

[16] Z. Al-Ars and A.J. van de Goor, “Approximating Infinite
Dynamic Behavior for DRAM Cell Defects”, VTS 2002,
20th IEEE VLSI Test Symposium, 2002, pp.401-406.

[17] D. Niggemeyer, M. Redeker, J. Otterstedt, “Integration of
non-classical faults in standard March tests”, MTDT 1998,
IEEE International Workshop on Memory Technology,
Design and Testing, 1998, pp. 91 -96

[18] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto,
“Automatic March Tests Generation for Static and
Dynamic Faults in SRAMs”, ETS 2005, 10th IEEE
European Test Symposium, 2005.

[19] M. Marinescu, “Simple and Efficient Algorithms for
Functional RAM Testing”, Proc. Int. Test Conf., 1982,
pp.236-239.

