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1. Introduction

Since the paper of Amann and Zehnder [1], the existence of nontrivial solutions u for
semilinear elliptic problems of the form

−∆u= g(u) in Ω, u= 0 on ∂Ω, (1.1)

with g(0)= 0, has been the object of several studies, in which topological and variational
methods are successfully applied. We refer the reader to [2, 3, 8, 10]. In particular, since
the combination of linking theorems and Morse theory has turned out to be very fruitful,
it is customary to impose conditions on g that guarantee that the associated functional
f : H1

0 (Ω)→R, given by

f (u)= 1
2

∫
Ω
|Du|2dx−

∫
Ω
G(u)dx, G(s)=

∫ s

0
g(t)dt, (1.2)

is of class C2.
In a recent paper [12], Perera and Schechter have proved a result of Amann-Zehnder

type under assumptions that imply f to be only of class C1. More precisely, about the
regularity of g, they assume that g is continuous, there exist in R the limits

lim
s→−∞

g(s)
s

, lim
s→+∞

g(s)
s

, lim
s→0

g(s)
s

(1.3)
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and that

g(s)
s

is Lipschitz continuous in a neighbourhood of 0. (1.4)

One could observe that hypothesis (1.4) allows f not to be of class C2, but it does not
Please provide a short
running title (a short
representation of the
main title appearing at
the top of every even
page) that should not
exceed 60 characters
(including spaces).

include every g satisfying the usual assumption that g is of class C1 and g′ is bounded. In
particular, condition (1.4) is not stable if we add to g a term of the form

|s|3/2
1 + s2

. (1.5)

The first purpose of this paper is to extend the result of [12] in such a way that also the
classical smooth case is included. Our result is the following.

Theorem 1.1. LetΩ be a bounded open subset ofRn and g :R→R be a continuous function
satisfying g(0)= 0 and

(a) there exists C ≥ 0 such that∣∣g(s)
∣∣≤ C

(
1 + |s|); (1.6)

(b) there exists α∈R such that

lim
s→±∞

g(s)
s
= α. (1.7)

If we denote by (λm) the sequence of the eigenvalues of −∆ with homogeneous Dirichlet
boundary condition, let us assume that α �= λm for any m∈N. Moreover, let us suppose that
g is strictly differentiable at 0 (see Definition 3.1 below) and that there exists m ∈ N with
either g′(0) < λm < α or g′(0) > λm > α.

Then (1.1) admits a nontrivial solution.

Theorem 1.1 is in fact a particular case of a more general result, which will be presented
in Section 2.

Remark 1.2. If, as in [12], we have g(s) = sγ(s), with γ Lipschitz continuous in a neigh-
bourhood of 0, then it is easy to see that g is strictly differentiable at 0.

A second purpose of the paper is to improve the saddle theorem proved in [11, Theo-
rem 1.4], also mentioned in [12], in which the functional is of class C2, but nonstandard
geometrical assumptions are considered. We will prove the following.

Theorem 1.3. Let H be a Hilbert space such that H =H− ⊕H+ with dimH− <∞ and H+

closed in H . Let f : H →R be a functional of class C2 and assume that

c0 = inf
H+

f >−∞, c1 = sup
H−

f < +∞, (1.8)

f satisfies (PS)c for every c ∈ [c0,c1], f ′′(u) is a Fredholm operator at every critical point u
in f −1([c0,c1]).

Then there exists a critical point u of f with c0 ≤ f (u) ≤ c1 and m( f ,u) ≤ dimH− ≤
m∗( f ,u).
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In [11] it is only shown that there exist critical points u, u with c0 ≤ f (u) ≤ f (u) ≤
c1 and m( f ,u) ≤ dimH− ≤m∗( f ,u), but one cannot say if there exists a critical point
u = u = u, as in the case with standard geometrical assumptions (see [8]), or not. Our
improvement is related to the fact that, according to Proposition 4.3 below, also under
the nonstandard geometrical assumptions of Theorem 1.3, it is possible to recognize a
homological linking structure.

The paper is organized as follows: in Section 2 we state the result of existence of non-
trivial solutions; Sections 3 and 4 are devoted to prove some auxiliary results, while in
Section 5 we prove the main theorems.

2. Existence of a nontrivial solution

Let Ω be a bounded open subset of Rn and g : Ω×R→ R be a Carathéodory function
We changed “(g0)” to
“(g0).” Please check
similar cases
throughout.

satisfying
(g0) g(x,0)= 0 for a.e. x ∈Ω;
(g1) there exists C ≥ 0 such that |g(x,s)| ≤ C(1 + |s|) for a.e. x ∈Ω and every s∈R;
(g2) for a.e. x∈Ω, the function {s 
→g(x,s)} is strictly differentiable at 0 (see Definition

3.1 below) with Dsg(·,0)∈ L∞(Ω);
(g3) there exist Ĉ ≥ 0 and δ > 0 such that, for a.e. x ∈Ω, we have

∀s, t ∈]− δ,δ[:
∣∣g(x,s)− g(x, t)

∣∣≤ Ĉ|s− t|. (2.1)

If we set G(x,s)= ∫ s0 g(x, t)dt, it is well known that the functional f : H1
0 (Ω)→R defined

by

f (u)= 1
2

∫
Ω
|Du|2dx−

∫
Ω
G(x,u)dx (2.2)

is of class C1.
We denote by m( f ,0) the supremum of the dimensions of the linear subspaces of

H1
0 (Ω) where the quadratic form

Q(u)=
∫
Ω
|Du|2dx−

∫
Ω
Dsg(x,0)u2dx (2.3)

is negative definite, and by m∗( f ,0) the supremum of the dimensions of the linear sub-
spaces of H1

0 (Ω) where Q is negative semidefinite. We call m( f ,0) (resp., m∗( f ,0)) the
strict (resp., large) Morse index of f at 0.

Theorem 2.1. Assume that H1
0 (Ω)= X− ⊕X+ with dimX− <∞ and X+ closed in H1

0 (Ω).
Suppose also that

c0 = inf
X+

f >−∞, c1 = sup
X−

f < +∞, (2.4)

and that f satisfies (PS)c for every c ∈ [c0,c1],
If it is dimX− �∈ [m( f ,0),m∗( f ,0)], then the problem

−∆u= g(x,u) in Ω, u= 0 on ∂Ω, (2.5)
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admits a nontrivial solution u.

Remark 2.2. Under the assumption of Theorem 1.1, it is well known that f satisfies (PS)c
for any c ∈R and the geometrical assumptions of Theorem 2.1. Since it is clear that also
(g0)–(g3) are satisfied, Theorem 1.1 is a consequence of Theorem 2.1.

3. Computations of critical groups

Definition 3.1. Let Φ be a map from an open subset U of a normed space X to a normed
space Y and let u∈U . We say that Φ is strictly differentiable at u (strongly differentiable in
the sense of [6]), if there exists a continuous linear map L : X → Y such that

lim
(w1,w2)→(u,u)

w1 �=w2

Φ
(
w1
)−Φ

(
w2
)−L

(
w1−w2

)∥∥w1−w2
∥∥ = 0. (3.1)

Of course, in such a case Φ is Fréchet differentiable at u and L=Φ′(u).

Definition 3.2. Let K be a field, X be a metric space and f : X → R be a continuous
function. For u∈ X and c = f (u), let us set

∀q ∈ Z : Cq( f ,u)=Hq
(
f c, f c \ {u}), (3.2)

where f c = {v ∈ X : f (v)≤ c} and Hq(A,B) denotes the qth singular homology group of
the pair (A,B), with coefficients in K (see, e.g., [14]). The vector space Cq( f ,u) is called
the qth critical group of f at u. Because of the excision property, we may replace f by f |U
for any neighborhood U of u in X .

Definition 3.3. Let X be a Banach space, U an open subset of X and f : U → R be a
function of class C1. Let C be a closed subset of X with C ⊆ U . We say that f satisfies
the Palais-Smale condition ((PS), for short) on C, if every sequence (uh) in C with f (uh)
bounded and f ′(uh)→ 0 admits a convergent subsequence. In the case C = A = X , we
simply say that f satisfies (PS).

Let c ∈R. We say that f satisfies the Palais-Smale condition at level c ((PS)c, for short),
if every sequence (uh) in U with f (uh)→ c and f ′(uh)→ 0 admits a convergent subse-
quence.

Let Ω be a bounded open subset ofRn (n≥ 3), 1≤ p < (n+ 2)/(n− 2) and g : Ω×R→
R be a Carathéodory function satisfying

(g′1) there exists C ≥ 0 such that |g(x,s)| ≤ C(1 + |s|p) for a.e. x ∈Ω and every s∈R.
Let u0 ∈H1

0 (Ω) be an isolated weak solution of the semilinear problem

−∆u= g(x,u) in Ω, u= 0 on ∂Ω. (3.3)

By regularity theory, we automatically have u0 ∈ L∞(Ω). Moreover, let us assume that:
(g′2) for a.e. x ∈ Ω, the function {s 
→ g(x,s)} is strictly differentiable at u0(x) and

Dsg(·,u0)∈ L∞(Ω);
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(g′3) there exist Ĉ ≥ 0 and δ > 0 such that for a.e. x ∈Ω

∀s, t ∈]− δ,δ[:
∣∣g(x,u0(x) + s

)− g
(
x,u0(x) + t

)∣∣≤ Ĉ|s− t|. (3.4)

Let f : H1
0 (Ω)→R be the functional

f (u)= 1
2

∫
Ω
|Du|2dx−

∫
Ω
G(x,u)dx, (3.5)

where G(x,s)= ∫ s0 g(x, t)dt, and let Q : H1
0 (Ω)→R be the quadratic form

Q(u)=
∫
Ω
|Du|2dx−

∫
Ω
Dsg

(
x,u0

)
u2dx. (3.6)

Finally, let m( f ,u0) and m∗( f ,u0) be defined as in Section 2.

Theorem 3.4. We have that Cq( f ,u0) = {0} for every q ≤ m( f ,u0)− 1 and every q ≥
m∗( f ,u0) + 1.

The proof will be given at the end of the section.
As a first step, we approximate the functional f with suitable functionals fλ of class

C1 with f ′λ strictly differentiable at u0 and such that the critical groups of fλ at u0 are
independent of λ.

Let us denote by ‖ · ‖q the norm of Lq(Ω) and by ‖ · ‖1,2 the norm of H1
0 (Ω).

Remark 3.5. Up to substitute g with g̃ : Ω×R→R defined by

g̃(x,s)= g
(
x,u0(x) + s

)− g
(
x,u0(x)

)
, (3.7)

we may assume that u0 = 0 and that g(x,0)= 0.

Lemma 3.6. There exists a constant C > 0 such that, for a.e. x ∈Ω and for any s ∈ R, we
have

∣∣g(x,s)
∣∣≤ C

(
1 + |s|p−1)|s|. (3.8)

Proof. If 0 < |s| < δ, then by (g′3) it is

∣∣∣∣∣g(x,s)
s

∣∣∣∣∣≤ Ĉ. (3.9)

Otherwise, if |s| ≥ δ, then it is∣∣∣∣∣g(x,s)
s

∣∣∣∣∣≤ C
(
1 + |s|p)
|s| ≤ C

δ
+C|s|p−1. (3.10)

Hence the assertion follows. �



6 Please provide a short running title

Now let δ > 0 be as in (g′3) and ϑ∈ C∞c (R) such that 0≤ ϑ≤ 1, supt(ϑ)⊆]− δ,δ[ and

ϑ(s)= 1 if s∈
[
− δ

4
,
δ

4

]
,

0≤ ϑ≤ 1
2

if s∈ [−δ,δ] \
[
− δ

2
,
δ

2

]
.

(3.11)

For every λ∈ [0,1] let us define gλ(x,s)= g(x,ϑ(λs)s) and let fλ : H1
0 (Ω)→R be the func-

tional

fλ(u)= 1
2

∫
Ω
|Du|2dx−

∫
Ω
Gλ(x,u)dx, (3.12)

where Gλ(x,s)= ∫ s0 gλ(x, t)dt. It is clear that:
(a) for every λ > 0 and for a.e. x ∈Ω, the function {s 
→ gλ(x,s)} is Lipschitz contin-

uous uniformly with respect to x;
(b) for every λ and for a.e. x ∈Ω, the function {s 
→ gλ(x,s)} is strictly differentiable

at 0 with Dsgλ(x,0)=Dsg(x,0);
(c) for a.e. x ∈Ω, the functions {(λ,s) 
→ gλ(x,s)} and {(λ,s) 
→Gλ(x,s)} are contin-

uous;
(d) there exists C ≥ 0 such that |gλ(x,s)| ≤ C(1 + |s|p), |Gλ(x,s)| ≤ C(1 + |s|p+1).

Theorem 3.7. The following facts hold:
(i) for every λ∈ [0,1], the functional fλ is of class C1;

(ii) there exists an open bounded neighbourhood U of 0 in H1
0 (Ω) such that, for every

λ∈ [0,1], 0 is the only critical point of fλ in U ;
(iii) for every λ∈]0,1], f ′λ is strictly differentiable at 0 with 〈 f ′′λ (0)v,v〉 =Q(v).

Proof. It is readily seen that assertion (i) holds.
Let us consider assertion (ii). By contradiction, let us assume that there exist (λh) in

[0,1] and (uh) in H1
0 (Ω) with uh �= 0 and uh→ 0 strongly in H1

0 (Ω) such that f ′λh(uh)= 0.
Up to a subsequence, λh→ λ in [0,1]. Since uh is a critical point of fλh , we have that uh is
a weak solution of

−∆u= gλh(x,u) in Ω, u= 0 on ∂Ω. (3.13)

Let

ah =

gλh
(
x,uh

)
uh

where uh �= 0,

0 where uh = 0.
(3.14)

By Lemma 3.6 it is

∣∣ah∣∣≤
∣∣∣∣∣gλh

(
x,uh

)
uh

∣∣∣∣∣=
∣∣∣∣∣g
(
x,ϑ

(
λhuh

)
uh
)

uh

∣∣∣∣∣≤ C
(

1 +
∣∣ϑ(λhuh)uh∣∣p−1

)
≤ C

(
1 +

∣∣uh∣∣p−1
)
.

(3.15)
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Since uh is bounded in L2n/(n−2)(Ω), then ah belongs to Lq(Ω) with q > n/2 and∥∥ah∥∥q ≤ C′
(

1 +
∥∥uh∥∥p−1

2n/(n−2)

)
≤M. (3.16)

Hence uh is a weak solution of the linear problem

−∆u= ahu in Ω, u= 0 on ∂Ω. (3.17)

By [7, Theorem 3.13.1] uh ∈ L∞(Ω) and there exists C > 0 such that ‖uh‖∞ ≤ C‖Duh‖2.
Hence uh → 0 in L∞(Ω). Since ϑ = 1 on [−δ/4,δ/4], for h sufficiently large we have that
uh is a weak solution of (3.3). It follows that 0 is not an isolated solution of (3.3): a con-
tradiction.

Finally, let us consider assertion (iii). Let L : H1
0 (Ω)→H−1(Ω) be the continuous linear

operator such that

〈Lv,w〉 = 〈Lw,v〉, 〈Lv,v〉 =Q(v). (3.18)

Let (uh), (vh), (wh) in H1
0 (Ω) be such that uh → 0, wh → 0 in H1

0 (Ω) and ‖vh‖1,2 ≤ 1. Up
to a subsequence, wh→ 0 and uh→ 0 a.e. in Ω. We have that∣∣〈 f ′λ (wh

)
,vh
〉− 〈 f ′λ (uh),vh

〉− 〈L(wh−uh
)
,vh
〉∣∣

=
∣∣∣∣∣
∫
{x∈Ω:wh(x) �=uh(x)}

[
gλ
(
x,wh

)− gλ
(
x,uh

)
wh−uh

−Dsg(x,0)

](
wh−uh

)
vhdx

∣∣∣∣∣
≤ C

(∫
{x∈Ω:wh(x) �=uh(x)}

∣∣∣∣∣gλ
(
x,wh

)− gλ
(
x,uh

)
wh−uh

−Dsg(x,0)

∣∣∣∣∣
n/2

dx

)2/n

×∥∥wh−uh
∥∥

1,2

∥∥vh∥∥1,2.

(3.19)

Then it is∣∣〈 f ′λ (wh
)
,vh
〉− 〈 f ′λ (uh),vh〉− 〈L(wh−uh

)
,vh
〉∣∣∥∥wh−uh

∥∥
1,2

≤ C

(∫
{x∈Ω:wh(x) �=uh(x)}

∣∣∣∣∣gλ
(
x,wh

)− gλ
(
x,uh

)
wh−uh

−Dsg(x,0)

∣∣∣∣∣
n/2

dx

)2/n∥∥vh∥∥1,2

≤ C

(∫
Ω

∣∣∣∣∣gλ
(
x,wh

)− gλ
(
x,uh

)
wh−uh

−Dsg(x,0)

∣∣∣∣∣
n/2

χ{x∈Ω:wh(x) �=uh(x)}dx

)2/n

.

(3.20)

By (a) and (b) we can apply Lebesgue’s theorem, obtaining(∫
Ω

∣∣∣∣∣gλ
(
x,wh

)− gλ
(
x,uh

)
wh−uh

−Dsg(x,0)

∣∣∣∣∣
n/2

χ{x∈Ω:wh(x) �=uh(x)}dx

)2/n

−→ 0. (3.21)

Therefore

lim
h→+∞

〈
f ′λ
(
wh
)
,vh
〉− 〈 f ′λ (uh),vh〉− 〈L(wh−uh

)
,vh
〉∥∥wh−uh

∥∥
1,2

= 0 (3.22)
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and assertion (iii) follows. �

Theorem 3.8. The critical groups Cq( fλ,0) are independent of λ. In particular

∀q ∈ Z : Cq( f ,0)≈ Cq
(
f1,0

)
. (3.23)

Proof. Let U be an open bounded neighbourhood of 0 in H1
0 (Ω) as in assertion (ii) of

Theorem 3.7. We claim that if λh → λ in [0,1], then ‖ fλh|U − fλ|U‖1,∞ → 0. Let (uh) be a
sequence in U . Up to a subsequence, uh⇀ u in H1

0 (Ω) and uh→ u a.e in Ω. It is

fλh
(
uh
)− fλ

(
uh
)= ∫

Ω

[
Gλh

(
x,uh

)−Gλ
(
x,uh

)]
dx

=
∫
Ω

[
Gλh

(
x,uh

)−Gλ(x,u)
]
dx+

∫
Ω

[
Gλ(x,u)−Gλ

(
x,uh

)]
dx.

(3.24)

By (c), (d) and Lebesgue’s theorem we deduce that∫
Ω

[
Gλh

(
x,uh

)−Gλ(x,u)
]
dx −→ 0. (3.25)

Therefore fλh → fλ uniformly on U .
Now, let vh ∈H1

0 (Ω) with ‖vh‖1,2 ≤ 1. Up to a subsequence vh⇀ v in H1
0 (Ω), vh⇀ v

in L2n/(n−2)(Ω) and vh→ v a.e. in Ω. It is∣∣〈 f ′λh(uh),vh〉− 〈 f ′λ (uh),vh〉∣∣
=
∣∣∣∣∣
∫
Ω

[
gλh
(
x,uh

)− gλ
(
x,uh

)]
vhdx

∣∣∣∣∣
=
∣∣∣∣∣
∫
Ω

[
g
(
x,ϑ

(
λhuh

)
uh
)− g

(
x,ϑ

(
λuh

)
uh
)]
vhdx

∣∣∣∣∣
≤ C

(∫
Ω

∣∣g(x,ϑ
(
λhuh

)
uh
)− g

(
x,ϑ

(
λuh

)
uh
)∣∣2n/(n+2)

dx

)(n+2)/2n∥∥vh∥∥1,2.

(3.26)

As before we have that ∫
Ω

∣∣gλh(x,uh
)− gλ

(
x,uh

)∣∣2n/(n+2)
dx −→ 0. (3.27)

It follows that f ′λh → f ′λ uniformly on U . Finally, since U is bounded and g has subcritical
growth, we have that for every λ ∈ [0,1] fλ satisfies (PS) in U . By [5, Theorem 5.2] the
assertion follows. �

In the second part of this section we deduce from [6] a generalization of the classical
Shifting theorem (see [3, Theorem I.5.4], [10, Theorem 8.4]).

Let H be a Hilbert space, U be an open subset of H , u0 ∈U and f : U →R be a func-
tion of class C1 such that f ′ is strictly differentiable at u0 and f ′′(u0) is a Fredholm op-
erator. In particular, f ′ is Lipschitz continuous in a neighbourhood of u0. Let L : H →H
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be the linear operator defined by

∀v,w ∈H : 〈Lv,w〉 = 〈 f ′′(u0
)
v,w

〉
, (3.28)

let V0 = kerL and let PV0 be the orthogonal projection on V0. We also denote by m( f ,u0)
(resp., m∗( f ,u0)) the strict (resp., large) Morse index of f at u0.

Theorem 3.9. Let u0 be an isolated critical point of f . Then there exist a neighbourhood Û

of PV0u0 in V0 and a function f̂ : Û →R of class C1 with locally Lipschitz gradient such that

PV0u0 is an isolated critical point of f̂ and

∀q ∈ Z : Cq
(
f ,u0

)≈
Cq−m( f ,u0)

(
f̂ ,PV0u0

)
if m

(
f ,u0

)
<∞,

{0} if m
(
f ,u0

)=∞,
(3.29)

∀q ≤m
(
f ,u0

)− 1 : Cq
(
f ,u0

)= {0},
∀q ≥m∗( f ,u0

)
+ 1 : Cq

(
f ,u0

)= {0}. (3.30)

Proof. Without loss of generality, we may assume that u0 = 0. From [6, Theorem 1.2] we
also see that the generalized Morse lemma holds also in this setting. Arguing as in the
proof of [10, Theorem 8.4], we find that (3.29) holds. Actually, in our case f is of class
C2−0 instead of C2, but the proof of [10, Theorem 8.4] remains valid also in this case.

On the other hand, also the proof of [10, Theorem 8.5] can be easily adapted from the

C2 to the C2−0 case. Therefore we have that Cq( f̂ ,PV0u0) = {0} if q ≥ dimV0 + 1. Since
m∗( f ,u0)=m( f ,u0) + dimV0, the other assertions follow from (3.29). �

Finally, let us prove Theorem 3.4.

Proof. By Remark 3.5 we may assume that u0 = 0. Let fλ : H1
0 (Ω)→R be as in (3.12). By

Theorem 3.7 we have that f1 is of class C1 with f ′1 strictly differentiable at 0 and 0 is an
isolated critical point of f1. Moreover, f ′′1 (0) is a Fredholm operator. By Theorem 3.8 it is

∀q ∈ Z : Cq( f ,0)≈ Cq
(
f1,0

)
. (3.31)

On the other hand, since Q(u)= 〈 f ′′1 (0)u,u〉, we have that m( f ,0)=m( f1,0) and m∗( f ,
0)=m∗( f1,0). From Theorem 3.9 the assertion follows. �

4. Homological linking

Throughout this section, X will denote a Banach space, Br (u) the open ball of center
u∈ X and radius r and f : X →R a function of class C1. We set K = {u∈ X : f ′(u)= 0}
and, for every c ∈R,

Kc =
{
u∈ X : f ′(u)= 0, f (u)= c

}
. (4.1)

We also denote by H∗ singular homology.
First of all, let us recall from [4] an extension of the homological linking of [3].
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Definition 4.1. Let D, S, A be three subsets of X , m ∈ N and K a field. We say that
(D,S) links A homologically in dimension m (over K), if S ⊆ D, S∩A =∅ and there ex-
ists z ∈Hm(X ,S;K) belonging to the image of i∗ : Hm(D,S;K)→Hm(X ,S;K) but not of
j∗ : Hm(X \A,S;K)→Hm(X ,S;K), where i : (D,S)→ (X ,S) and j : (X \A,S)→ (X ,S) are
the inclusion maps.

It is clear that, if (D,S) links A homologically, then D∩A �= ∅.

Theorem 4.2. Let D, S, A be three subsets of X such that (D,S) links A homologically in
dimension m and let z ∈Hm(X ,S;K) be as in Definition 4.1. Assume that

inf
A

f >−∞, sup
D

f < +∞, ∀u∈ S : f (u) < inf
A

f (4.2)

and define

c = inf
{
b ∈R : S⊆ f band z belongs to the image of the

homomorphism induced by inclusion Hm
(
f b,S;K

)−→Hm(X ,S;K)
}
.

(4.3)

Suppose that f satisfies (PS) and that each element of Kc is isolated in K .
Then infA f ≤ c ≤ supD f and there exists u∈ Kc with Cm( f ,u) �= {0}.
To prove our main results we need the following.

Proposition 4.3. Let X = X− ⊕X+, with dimX− <∞ and X+ closed in X . Assume that

c0 = inf
X+

f >−∞, c1 = sup
X−

f < +∞ (4.4)

and that f satisfies (PS)c for every c ∈ [c0,c1].
Then there exists a compact pair (D,S) in X such that

max
D

f ≤ c1, ∀u∈ S : f (u) < c0 (4.5)

and such that (D,S) links X+ homologically in dimension dimX− over all K.

Proof. Since f satisfies (PS)c for every c ∈ [c0,c1], there exists r > 0 such that K ∩ f −1([c0,
c1])⊆ (Br (0)∩X−)⊕X+. Moreover, there exist δ,σ > 0 such that∥∥PX−u∥∥≥ r,

c0− δ ≤ f (u)≤ c1 + δ
=⇒ ∥∥ f ′(u)

∥∥ > σ , (4.6)

where PX− denotes the projection on X− induced by the decomposition X = X− ⊕X+. Let
c > 0 be such that ‖PX−u‖ ≤ c‖u‖ for any u∈ X and let

R= c
c1− c0 + δ

σ
+ r + δ, ρ1 = 1, ρ2 = R− r− δ,

C = X \ [(Br+ρ1+ρ2 (0)∩X−
)⊕X+

]
.

(4.7)
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By [5, Theorem 2.1] applied to the function f|{u∈X : f (u)≥c0−δ}, there exist a continuous
function

τ : Bρ1 (C)∩ {u∈ X : c0− δ ≤ f (u) < c1 + δ
}−→ [0,+∞) (4.8)

and a continuous map

η :
(

Bρ1 (C)∩ {u∈ X : c0− δ ≤ f (u) < c1 + δ
})× [0,1]−→ {

u∈ X : f (u)≥ c0− δ
}
(4.9)

such that
(a) τ(u)= 0⇔ f (u)= c0− δ;
(b) ‖η(u, t)−u‖ ≤ τ(u)t;
(c) f (η(u, t))≤ f (u)− στ(u)t;
(d) f (η(u,1))= c0− δ.

Let ϑ1 :R→ [0,1] be a continuous function such that

ϑ1(s)= 1 if s≤ c1, ϑ1(s)= 0 if s≥ c1 + δ/2, (4.10)

and let ϑ2 : X → [0,1] be a continuous function such that

ϑ2(u)= 1 if ‖u‖ ≥ R, ϑ2(u)= 0 if ‖u‖ ≤ R− δ. (4.11)

Let � : X × [0,1]→ X be the deformation defined by

�(u, t)=


η
(
u,ϑ1

(
f (u)

)
ϑ2
(
PX−u

)
t
)

if u∈ Bρ1 (C), c0− δ ≤ f (u)≤ c1 + δ,

u if f (u)≤ c0− δ,

u if f (u)≥ c1 + δ/2,

u if
∥∥PX−u∥∥≤ R− δ.

(4.12)

If u∈ X−, we have that

∥∥PX−�(u, t)−u
∥∥≤ c‖�(u, t)−u

∥∥≤ c
f (u)− f

(
�(u, t)

)
σ

≤ c
c1− c0 + δ

σ
< R− r. (4.13)

It follows ∥∥PX−u∥∥≤ r =⇒�(u, t)= u,

u∈ X−,

‖u‖ ≥ R
=⇒

f
(
�(u,1)

)
< c0,∥∥PX−(�(u, t)

)∥∥≥ r, ∀t ∈ [0,1].

(4.14)

It is clear that (X , (X− \Br (0))⊕X+) links X+ homologically in dimension dimX− and
that the inclusion map

i :
(

BR (0)∩X−,∂BR (0)∩X−
)
−→ (

X ,
(
X− \Br (0)

)⊕X+
)

(4.15)
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induces an isomorphism in homology. Let m= dimX− and

B = BR (0)∩X−, E = ∂BR (0)∩X−, F = (X− \Br (0)
)⊕X+. (4.16)

Consider now the commutative diagram

Hm(B,E) Hm(X ,E) Hm
(
X \X+,E

)

Hm(X ,F)
Id

Hm(X ,F) Hm
(
X \X+,F

) (4.17)

where horizontal rows are induced by the inclusions and the vertical rows are isomor-
phisms. We have that there exists z ∈ Hm(X ,E) belonging to the image of Hm(B,E) →
Hm(X ,E) such that i∗(z)∈Hm(X ,F), but not to the image of Hm(X \X+,F)→Hm(X ,F).
Let us consider the compact sets D =�(B,1) and S=�(E,1). We have that

max
D

f ≤ c1, max
S

f < c0, S⊆ F. (4.18)

Consider now the commutative diagram

Hm(B,E)

�∗(·,1)

Hm(X ,E)

�∗(·,1)

Hm(D,S) Hm(X ,S) Hm
(
X \X+,S

)

Hm(X ,F)
Id

Hm(X ,F) Hm
(
X \X+,F

)
(4.19)

Since �(·,1) : (X ,E)→ (X ,F) is homotopically equivalent to the identity map, then (D,S)
links X+ homologically in dimension m= dimX− and the assertions follows. �

5. Proof of the main results

proof of Theorem 2.1. By contradiction, let us assume that 0 is the unique solution of
(2.5). Since m = dimX− �∈ [m( f ,0),m∗( f ,0)], by Theorem 3.4 it is Cm( f ,0) = {0}. By
Proposition 4.3 there exists a compact pair (D,S) in H1

0 (Ω) such that

∀u∈ S : f (u) < inf
X+

f (5.1)

and (D,S) links X+ homologically in dimension m over allK. By Theorem 4.2 there exists
a critical point u ∈ H1

0 (Ω) of f such that Cm( f ,u) �= {0}. Hence u �= 0 and u is a weak
solution of (2.5): a contradiction. �

proof of Theorem 1.3. Let (D,S) be as in Proposition 4.3. By [13, Proposition 3.9 and
Remark] there exists δ > 0 such that f satisfies (PS)c for every c ∈ [c0 − δ,c1 + δ] and

Please specify to which
remark you are
referring.
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f ′′(u) is a Fredholm operator at every critical point u in f −1([c0− δ,c1 + δ]). Let us argue
by contradiction and set

K1 =
{
u∈H : c0− δ ≤ f (u)≤ c1 + δ, f ′(u)= 0, m∗( f ,u) < dimH−

}
,

K2 =
{
u∈H : c0− δ ≤ f (u)≤ c1 + δ, f ′(u)= 0, m( f ,u) > dimH−

}
.

(5.2)

Then K1, K2 are two disjoint compact sets whose union is the critical set of f in f −1([c0−
δ,c1 + δ]). By Marino-Prodi perturbation lemma [9, Teorema 2.2], there exists a func-

tional f̂ : H →R of class C2 such that

inf
H+

f̂ > c0− δ/2, sup
H−

f̂ < c1 + δ/2, max
S

f̂ < inf
H+

f̂ , (5.3)

f̂ satisfies (PS)c for every c ∈ [c0 − δ/2,c1 + δ/2], f̂ has only non-degenerate critical

points u in f̂ −1([c0− δ/2,c1 + δ/2]), with either m( f̂ ,u) < dimH− or m∗( f̂ ,u) > dimH−.

If we apply Theorem 4.2 to f̂ , we find a critical point u of f̂ with c0− δ/2≤ f̂ (u)≤ c1 +

δ/2 and Cm( f̂ ,u) �= {0}, where m= dimH−. By the Morse lemma, we have m( f̂ ,u)=m
and a contradiction follows. �
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