
Spi2Java: Automatic Cryptographic Protocol
Java Code Generation from spi calculus

Davide Pozza, Riccardo Sisto
Politecnico di Torino

Dip. di Automatica e Informatica
c.so Duca degli Abruzzi 24

I-10129 Torino (Italy)
Davide.Pozza, Riccardo.Sisto@polito.it

Luca Durante
IEIIT - CNR

c/o Politecnico di Torino
c.so Duca degli Abruzzi 24

I-10129 Torino (Italy)
Luca.Durante@polito.it

Abstract

The aim of this work is to describe a tool (Spi2Java)
that automatically generates Java code implementing cryp-
tographic protocols described in the formal specification
language spi calculus. Spi2Java is part of a set of tools for
spi calculus, also including a pre-processor, a parser, and a
security analyzer. The latter can formally analyze protocols
and detect protocol flaws. When a protocol has been ana-
lyzed and an adequate confidence about its correctness has
been reached, Spi2Java can generate a corresponding cor-
rect Java implementation of the protocol, thus dramatically
reducing the risk of introducing security flaws in the coding
phase.

1 Introduction

One of the most challenging practical problems in mod-
ern computer science is how to ensure design and imple-
mentation correctness of security protocols. The role of
such protocols is to achieve security goals such as authenti-
cation, confidentiality and integrity, by using cryptography.
For this reason they are also called cryptographic protocols.

Recently, many research efforts have been dedicated to
the problem of analyzing the logical correctness of crypto-
graphic protocols (e.g.[5][3][9][10][14]), whereas the im-
plementation correctness problem has not yet been consid-
ered so much. One of the possible approaches to ensure
implementation correctness is to produce implementations
automatically from formal specifications [10][15][12]. If
the code generator is such that the generated code faithfully
implements the specification and avoids programming er-
rors that can lead to security breaches, implementation cor-
rectness is achieved. Therefore, if the source specification
is logically correct, so is the implementation. In this paper
we show how this approach can be put into practice in a

framework where the target code language is Java and cryp-
tographic protocols are specified in spi calculus [2], a pro-
cess algebraic specification language specifically tailored
for such protocols.

The rest of the paper is organized as follows. Section
2 briefly introduces spi calculus, section 3 presents the ar-
chitecture of Spi2Java, and sections 4-7 describe its compo-
nents. Section 8 gives some experimental results, section 9
discusses related work, and section 10 concludes.

2 Spi calculus

The spi calculus is defined in [2] as an extension of theπ
calculus [11] with cryptographic primitives. It is a process
algebraic language designed for describing and analyzing
cryptographic protocols. The spi calculus has two basic lan-
guage elements: terms, to represent data, and processes, to
represent behaviors. In this paper we present only some fea-
tures of spi calculus, through an example, due to the limited
space. Fig. 1 shows the spi calculus1 specification of the
Andrew[8] key exchange protocol.

The specification is composed of two process descrip-
tions namedpA andpB, which represent the two roles of
the protocol. TheInst process represents the interaction
scenario where an instance ofpA and an instance ofpB run
concurrently. The initiator role processpA and theInst
process are parameterized byM, which is the data that must
be sent.M occurs explicitly as a parameter, because this is
required by the security analysis tool [5]. In contrast, the
other protocol parameters are all implicit.

The left column of Fig. 1 shows the exchanged messages
using the informal, intuitive representation often encoun-
tered in the literature, whereA → B :σ means thatA sends
messageσ to B. The central column shows the correspond-
ing spi calculus specification for processpA, whereas the

1Spi2Java uses some typographic conventions respect to the original
spi calculus

user
©2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the author's postprint version (i.e. as edited by the author after refereeing but without copy-editing, proofreading and formatting added by IEEE). The final version of this paper can be accessed at http://dx.doi.org/10.1109/AINA.2004.1283943

A->B: A,Na pA(M):=
 (@Na)
 cAB<A,Na>.

pB():=
 cAB(xA,xNa).

B->A: {(Na,k1AB)}kAB cAB(xMSG).
 (@KeyStore)
 KeyStore.
 KeyStore(kAB).
 case xMSG of
 {xNa,xk1AB}kAB in
 [xNa is Na]

 (@KeyStore)
 KeyStore<xA>.
 KeyStore(kAB).
 (@k1AB)
 cAB<{xNa,k1AB}kAB>.

A->B: {Na}k1AB cAB<{Na}xk1AB>. cAB(xMSGcypher).
 case xMSGcypher of
 {xnewNa}k1AB in
 [xnewNa is xNa]
 KeyStore<xA,k1AB>.

B->A: Nb cAB(dummy).
 KeyStore<B,xk1AB>.

 (@Nb)
 cAB<Nb>.

A->B: {M}k1AB cAB<{M}xk1AB>.0 cAB(Mcypher).
 case Mcypher of
 {x}k1AB in 0

Inst(M):=(pA(M)|pB())

Figure 1. The Andrew Protocol spi calculus
specification

right column shows the corresponding behavior of process
pB.

The Andrew protocol assumes that each process has a
local key store where symmetric keys are stored. Since the
key store explicitly partakes in the protocol, it must be mod-
elled in spi calculus. Our simple modelling strategy is to
represent the key store as a separate process (not shown in
Fig. 1) that interacts with the corresponding protocol prin-
cipal through a dedicated communication channel (theKey-
Store channel). The operations of getting and storing a key
are modelled as inputs and outputs on the key store channel
respectively. More precisely, a key is stored in the key store
under an alias, which permits its unique identification. So,
the operation of retrieving a stored key is represented by
the statementsKeyStore < xA > .KeyStore(kAB) where
KeyStore denotes the interaction channel,xA is the alias
andkAB is the variable where the key extracted from the
key store is saved. The corresponding storing operation is
described by the statementKeyStore < xA, k1AB > where
k1AB is the key that must be stored under the aliasxA. Note
that the visibility of theKeyStore term is restricted with
the@ operator, so it is considered private for the process. In
a run of the Andrew protocol, five messages are exchanged
betweenpA and pB over channelcAB: 1)pA sendspB its
identifier A and NonceNa. pB receives the message and
stores the two fields in variablesxA andxNa respectively.
2)pB retrieves keykAB, shared withpA, from its local Key-
Store and builds a new fresh keyk1AB, that together with
xNa (Na) is encrypted withkAB and the result is sent topA.
pA receives the message and decrypts it by means ofkAB
retrieved from its local Key Store. The two fields of the
computed cleartext (Na and k1AB) are stored inxNa and
xK1AB and the match between the value ofNa andxNa is
checked. 3)pA sendspB the nonceNa encrypted with the

transport layer.

Java Library

implementing the

Text File,

containing a

Spi-Calculus

protocol

description

Pre-processor

and

Parser

Term typer and

description checker

Automatic generator

of Java code

Java Code

implementing the

cryptographic

protocol

The Java security

library:

it.polito.SecureClasses

Specification

File

Symbol

Table

Figure 2. The Spi2Java Program Architecture

shared keyk1AB. pB decrypts the message and checks the
match between the just received noncexnewNa and xNa.
ThenpB storesk1AB under the aliasA in its local KeyStore,
thus overwritingkAB. 4)pB sendspA a fresh nonceNb. pA
receives the nonce and replaceskAB with k1AB in its local
KeyStore. Now the key is fully agreed.5)pA usek1AB to
encrypt the secret messageM and sends it topB. pB receives
the encrypted message, decrypts it and storesM in variable
x.

3 The Tool Architecture

The generated code is organized as one independent pro-
gram for each protocol role, and such programs can be acti-
vated at need whenever a new session of the protocol must
be executed. Therefore, for the purpose of code generation,
Spi2Java operates for a single protocol role at time (likepA
of Fig. 1), whereas processes that specify only particular in-
stantiation scenarios of protocol sessions (likeInst of Fig.
1) are not relevant and are ignored during code generation.

The Spi2Java program is composed of two modules:
a Term Typer and Description Checkerand anAutomatic
Generator of Java Code. The generated code is based on
Java library modules implementing, in a configurable way,
the elementary operations that can occur in spi calculus de-
scriptions. Fig. 2 shows the dataflow for the whole tool
architecture.

4 The Term Typer and Description Checker

Spi calculus is not typed, so theTerm Typer and Descrip-
tion Checkeris responsible to fill the information gap be-
tween protocol specification and implementation for what
concerns data types. In particular, this functional block au-
tomatically checks whether term variables are used consis-
tently within a protocol role process and, if this check is
positive, automatically assigns concrete Java types to term
variables. Term type assignments are performed by an al-

SharedKeyT IdentifierChannelId NonceT

PairT

Level 2HashT

Name

Level 1 Message

SharedKeyCiphered

Level 3

Figure 3. The term type class hierarchy

gorithm that associates any term variable with the most spe-
cialized Java class that safely represents it. The user can
manually enforce more specialized types for certain vari-
ables by means of theSpecificationfile, which is read and
interpreted by this module. Manually specifying a more
specialized type is possible but not necessary. For exam-
ple, if a process does not perform any operation on a term
except sending it out, possibly encapsulated within a struc-
tured term, the Message type is perfectly appropriate for
that term.

We use a class hierarchy organized on three specializa-
tion levels (Fig. 3 shows only some of the classes, due to the
limited space, although Spi2Java deals with all the spi cal-
culus features) for those terms that could be sent over chan-
nels and another simple hierarchy for communication chan-
nels, since channel classes depend on the applied Transport
Library and on the process role (client/server). So a term is
typed asChannelwhen it is a generic communication chan-
nel used to send/receive messages or asKeyStore which is
a possible specialization of Channel, when it represents the
access point to a local key store where keys and/or digi-
tal certificates are stored. Here is a brief description of the
meaning of term classes shown in Fig. 3.Messageis the
less specialized type, because it represents any message. A
term is typed as Message whenever the algorithm is not able
to determine a more specialized type for it. The internal
Java representation of the Message type is simply a byte ar-
ray. Nameis a partially specialized type that represents any
non-structured spi calculus term (i.e. a spi calculus name).
It is important to note that Name is implemented by a class
that cannot be instantiated, because objects of this class
are always objects of more specialized concrete classes. A
Name can be any level 3 class object but it can even be an
object of a new user-defined derived class.ChannelId rep-
resents a channel identifier. It is useful for sending over
an existing channel the necessary information for opening
a new communication channel with a server role.Shared-
KeyT represents a key for use with symmetric cryptosys-
tems. NonceT represents a randomly chosen sequence of
bits. Identifier represents some information which identi-
fies an entity in a unique way. For example, it can be used

as an alias to identify a key or a certificate stored inside a
KeyStore.HashT represents the result of applying a cryp-
tographic hash function on some data (also known as mes-
sage digest).SharedKeyCipheredrepresents the result of
a symmetric cryptographic operation on some data. The op-
eration can be either an encryption or a decryption.PairT
represents a container of a couple of objects that can be of
heterogeneous types. A tuple of objects is translated, inside
the program, into nested Pair objects.

5 The SecureClasses Library

The SecureClassessecurity library provides a set of
classes that implement in a flexible and configurable way
all the elementary data types and cryptographic operations
that can be abstractly expressed in spi calculus. This library
acts as a general interface toward security providers, which
are responsible to provide the concrete implementations of
cryptographic algorithms. The providers used to test the
SecureClassesLibrary and the generated code are those by:
SUN2 andIAIK 3. This library heavily relies on Java Seri-
alization to build data packets to be sent on communication
channels and/or to be encrypted, principally because with
the term type hierarchy, the same message can be automat-
ically interpreted at different specification levels, at need.
The SecureClasseslibrary has been designed with special
care, pursuing several goals:1) There is a strict correspon-
dence whereby each spi calculus term corresponds to a Java
class in theSecureClasseslibrary as shown in Fig. 3. Note
that each spi calculus statement corresponds to a simple
Java construct with a method call in one of the term objects.
2)Classes and methods hide the internal complexity of the
cryptographic algorithms behavior and management.3)The
user is able (by means of a special class where constants can
be modified) to customize the internal behavior of classes,
choosing the security provider, the algorithm and the related
parameters for each different kind of cryptographic opera-
tion. 4)The efficiency of the generated code, thanks to the
efficiency of the classes implementation.5) Each class im-
plementation has been kept as close as possible to its ab-
stract model (a complete adherence is not achievable be-
cause the used cryptography is not perfect), and program-
ming errors that can lead to known security breaches have
been avoided.

6 The Transport Layer Interface

The SecureClasseslibrary includes three interfaces
namedChannelIdto represent channel identifier,ChannelT
to represent a generic client/server communication channel,

2The SUN-JCE provider is furnished as extension with the JCE 1.2.x
or included inside the JDK 1.4, it is available at http://java.sun.com

3The IAIK-JCE provider is a product of IAIK, it is available at
http://www.iaik.tugraz.at

and ServerTto represent the generic server process wait-
ing for incoming client requests. All these classes are the
interaction point with the Transport Layer Library that is
used. In this way, transport layer independence is achieved
for the generated code. The user can specify it by means of
theSpecificationfile.

The transport layer classes hide transport layer manage-
ment and enable the direct translation of any spi calculus
input/output operation into proper Java code.

7 The Java Code Automatic Generator

The Java automatic generator provides the Java imple-
mentation of the protocol role described in spi calculus and
is partially guided by theSpecificationfile, where the user
can specify several implementation choices, such as for ex-
ample to assign the role of client or server to a spi calculus
process, by assigning a listening channel to a server role, to
describe what terms are return parameters and which trans-
port layer library must be used. The generated code uses
classes and methods provided by theit.polito.SecureClasses
and by the Transport Library module that has been chosen.

Starting from a spi calculus specification, and the related
Specificationfile, the Code Generator writes the Java pro-
tocol implementation class on theProtocolfile. The Code
Generator also produces an application skeleton (on theAp-
plicationfile) and some other class files useful to launch the
client application/server, since the user will typically use the
protocol handshake as a prelude of a target application.

The Protocol file is generated by syntax directed trans-
lation of the spi calculus behavior expression. More pre-
cisely the spi calculus syntax tree is visited and for each
spi calculus operation, the Java code that implements it is
generated, preceded by a description comment. The lat-
ter enhances code readability and makes the correspon-
dence with the spi calculus specification visible. Fig.
4 shows the most interesting piece of code generated in
the Protocol file for thepA process of the Andrew pro-
tocol. Return objects are retrievable by the public class
methodgetReturnParameter(inti) that is not shown
here.ClassCastExceptions are generated when a wrong
cast happens and this may happen during message receiving
and deserialization operations.

7.1 Generated Java Code Characteristics

Spi2Java is coupled with a protocol analyzer [5] that de-
tects design protocol flaws. Therefore, if we have described
a protocol that is considered secure, we want to obtain the
more faithful adherence between the specification and the
implementation to maintain the design security. Notice that
spi calculus is able to describe not only the message ex-
change but also what are the checks that must be performed
in the implementation, thus the implementation must not
implement all possible checks but only the specified ones.

 1:public class andrewPA_Protocol {
 2:
 3:/* Object containing Return Parameters */
 4:private Message retPar;
 5:
 6:/* The number of Return Parameters */
 7:private int nPar;
 8:
 9:public andrewPA_Protocol (Message M_1, IdentifierT A_0, IdentifierT B_0,
10: TcpIpClientChannel cAB_0, LoadKeyStore KeyStore_5)throws ProtocolException {
11: try {
12:
13: /* cAB_0<(A_0,Na_2)> */
14: NonceT Na_2 = new NonceT();
15: PairT Pair__A_0__Na_2 = new PairT(A_0, Na_2);
16: cAB_0.Send(Pair__A_0__Na_2);
17:
18: /* cAB_0(xMSG_4) */
19: SharedKeyCiphered xMSG_4 = (SharedKeyCiphered) cAB_0.Receive();
20:
21: /* KeyStore_5<B_0>
22: KeyStore_5(kAB_7) */
23: PasswordManager pm0 = new ConstantPassword();
24: SharedKeyT kAB_7 = new SharedKeyT(B_0.getIdentifier(), KeyStore_5.getKeyStore(), pm0);
25:
26: /* case xMSG_4 of {_w0_8}kAB_7 in */
27: SharedKeyCiphered _w0_8 = new SharedKeyCiphered(xMSG_4.getEncoded(), kAB_7,
28: Cipher.DECRYPT_MODE, xMSG_4.getIV());
29:
30: /* let (xNa_9,xk1AB_9) = _w0_8 in */
31: PairT Pair__xNa_9__xk1AB_9 = (PairT) DeserializeT.getDeserializeT(_w0_8.getEncoded());
32: NonceT xNa_9 = (NonceT) Pair__xNa_9__xk1AB_9.getFirst();
33: SharedKeyT xk1AB_9 = (SharedKeyT) Pair__xNa_9__xk1AB_9.getSecond();
34:
35: /* [xNa_9 is Na_2] */
36: if(!xNa_9.isEqual(Na_2))
37: throw new ProtocolException("Match test is false!");
38:
39: /* cAB_0<{Na_2}xk1AB_9> */
40: SharedKeyCiphered Na_2_SharedKeyCiphered_xk1AB_9 = new SharedKeyCiphered(
41: SerializeT.getSerializeT(Na_2), xk1AB_9, Cipher.ENCRYPT_MODE, null);
42: cAB_0.Send(Na_2_SharedKeyCiphered_xk1AB_9);
43:
44: /* cAB_0(dummy_12) */
45: Message dummy_12 = (Message) cAB_0.Receive();
46:
47: /* KeyStore_5<(B_0,xk1AB_9)> */
48: PasswordManager pm1 = new ConstantPassword();
49: xk1AB_9.addToKeyStore(B_0.getIdentifier(), KeyStore_5.getKeyStore(), true , pm1);
50:
51: /* cAB_0<{M_1}xk1AB_9> */
52: SharedKeyCiphered M_1_SharedKeyCiphered_xk1AB_9 = new SharedKeyCiphered(
53: SerializeT.getSerializeT(M_1), xk1AB_9, Cipher.ENCRYPT_MODE, null);
54: cAB_0.Send(M_1_SharedKeyCiphered_xk1AB_9);
55:
56: /* Build the container, for the objects we have to return. */
57: nPar = 1;
58: retPar = (SharedKeyT)xk1AB_9;
59:
60: } catch(java.lang.ClassCastException cce) {
61: throw new ProtocolException("An unexpected object has been received belonging to
62: class: " + cce.getMessage());
63: }
64:
65: }

Figure 4. The Andrew pA Protocol code

In this way a direct translation from spi calculus into Java
code is possible without any implicit behavioral assump-
tions. So we can provide an adherent and faithful code im-
plementation of the described protocol, because we provide
a strict correspondence between the spi calculus description
elements and Java code fragments. The correspondence is
achieved since the typing of terms allows to establish a map-
ping from behavior expressions to behavior logics which
use classes of theSecureClasseslibrary and from terms to
classes of theSecureClasseslibrary. In this way we can
grant the protocol implementation design correctness. Nev-
ertheless the protocol security analyzer [5] assumes that all
the cryptographic operations are implemented with a perfect
encryption (i.e. this means that hash of different message
never collide), that unluckily doesn’t exist in the reality. So
we can’t prove in a formal way that the protocol design se-
curity is assured, but we can limit our considerations to this

code property only as intuitive. However notice that also
if it is impossible to achieve the perfect encryption, it is
possible to draw near. For this purpose we give the possi-
bility to change both security providers and algorithms for
any kind of cryptographic operation, allowing the user to
find the implementation that best matches the perfect en-
cryption assumption. This capability also gives the chance
to easily substitute an algorithm implementation that is af-
fected by an error, immediately as soon as it is discovered.
About the programming code security we have to consider
ours libraries (SecureClassesandTcpIpLayer) and we can
only affirm that we have carefully developed playing atten-
tion on Java Security Guidelines [1] and we have well tested
all classes of our libraries, so we hope that are immune of
implementation weakness.

Furthermore, the implementation of our libraries, and
then of the protocol, is considered secure against some of
the most common implementation weakness like:Buffer
overruns4, because the adopted implementation language
is Java, which cannot be affected by this kind of attacks
(except for overflows in the JVM itself). In fact Java uses
the following to safeguard the memory: array bounds are
checked for each array access; there aren’t pointers, mem-
ory is managed by reference (pointers are one of the most
bug-prone aspects of C and C++); object casting is re-
stricted (necessary to ensure type safety); variables can-
not be used before they are initialized (another memory-
protection mechanism); garbage collection automatically
frees memory (avoiding memory deallocation errors).Type
flaws that occur when a message is interpreted in an incor-
rect form, because all messages are typed and code always
checks type inconsistencies and raises an exception when a
mismatch occurs. Moreover notice that in our implementa-
tion all message are serialized, so the deserialization mech-
anism fails and raises an exception if a type flaw occurs.
False input attacksbecause they rely on unchecked input
parameters, whereas checks on objects are already speci-
fied in the spi calculus description, and their specification
correctness is verified by the security analyzer program [5].
Moreover the implementation of our classes provides all the
necessary checks and generates an exception whenever a
constraint is violated.

The SecureClasses library allows to hide the complexity
of cryptographic algorithms, and allows the user to indepen-
dently choose the Security Provider, the related algorithms
and their parameters. The complexity of the cryptographic
algorithms is hidden by the use of classes belonging to the
type hierarchy and by a class containing constants which
permit to customize the library.

The code is easily readable, secure and optimized with
the meaning explained below. Code implementation secu-
rity is related to the intrinsic security of the protocol speci-

4as is possible understand reading [18][7]

fication and also to the absence of errors and security flaws
in ours libraries and in the Security Providers adopted. The
protocol code implementation is optimized in the sense that
each object is created only when it is really needed: this
means that at each time all live objects are only those strictly
needed.

8 Testing and experiments

We have tested theit.polito.SecureClasseslibrary using
all the features supported by theIAIK5 andSUN6 providers.
Moreover we have testedSpi2Javausing several simple ad-
hoc protocol examples and some real known protocols:An-
drew[8], KSL[8], SSL[6], Needham-Schroeder[4].

9 Related work

In the last years some tools have been developed to spec-
ify, design, verify and implement cryptographic protocols.
While a lot of papers address protocol verification, only
three of them address automatic code generation [10] [15]
[12].

We have chosen Java as the target language for protocol
implementation, as in [10] [15] [12], due to the language
excellent security architecture and resistance to common se-
curity attacks, as is possible to understand reading [18] [7].

The choice of spi calculus as the language for protocol
specification gives some advantages with respect to previ-
ous works, because it allows to explicitly specify which
checks the protocol must perform. This implies that the
code generator, knowing what kind of controls must be im-
plemented, can avoid to generate controls that are not re-
quired, thus producing an optimized protocol code. All the
other tools [10] [15] [12], starting from protocols specified
by means of formal languages without the above feature,
must always implement all the possible checks. Moreover,
all the other tools [10] [15] [12] require that each term type
is explicitly specified, while our tool is able to understand
the correct type of terms in an automatic way, directly in
almost all cases or after another term has been typed by the
user.

Cryptographic Code Generation From CAPSL[12] starts
from theCAPSLor CIL specification languages. The pro-
duced code includes a demonstration environment, useful to
view the protocol behavior, that shall be removed or mod-
ified for a direct use in application environments. This en-
vironment represents the ”man in the middle” attack, so it
receives all messages exchanged between parties showing
protocol handshakes. Our code does not contain a demon-
stration environment, but we can add such a feature in the

5The IAIK-JCE provider is a product of IAIK, it is available at
http://www.iaik.tugraz.at

6The SUN-JCEprovider is furnished as extension with theJCE 1.2.x
or included inside theJDK 1.4, it is available at http://java.sun.com

transport layer directly (building a new transport library),
thus allowing the redirection of messages towards a demon-
stration application able to behave as an attacker.

Moreover in [12] the generated code is inefficient be-
cause it runs by interpreting an abstract data structure. A
further limitation is the dependence of key objects on en-
cryption and decryption algorithms, which are fixed as DES
for symmetric encryption. Another limitation is the absence
of public encryption which is substituted in the code by a
dummy encryption operation.

TheAGVI [15] tool generates code using the same proto-
col description taken by the protocol analyzerAthena[14].
[15] contains few information about code generation and
implementation. Such information is probably reported in
[13], which, however is not reachable on the web.

SPEAR II [10] provides code generation from an ab-
stract protocol specification in theGYPSIE[16] environ-
ment, while parameters and settings for code generation are
specified in the graphicalGENIE [17] environment. The
produced code is based onCryptix7 andCrypto-J8 crypto-
graphic libraries. A good feature of [10] is that it uses the
accepted standardASN.1for describing messages, thus al-
lowing the generated code to communicate with other non-
SPEAR II implementations.

All the above projects [10] [15] [12] generate a code
that is not Java-Security-Provider-independent as ours.
Provider independence is a good feature, because if a se-
curity flaw is found in a specific library, it is possible to re-
place the security provider with another one, unaffected by
the problem, without modifying the generated code. Only
the code produced bySPEAR II[10] is Transport Layer in-
dependent and translates from protocol specification to code
implementation directly, as we do.

10 Conclusions

A new automatic Java code generator for cryptographic
protocols specified in spi calculus has been developed, to
be integrated in a specification and verification environment
for security protocols. Spi2Java provides the protocol im-
plementation together with a skeleton code, useful to de-
velop an application that uses the protocol.

Spi2Java has a module that associates a type to each spi
calculus term in an automatic or semi-automatic way and
checks for abstract description incongruities.

With the SecureClasseslibrary, we have been able to
hide the complexity of the cryptographic algorithms and
offer maximum flexibility, allowing the choice of a Secu-
rity Provider, an algorithm and the algorithm parameters
for each kind of cryptographic operation. Moreover, a strict

7The Cryptix library is available from http://www.cryptix.org
8The Crypto-J library is an RSA product, it can be obtained form

http://www.rsa.com

correspondence between spi calculus objects and classes al-
lows us to guarantee a high confidence level about code cor-
rectness. The definition of Transport Layers as modules al-
lows the user to choose and replace the transport protocol in
an easy way.

The produced Java code optimizes the creation time of
needed object, avoids common implementation attacks and
maintains an high understandability thanks to the presence
of comments before each behavior expression.

References

[1] Security code guidelines. SUN Microsystems. Online, avail-
able at: http://java.sun.com/security/seccodeguide.html.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols the spi calculus.Inf. Comput., 1(148):1–70, 1999.

[3] E. M. Clarke, S. Jha, and W. Marrero. Verifying security
protocols with brutus.ACM Trans. on Softw. Eng. and Meth.,
9(4):443–487, 2000.

[4] D. E. Denning and G. M. Sacco. Timestamps in key distri-
bution protocols.Comm. of the ACM, 24(8):533–536, 1981.

[5] L. Durante, R. Sisto, and A. Valenzano. Automatic testing
equivalence verification of spi calculus specifications.ACM
Trans. on Softw. Eng. and Meth., 12(2):222–284, Apr. 2003.

[6] A. O. Freier, P. Carlton, and P. Kocher. The ssl
protocol version 3.0, 1996. Online, available at:
http://home.netscape.com/eng/ssl3/draft302.txt.

[7] T. Lindholm and F. Yellin.The Java Virtual Machine Speci-
fication. SUN Microsystems, 2nd edition. Online, available
at: http://java.sun.com/docs/books/vmspec/.

[8] G. Lowe. Some new attacks upon security protocols.In 9th
IEEE Comp. Sec. Found. Work., pages 162–169, 1996.

[9] G. Lowe. Casper: A compiler for the analysis of security
protocols.J. Comput. Secur., 6(1):53–84, 1998.

[10] S. Lukell and C. Veldman. Automated attack analisys and
code generation in a unified, multi-dimensional security pro-
tocol engineering framework.Comp. Science Hon., 2002.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, parts I and II.Inf. Comput., pages 1–77, 1992.

[12] F. Muller and J. Millen. Cryptographic protocol generation
from capsl. Tech. Rep. SRI-CSL-01-07, SRI Int., 2001.

[13] A. Perrig, D. Phan, and D. Song. Acg - automatic code gen-
eration and automatic implementation of a security protocol.
Tech. Rep. 00-1120, Univ. of California, 2000.

[14] A. Perrig, D. Song, and S. Berezin. Athena: a novel
approach to efficient automatic security protocol analisys.
Tech. rep., Univ. of California and Carnegie Mellon Univ.

[15] D. Phan, A. Perrig, and D. Song. Agvi - automatic genera-
tion, verification, and implementation of security protocols.
Tech. rep., Univ. of California.

[16] E. Saul. Facilitating the modelling and automated analysis
of cryptographic protocols. Master’s thesis, Univ. of Cape
Town, 2001.

[17] C. Veldman, S. Lukell, and A. Hutchison. Attack mod-
elling, code generation and performance analysis in a
multi-dimensional security protocol engineering framework.
Project report, Univ. of Cape Town, 2002.

[18] F. Yellin. Low level security in java. Online, available at:
http://java.sun.com/sfaq/verifier.html.

