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A reactive BGK-type model: influence of elastic collisions
and chemical interactions

R. Monaco*®, M. Pandolfi Bianchi* and A. J. Soares’

“Dipartimento di Matematica, Politecnico di Torino, C. Duca degli Abruzzi 24, 10129 Torino, Italy
TDepartamento de Matematica, Universidade do Minho Gualtar, 4710-057 Braga, Portugal

Abstract. A BGK-type model for a reactive multicomponent gas undergoing chemical bimolecular reactions is here pre-
sented. The mathematical and physical consistency of the model is stated in detail. The relaxation process towards local
Maxwellians, depending on mass and numerical densities of each species, as well as on common mean velocity and tempera-
ture, isinvestigated with respect to chemical equilibrium. Such atrend is numerically tested within the hydrogen-air reaction
mechanism.

INTRODUCTION

A large piece of research works has been addressed to simplified kinetic models of the Boltzmann equation, stimul ated
by the mathematical complexity of the true collision operator. A wide literature evidentiates the relevance of BGK-type
models and their reliability also for computing gas transport properties far from equilibrium, assuming relaxation of
the distribution function towards either alocal Maxwellian or an anisotropic Gaussian [1, 2]. Extensions of BGK-type
models to multicomponent systems can be found in [3], and more recently in [4] where a model satisfying the main
properties of the true Boltzmann collision operator is presented. On this line, it seems to be a new interesting topic
to deal with a BGK approximation of the extended Boltzmann equation for chemically reacting gases. The general
structure of chemistry source terms, conservation and equilibrium properties in kinetic equations have been widely
focused in [5]. Morein detail considering bimolecular reactions, the exact kinetic equations which will be referred to
in thiswork are those derived in paper [6].

A first attempt to build a BGK-type model for a mixture of four gas species with bimolecular chemical reaction of

type
Al + Ay = Az + A4 ()]
has been performed in paper [ 7], where the kinetic equations have been written in the form
d fi = ~ o = .
8—t'+v-Vfi = vi [fi(v) — iV +Zl[f, fl(v), i=1,..,4 2

In Equation (2) f; denotesthe local Maxwellian distribution of speciesi depending on the number densities nj of each
i-species, common mean velocity u and temperature T , i. e.

The term %; approximates the true reactive operator &#;, introduced in Ref. [6], which includes the effects of the
inelastic chemical process. In % the chemical gain term involves mechanical equilibrium and chemical disequilibrium
in such away that the model verifies the indifferentiability principle and conservation of mass, momentum and total

energy (kinetic plusinternal chemical bond energy). Moreover the H —theorem holds true under a suitable hypothesis.

In the last part of the paper the behavior of the model is numerically tested with respect to its trend to equilibrium for
different initial conditions, in order to show the influence of elastic collisions and reactive interactions. The numerical

experiments are performed for the elementary reaction occurring in the Hydrogen-Air reaction mechanism, namely
H>O + H = OH + H, which istypical in Hydrogen combustion applications.

CP762, Rarefied Gas Dynamics: 24" International Symposium, edited by M. Capitelli
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KINETIC MODEL

With reference to Eq. (2), the microscopic state of a mixture of four gas species, say A, i = 1,...,4, is defined by
the one—particle distribution function f; = fi(t,x,v),t € R, x € R3, v € IR3 for each species A; with molecular mass
m; and internal energy E; such that m; + my = m3z + my4. In addition, setting AE = Ez + E4 — E; — E» > 0 the forward
reaction turns out to be the endothermic one. The time and space dependence, if useless, will be omitted in the sequel.

Exact equations. The exact kinetic equations for the reactive gas mixture are given by

%+V~Vfi:Ji[i](V)-l-%i[i](V), i:{fl,...,f4}, 4)
J[f](v) = Gi[f](v) = Li[fl(v),  Z[f](v) = G[f](v) — A[f](v). ®)

The gain and loss terms G;j, L; dueto elastic collisions, and ¥;, -%; due to chemical reactions, are not reported here for
brevity, but can be recovered in paper [6]. They satisfy the following properties

/l'?sai[i](v)dv:o, i=1,....4 6)

s rlEWdv = [ Tl == [ Bl =— [ Bl f]v)dv. @)

The former is typical of the elastic collision operator and accounts for conservation of the particle numbers of
each species, the latter is due to the fact that the evolution of each species is predicted by chemical exchanges
according to the bimolecular reaction (1). For what concerns mechanical equilibrium, each Ji[f](v) vanishes when

T is a Maxwellian given by (3). Conversely, for what concerns chemical equilibrium, each #[f](v) vanishes if the
distribution functions are Maxwellian and, in addition, the following condition holds

(mamg)® f1(v) fa(w) = (Mam2)* fa(va) fa(wy). (®)

In Eq. (8), v, w and v1, w; arethe pre and post-collisional velocities, respectively.
The post-collisional velocities, Q' being the unit vector of the relative post collisional velocity, are given by

VI = IV4+row—rVve', W1 = V4 w4V,

. [tw — )2
ri — m; , V = M _ %7 N — MsM4 , (9)
mjp + mp u ramsz mimpy

Condition (8), asit can be easily seen, implies the mass—action-aw of chemical equilibrium

w = 'u*% exp (£> ) (10)

N3Ny a ks T

Approximated equations. Following the procedure adopted in paper [7], the BGK-type approximation of the exact
equations (4) consistsin inserting in both elastic and inelastic gain terms Maxwellian distributions with parametersn ;
which do not satisfy condition (10) and, thus, do not imply chemical equilibrium. Such a procedureis justified since,
in general [8], the relaxation time of elastic collision is of some order of magnitude smaller than the one of chemical
interactions. The BGK equations then read

%ﬂ.wi:i[j,f](v)+g7i[i,f](v), i=1,...,4, 1)

where Jj f ,f](v) and i f ,f](v) approximate the true collision operators J; and %i, according to the above said
conjecture and assuming that the distribution functions satisfy conditions

/IR3(pi W) fi(v)dv = /IR3(pi(v) fi(v)dv, (12)
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with ¢; aternatively equal to m;j, m;v or %miv2+ E;. Conditions (12) imply that the distributions f; and f;, which
possess the same moments n, pu, T (p being the total density), will be different only for what deals with the
computation of higher moments.

The explicit expressions of J; and Z; will be here reported from paper [7], avoiding the details of their deduction.
Adopting constant cross sections of Maxwell molecules, cj, the BGK-type approximation of the elastic collision gain
and loss terms, leads to the expression

HEA0 =0 - 6], vi—ar 3 ey, (13

LER) &
Conversely, the inelastic collision gain and loss terms have the expressions

@f,flv) = y(Mnafa—nMnafr,  Z[f, fl(v) = ©T)nzfa—n(T)n1f2

A, T1(v) = n(T)n2fr—p(T)nafs, a1, T1(v) = n(T)nafo— y(T)nafs (14
where

) = R m —ymwien| - L] e e

S | SIS |

& being the exothermic threshold velocity, B a scalar factor and kg the Boltzmann constant. Expressions (14) have
been derived using the proper cross sections, related to exothermic and endothermic reactions, proposed in paper [9].
CONSISTENCY OF THE MODEL

On the line of standard procedures and notations of classical kinetic theory [10], and by using assumption (12), the
following properties can be proven.

Property 1 The approximated elastic collision term Jj is such that

/R3 (v)dv_47r2a.1n,/R3 —f(V)]dv=0, i=1,..,4 (16)

This property means that elastic collisions only, when modeled by the BGK equations (2), do not modify the species
of the incoming particles. In fact, from condition (16), it results

/ 3<i+v Vf) dv=0 — <ﬂ> — 0. (17)
R® \ ot dast dt / g
Property 2 The approximated reactive collision terms R, i = 1,...,4, are such that

JpsAilf Alwav = [ 7t v= = [l Ay = — [ Al flvav. (18)

This property implies

(%) :(%> :_<%> :_(%> (19)
dt /ingast dt /indast dt /ingast dt /ingast

which agrees with the fact that through inelastic collisions with chemical reaction (1), if one particle of A 1 —speciesis
lost then also an A, —particle vanishes with creation of two particles of Az and A4—species, and viceversa. Moreover,
Egs. (19) assures that the BGK approximated model reproducesthe laws of chemical kinetics.
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Conservation laws. Conservation of mass, momentum and total energy can be stated through the following

Property 3 For every choice of collision invariants ¢i(v), namely m;, mjv or %miv2+ Ei, the BGK-type collision
operator verifies the following equality

Z/R3 (1, W+, fv) evydv = 0 (20)

Entropy inequality. Elastic collisions and chemical reactions contribute to increase the entropy of the system, according
to the next

Property 4 Let H and H be the functionals defined by

xt)_Z/ f.Iog( )dv H(x,t) 2/ f.Iog(—?>vdv (21)

Then 5
a—'? (x,t) + divH (x,t) < 0, (22)
provided that
4 H ~ ~
>, [slog (L‘) Z[f,fl(v)dv = o. (23)
i—2/R fi

Moreover one has aa—? (x,t) + divH (x,t) = 0 if and only if

fi=fi and  (mama)®fi(v)Fa(w) = (Mimy)® fa(va) fa(wy). (24)

The constraint (23) is purely mathematical. Nevertheless in the numerical experiments of the next Section this
constraint has been checked finding a relative error whose order is 10~* at most. It obviously converges to zero
approaching to equilibrium.

Indifferentiability principle. When all gas species are assumed to have same mass m and frequency v, it is straightfor-
ward to show that the total distribution f = ; f; verifiesthe single species BGK equation.

NUMERICAL EXPERIMENTS

In this section some numerical tests for the proposed model, in the spatial homogeneous case and for the Hydrogen-Air
reversible reaction, are presented in order to evaluate the trend to thermodynamical equilibrium and the influence of
elastic collisions towards inelastic interactions.

With reference to Fig.1, non-symmetric bimodal distributions are assumed as initial data for f4,..., f4. The corre-
sponding macroscopic quantities (in mole /1 for number densities and Kelvin degrees for temperature) are

ny = 0.0375, np = 0.0075, nz = 0.225, ns = 0.3375, u=0, T = 1200

We set aij = o = 1 and B = 15; for such values the ratio of the elastic and inelastic collision frequencies, that is
o(T) =4ro/y(T), ranges between 50 and 75.

In Figs. 1a-1d the distributions f1 and f4 (f2 and f3 behave analogously) are plotted versus v at different successive
times. Since the reaction is prevalently exothermic f1 and f4 correspond, respectively, to distribution of product and
reactant of the chemical process. It can be observed that, due to the assumptions on the BGK-type mechanism of
collisions, the product distribution assumes a “Maxwellian” shape rather quickly, whereas the reactant distribution
converges slower to such a shape.

In the last picture (d) both product and reactant have reached the equilibrium configuration which prescribes, with
respect to initial data, aloss of the reactant H, and again of the product H»O.
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FIGURE 1. Distributions f1(v) and f4(v) at different times.

In Fig.2, the influence of elastic collisions towards chemical interactionsis shown, by plottingn,...,ns versustime
for thesameinitial dataof Fig.1. Inparticularin Fig.2ao. = 1andin Fig.2b o = 5 (so that @ now ranges approximately

between 250 and 400). It can be noted that the increase of o accelerates the trend to equilibrium which, in the pictures,

is measured by the critical time t¢, defined as the time when n, reaches the 90% of its asymptotic equilibrium value
(tc =0.12for oo = 1 and t = 0.0585 for ov = 5). Moreover the equilibrium values of the number densities are affected
by the value of «, since elastic collisions change significantly the temperature of the mixture, influencing the mass
action law (10).

In Fig.3, the time evolution of the densities computed by the BGK model are compared to those obtained by the
reactive Euler equationsin the spatial homogeneous case, derived in paper [9], i.e.

% M8, i=1,....4, Mi=Ap=1 JAg=As=-1
daT  2AES .. n(T) R

Such equetions give the time evolution towards chemical equilibrium of the physical state of a mixture which, at
the microscopic scale, isin mechanical equilibrium (no elastic influence). < To make the comparison reasonable, the
initial distributions of the BGK model have been chosen close to Maxwellians (symmetric bimodal distributions).
They provide the valuesn; = 0.05, n, = 0.1, n3 = 0.3, ng = 0.45, u = 0 and T = 1600, which are chosen as initial
data for the Euler equations, as well. In such conditions, it can be underlined that the trend to equilibrium of the two
models is quite similar, with an equilibrium reached a bit faster for the Euler model (t; = 0.065 against t; = 0.0795)
and asymptotic values only slightly different. Finally in Fig.3a the entropy production profile ¢ (in arbitrary scale) is
also provided, showing its monotone and concave shape.
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FIGURE 2. Time-evolution of number densities for two different values of o.
r 0.5 r0.5
o) EULER
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FIGURE 3. Entropy profile o and comparison of trend to equilibrium for BGK and Euler equations.
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