
DATA CRITICALITY ESTIMATION IN SOFTWARE APPLICATIONS

A. Benso, S . DiCarlo, G. DiNatale, P. Prinetto, L. Tagliaferri

Politecnico di Torino
Dipartimento di Automatica e Idorrnatica

Corso Duca Degli Ab& 24, I- 10 129, Torino, Italy
Email: { benso,dicarlo,dinatale,prinetto,tagliaferri } @polito.it

Abstract
In safety-critical applications it is often possible to
exploit software techniques to increase system’s fault-
tolerance. Common approaches are based on data
redundancy to prevent data corruption during the
software execution. Duplicating most critical variables
only can significantly reduce the memory and
performance overheads, while still guaranteeing very
good results in terms of fault-tolerance improvement. This
paper presents a new methodology to compute the
criticality of variables in target software applications.
Instead of resorting to time consuming fault injection
experiments, the proposed solution is based on the run-
time analysis of the variables’ behavior logged during
the execution of the target application, under different
workloads.

1. Introduction

The use of computer-based systems pervades all areas of
our lives from common house appliances, such as
microwave ovens and washing machines, to complex
applications like aircrafts, trains and medical control
systems. In many situations a very large number of new
and powerful digital systems play a key role in critical
tasks that require human safety and data security.

Devices miniaturization, increasing clock frequencies and
the introduction of microprocessors into electrically active
environments increase the incidence of transient errors,
consequently decreasing the dependability of digital
systems [l]. In this scenario, high reliability becomes
mandatory to guarantee the required level of
dependability. Both NASA and IBM have highlighted that
the high miniaturization and high working frequency that
represent nowadays circuits working conditions, cause
them to be extremely sensitive to the effects of ionizing
radiations and noise sources. One of the most probable

consequences of these disturbs is the Single Event Upset
(SEU) [2][3] which consis ts in the change of the content of
a single bit of a memory element.

Classical approaches for dependable digital systems
development rely on hardware redundancy. Although
they are effective in protecting against transient faults,
they are usually expensive. To lower costs, software
redundancy techniques can be exploited. These
approaches are usually referred to as Software
Implemented Hardware Fault Tolerance (SIHFT) [4][5].

Different SIHFT techniques have been proposed to
address different types of hardware error sources [6][7].
The basic approach consists in improving the Built-In
Error Detection Mechanisms of the system (exceptions,
memory protection, etc.) by a set of carefully chosen
software error detection mechanisms [7]. These
techniques include Algorithm Based Fault Tolerance
(ABFT) [8], Assertions, and Variable Duplication [9-151.

The present paper focuses on variable duplication
techniques which proved to be flexible, general and easy
to implement. The basic concept is the duplication of the
variables in a program and the insertion of consistency
checks before each variable read operation.

In some cases, safety-critical applications have strict
constraints in terms of memory occupation and system
performances. If on one hand the duplication of the whole
set of variables and the introduction of a consistency
check before every read operation represent the optimum
choice from the fault tolerance point of view, on the other
hand the resulting overhead can be unacceptable.

We consider faults appearing in the data memory of each
variable only. With this assumption, the duplication of the
whole set of variables guarantees 100% of faults covered
by the software redundancy technique. On the other side,
the duplication of a lower percentage of variables all0 ws

Paper 32.2

802
ITC INTERNATIONAL TEST CONFERENCE

0-7803-81 06-8/03 $1 7.00 Copyright 2003 IEEE

trading-off the fault coverage with the CPU time and
memory occupation overhead. One of the problems in this
context is how to select the most critical variables to be
duplicated out of the whole variable set of the application.

A previously proposed technique to measure the
criticality of the variables in a program can be found in [9].
Variable Criticality is intended to be an estimation of the
probability to get wrong program results when the variable
itself is corrupted. It is strictly related to the harmful
situation in which the application ends producing
incorrect results while the application gives the impression
to terminate correctly. This type of malfunction is called
Fail-Silent Violation [16][171. Researches have shown the
relationship between this type of fails and the appearance
of a fault in memory locations [2][3].

In [9] the authors use empirical approaches to estimate the
criticality of the program variables. These techniques are
based on the researcher’s know-how and lack of a formal
model. Another possibility is to use fault injections
techniques, which are very accurate but extremely time
consuming. In our approach we will use fault injection
only for the initial formalization of a model that will allow
us to compute the variable criticality for the variables of
any target application.

The paper is organized as follow: Section 2 describes the
formal model whereas Section 3 reports experimental
results performed on a set of benchmarks. Section 4 shows
data about the computation time and finally Section 5
discusses limitation and future improvements whereas
Section 6 summarizes the main contributions of the work
and concludes the paper.

2. Model
The goal of the present work is the definition of an
analytical model able to compute the criticality of a
variable in a program. Using this model, designers of
dependable systems can reduce the overhead introduced
by software fault tolerance approaches based on data
redundancy (i.e. variable duplication) by identifying
critical data only.

What we define is a Criticality Function CF(v) where v E

{set of variables of the program). As previously
explained the criticality of a variable is intended to be an
estimation of the probability to get wrong program results
when the variable itself is corrupted, i.e., to have a Fail
Silent Violation (See Section 1) due to the corruption of
the variable; in other words the criticality for each variable
is a measure of how an application is sensitive to errors
injected in its own memory location.

The CF(v) is a global value related to a program execution
and it represents the average criticality. At each moment it
is possible to define an Instantaneous Criticality
Function ICF(v,t) where v E {set of variables of the
program), representing the criticality of a variable at a
given time t of the program execution. The first step of the
model definition is the identification of the ICF(v, t).

We define Life Time (&) of a variable the time period in
which the variable is allocated in memory. During the T,*
of a variable, it is possible to identify different events:

Creation (C): it represents the declaration of the
variable in the program. This event causes the
variable to be allocated in memory;

Write (w): it represents an assignment statement in
the program;

Read (R) : it represents any instruction involving the
use of the variable content;

Last Read (LR) : it represent the last time the variable
is used. From this moment on, the variable is still
present in memory but its value is no longer used.

Death (0) : the variable is removed from the memory.

Each event modifies the value of the instantaneous
criticality. The ICF for a given variable is defined only
during the l&. When a Creation event occurs, a memory
portion is allocated in order to store the variable’s value.
At this moment, the ICF is equal to 0 since the variable
exists but its content has no meaning for the program and
an error in the variable cannot affect its behavior. A Write
event changes the ICF value. At the Write time the
content of the variable starts to have a meaning. We
define K the ICF value at Write time. It is intuitive that
after a Write event the ICF value remains constant, since
the probability of an error in the variable is constant in
time. At each Read event, the value of the variable is
propagated to others variables. This event can modify the
criticality since a corrupted value can be propagated to
others variables. This criticality modification can be
expressed with an increment p of the ICF. When a Last
Read event occurs the variable content is no longer used
in the program so its criticality drops to zero. Finally, when
the Death event occurs, the ICF stops to be defined.

Analytically we can define for each instant t and for each
variable i:

C S t S W I: W S t S R
/3+ZCFI,,(v,R,fl) R S t S R
/3+ICF1,,(v,K,/3) R S t S L R

ZCFi (v , t , K , B) =

L R S t S W I: L R S t S D

Paper 32.2
803

A variable can be created and killed several times during a
program execution. Figure 1 shows an example of ICF for a
single variable. As shown in Figure 1 the ICF is a step
function.

Criticillsty

I I I I I I I 1 1 -

C..."O" w. R..d La.. wrth writ. R..d R..d L a i t D.a*th
R..d R..d

Figure 1: instantaneous Criticality Function

The ICF has to be defined for each variable in the program.
Considering that in a program exist different variable
types, some considerations should be made. Pointers in
general are more critical then normal variables. To deal
with this aspect we introduce a parameter P that multiplies
the ICF function in the case of pointers variables.

From the definition ofICF(t,v,K,P,P) we can define:

ICF(v,t, K , p, P). dt 1 CF(V, K , p, P) = -

The problem to be solved is the correct definition of the
parameters K, pand P to have global values not
dependent from the application. The definition of K, p and
P will be possible through fault injection experiments, but
once defined the calculation of the CF and ICFfunctions
will be very fast and precise for any application.

The computation of the model's parameters is performed
through a statistical analysis on a golden application. The
chosen application is a programmable Fast Fourier
Transfer (FFT) calculation routine. The correctness of the
obtained values of K, p and P will be proven to be general
on a set of different benchmarks.

The steps executed to set-up the model (i.e., to calculate
the parameters K, p and P) are listed below and explained
in details in the next subparagraphs:

1. Parametric CF computation: the parametric
criticality function CF,(v,K,P,P) is built for the
golden application;

Fault Injection Campaign: an experimental CFe(v) is
calculated resorting to fault injection experiments;

2.

3. Parameters computation: the parameters are
computed trying to minimize the difference between
the CF, and the CF,,

2.1 Parametric CF Computation
An ad-hoc C++ template library has been designed with
the main function of logging the behavior of the variables
of a target software application. The library records all the
events creation, write, read, last read and death of a
variable) occurred during a program execution together
with their happening time. The library is based on the
concept of C++ templates [18]. Each variable declaration is
replaced with an instance of an ad-hoc C++ class able to
automatically log the previously described events.

The resulting program is functionally equivalent to the
original but it generates, at the end of the execution, an
event log file useful for our analysis. Starting from the
obtained log files a parametric ICF function is calculated
according to what defined in Section 2.

The ICF computation is critical in the proposed approach.
The accuracy of the results strongly depends on the input
stimuli of the target application. To obtain best results
during the computation of the ICF the target application
should reach all the possible paths. For this reason the
golden application'has been executed on a set of 16
different input stimuli to be sure to excite all the possible
control paths of the application. The log of the different
program executions has been chained to obtain an average
value for the resulting CF.

As described in Section 2 using the parametric ICF it is
possible to obtain the parametric CF as:

2.2 Fault Injection Campaign
As mentioned in the introduction, the criticality of a
variable is strictly related to the number of Fail Silent
Violations occurring in a program. Using a fault injection
tool able to measure the number of this type of errors it is
possible to obtain an experimental criticality function
CFe (v)

A fault injector tool developed in Politecnico di Torino has
been used for this purpose. The fault injector is able to
deal with the SEU (Single Event Upset) fault model, which
consists of a bit flip in a memory locatiodvariable of the
program.

Each variable in the golden application has been injected
1000 times. The fault injection campaign allows the
classification of the program behavior into three
categories:

Paper 32.2

804

Fail silent violation : the application ends producing
incorrect results;

Crash: the program does not finish;

No Effect: the program produces the correct results.

As mentioned before we consider the number of FSV as
the experimental criticality.

2.3 Parameters computation
The computation of the parameters K, p, P i s performed in
order to minimize the difference between CF, and the CF,.
We define a function h@,K,P) as the sum of all the
squares deviation (CF,- CFJ2.

The problem is now the definition of K , p, and P able to
minimize the function h@,K,P). This problem can be
expressed in a formal way as follow:

= O

The problem has been solved using DeriveTM software by
Texas Instruments [19] and the resulting values are listed
below:

p* = 4.46*10-’

K * =89.14 i P* =1.14

The values appear to be reasonable. The Pparameter
confirms our hypothesis that an error into a pointer is
more catastrophic than an error into others variables. The
value of K shows that the main contribution to the
criticality is given by the time elapsed between write and
last-read operations whereas the low value for pmeans
that the criticality is only slightly influenced by the
number of read operations to the variable. This is an
interesting result since it is in contrast with the empirical
approach proposed in [9].

Figure 2 shows a graph containing the CF,(v) and the
CF,(V,K*,~*,P> ordered by variable criticality. As
previously explained, CF,(v) is obtained by performing
fault injection campaign on the target application whereas
CF,(V,K*,~*,P*) is analytically computed using the
proposed model. As expected the two values are similar.

K 2 0

The two constraints are introduced to avoid negative
values for the resulting criticality.

40
35

% .= 30

.o 20

-
25

c .-
L 15

10

5
0

Variable Name

Figure 2: CFe(v) and the CFp(v,K*$*,P*) for the FFT application

Paper 32.2

805

What we have to demonstrate in the next section is that
the same parameters are valid if used to compute the
CF,(V,K',P:P') for a different application, so that the
criticality of a variable can be obtained without resorting
to fault injection experiments.

3. Experimental Results
A collection of experiments has been set up to prove the
effectiveness of the approach and to show that the values
of p, K and P are application independent.

Four programs have been used to validate the model: the
Dhrystone benchmark, two custom idf loat performance
benchmarks and the jpeg-2000 compression algorithm The
performance benchmarks have been designed to stress the
model to a maximum extent: the former (Performance
Benchmark 1) is composed of variables having very
different criticalities, i.e., some variables are read much
more then others; the second (Speed Benchmark 2) is
composed of variables with the same access rate, i.e., all
the variables are read and written with the same frequency.

For each benchmark we obtained the experimental
criticality of the variables using fault injection. Each
variable has been injected one thousand times to obtain
its criticality value. In a second step the parametric
criticality CF,(K,P,P) has been computed using the
proposed model where the values of K, p and P are the
ones shown in Section 3.

The following figures show, for each benchmark and for
each variable, the two criticalities and the standard
deviations between the two values. It is evident that, the
values of CF, are very close to the values of CF, obtained
by fault injection. Since the two performance benchmarks
have been designed to stress the model the standard
deviations are higher w.r.t. a general application like the
Dhrystone but anyway their values are acceptable. These
results allow us to state that the values of K , p and P
obtained in Section 3 are general enough to be reused with
others applications. Obviously to be more confident in the
obtained results the model should be applied to a more
significant number of test cases in order to obtain
statistical results and to refine the model's parameters.

Standard Deviation 1.29

25

20
>
= 15 m
0
U lo

U

.- .-
6 5

0

Variable Name

-1
Figure 3: CFe(v) and the CFp(v,K*,P*,P*) for the Dhrystone

Paper 32.2
806

Standard Deviation 4.82

" 1

~ ~ ~ w w w w w w w w w w w ~ w w w w ~ ~ w
- N ~ - N p - m - C n - ~ - - - w - - - N ~ -

0 0 CO 2 4 P N C n m c o W

Variable Name

Figure 4: CFe(v) and the CFp(v,K*$*,P*) for the Performance Benchmark 1

Standard Deviation 6.11

14 CFe(v) CFp(v) I
Figure 5: CFe(v) and the CFp(v,K*,B*,P*) for the Performance Benchmark 2

Paper 32.2
807

Standard Deviation 3.90

100

80

60
0 .= 40
0

20

0

%
c, .-
.-
L

Variable name

Figure 6: CFe(v) and the CFp(v,K*,P *,P*) for the JPEG-2000 compression

To underline the accuracy in evaluating variable criticality variables. It is clear that with our new, methodology it is
we compare the results obtained by our experiments with possible to reach higher dependability levels using a lower
the ones obtained by the empirical method presented in [9] amount of redundancy (i.e., number of duplicated
(ReCCo). Figure 7 shows, for the golden application, the variables).
FSV reduction related to the percentage of duplicated

100.00%
90.00%

= 80.00%
g 70.00%
2 60.00%

? 40.00%
50.00%

"I V V . V V , "

20.00% I ,</ LL

1 10.00% I ;i/

I I I+ Our Model --b ReCCo I
Figure 7: Reduction of Fail-Silent Violations (FSV) via Variable Duplication

4. Timings
executions depends on the set of inputs needed to excite
all the control paths of the application under test.

One of the goals of our approach is to reduce the time
To demonstrate why it is more convenient to compute the needed to estimate the criticality of the variables. Whereas

fault injection experiments are always very time criticality using our methodology instead of fault injection,
we compared the time required for the four presented consuming, the proposed approach is based on few injection campaigns with the time required to compute the executions of the target application only. The number of criticality using the proposed approach.

Paper 32.2

808

Table 1 shows the time needed to compute the CF, (using
fault injection campaign) and the related time needed to

obtain the CF, (using the proposed model). It can be seen
in all the test cases reduction ranges from 94% to 98%.

Table 1: CFe and CFp timings

5. Limitation and Future Work
One of the main limitations in the proposed approach is in
the computation of the ICF. This critical task requires the
execution of the target application under a set of input
stimuli able to excite all the possible control flow paths.

A non-complete set of input stimuli can lead to an
erroneous value of the criticality. Until now, the task of
generating the input stimuli has been performed by hand.
This approach is feasible for small application only. To
extend the approach to larger applications this task has to
be automated.

Similar problems are common in the field of Software
Testing. Future works can investigate the use of formal
approach for the generation of the input stimuli of the
application.

6. Conclusion
This paper proposed a formal methodology to compute
the criticality of the set of variable of a program. In
contrast with the previously proposed techniques, which
are based on empirical approaches and on fault injections
experiments, the proposed methodology uses fault
injection only for the initial formalization of a model that
allows computing the criticality for the variables of any
target application. The main advantages of the model are
formalization, accuracy of the results and low computation
time. The methodology has been applied on a set of
different benchmarks with results always comparable to
the ones obtained using fault injection. The experimental
results show also that the computed criticality allows
higher dependability level with lower percentage of
duplicated variables with respect to the previously
proposed approaches.

7. References
[l] F. Faccio, C. Detcheverry, M. Huhtinen CERN,

Geneva, Switzerland, “First evaluation of the Single
Event Upset (SEU) risk for electronics in the CMS

Experiment ‘; CMS NOTE 19981054 CERN, Geneva,
Switzerland.
http://tvdg 1 O.phy.bnl.gov/seutest.html
http://www.research.ibm.com/journal/rd/ziegl/
Ziegler.htm1
P.P. Shirvani, N. Oh, E.J. McCluskey, D.L. Wood,
M.N. Lovellette, K.S. Wood, ‘Sofiware-Implemented
Hardware Fault Tolerance Experiments: COTS in
Space “ International Conference on Dependable
Systems and Networks (FTCS-30 and DCCA -8), New
York (NY),2000, Page(s) B56-57.
P.P. Shirvani, N.R. Saxena, E.J. McCluskey,
“Software-implemented EDAC protection against
SEUs”, IEEE Transactions on Reliability, vol. 49
Issue: 3, Sep 2000, Page(s): 273 -284.
D. Todd Smith, T. A DeLong, B. W. Johnson, J. A.
Profeta 111, “An Algorithm Based Fault Tolerant
Technique for Safety Critical Applications ”,
Reliability and Maintainability Symposium,
Philadelphia, 1997.
M. Zenha Rela, H. Madeira, J. G. Silva,
“Experimental Evaluation of the Fail-Silent
Behavior in Programs with Consistency Checks”,
26th International Symposium on Fault-Tolerant
Computing (FTCS-26), Sendaj (J), 1996, Page(s). 394-
403.
K. H. Huang, J. A. Abraham, “Algorithm-Based
Fault Tolerance for Matrix Operations”, IEEE
Transaction on Computers, vol. 33, 1984, Page(s)

A. Benso, S. Chiusano, P. Prinetto. L. Tagliaferri,
“C/C++ source-to-source compiler for dependable
applications”, International Conference on
Dependable Systems and Networks, (FTCS-30 and
DCCA-8), New York 0 , 2 0 0 0 , Page(s): 71 -78.
A. Benso, S. Chiusano, P. Prinetto, “A software
development kit for dependable applications in
embedded systems ”, International Test Conference
(ITC 2000), Atlantic City, NJ, 2000, Page(s): 170 -178.
A. Benso, S. Di Carlo, G. Di Natale, L. Tagliafem, P.
Prinetto, “Validation of a software dependability

5 1 8-528 -

Paper 32.2

809

http://tvdg
http://www.research.ibm.com/journal/rd/ziegl

tool via fault injection experiments ”, Seventh
International On-Line Testing Workshop (IOLTW
2001), Taomina (IT), 2001, Page(s): 3 -8.

[I21 M. Rebaudengo, M. Sonza Reorda, M. Violante, P.
Cheynet, B. Nicolescu, R. Velazco, “System safety
through automatic high-level code transformations:
an experimental evaluation ”, Design Automation
and Test in Europe (DATE 2001), Munich (DE),
2001, Page(s): 297-301.

[13] B. Nicolescu, R. Velazco, M. Soma-Reorda, M.
Rebaudengo, M. Violante, “A software fault
tolerance method for safety-critical systems:
effectiveness and drawbacks ”, 15th Symposium on
Integrated Circuits and Systems Design, Port0
Alegre (Brazil), 2002, Page(s): 101 -106.

[14] M. Rebaudengo, M. Reorda, M.S. Violante, M.
Torchiano, “A source-to-source compiler for
generating dependable software”, First IEEE
International Workshop on Source Code Analysis
and Manipulation (SCAM 2001), Florance (Italy),
2001, Page(s): 33 42.

[I51 M. Rebaudengo, M. Sonza Reorda, M. Torchiano, M.
Violante, “An experimental evaluation of the

effectiveness of automatic rule-based
transformations for safety-critical applications”,
EEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT 2000), Yamanashi
(Japan), 2000, Page(s): 257 -265.

[161 A. M. Amendola, A. Benso, F. Como, L. Impagliazzo,
P. Marmo, P. Prinetto, M. Rbaudengo, M. Sonza
Reorda, “Fault Behavior Observation of a
Microprocessor System through a VHDL
Simulation-Based Fault Injection Experiment”,
EURO-VHDLP6, 1996, Geneva (CH), Page(s): 536-
541.

[I71 J. G. Silva, J. Carreira, H. Madeira, D. Costa, F.
Moreira, “Experimental Assessment of Para llel
Systems ”, 26th International Symposium on Fault -
Tolerant Computing (FTCS-26), Sendaj (J), 1996,
Page(s). 415424

[I81 The C t t Programming Language (Third Edition and
Special Edition) Addison-Wesley, ISBN 0-201-88954-
4 and CL201-70073-5.

[191 httd/education. ti.com/

Paper 32.2

81 0

