
FAUST: FAUlt-injection Script-based Tool

A. BENSO, S. DI CARLO, G. DI NATALE, P. PRINETTO, I. SOLCIA, L. TAGLIAFERRI

Politecnico di Torino
Dipartimento di Automatica e Informatica Torino, Italy

{benso, dicarlo, dinatale, prinetto, solcia, tagliaferri}@polito.it

Abstract

The tool described in this paper aims at evaluating
the effectiveness of software-implemented fault-
tolerant techniques used in safety-critical systems. The
target application is stressed with the injection of
transient or permanent faults. The user can therefore
observe the real behaviour of the application in pres-
ence of a fault, and, if necessary, take the appropriate
countermeasures. The accent is put on the extreme
easiness of use and the portability on all UNIX plat-
forms.

1. Introduction

Dependable software used in human-critical appli-
cations (automotive, medical and spatial) should be
able to detect whether an error appears, locate its posi-
tion within the code, and recover from possible conse-
quences [1]. To ensure that these skills are achieved
by a fault-tolerant system, several techniques have
been proposed during the last years and they are
mainly based on analytical models, experimental tech-
niques and fault-injection. The main advantage of
fault-injection, with respect to the previous alterna-
tives, is that a realistic test environment can be set up,
putting the software under test in a condition that is
very close to the normal context of execution [2].
FAUST project lies in this context: this tool has been
designed in order to test fault tolerant software, with-
out the need of external hardware or cost effective
software. The injector is not related to any specific
language or operating system so that a wide number of
COTS applications (commercial off-the-shelf) are
targeted and can be injected. The portability of our
injector is achieved thanks to the use of widely dif-
fused programmer tools, like GDB (gnu debugger) [3]
and objdump, and many bash-shell scripts, whose
main purpose is to drive automatically the execution
and to generate the appropriate faults. The chosen
implementation of FAUST employs two different
types of injections: transient errors, modeled as a bit-
flip in memory, permanent faults, deputed to emulate
hardware stuck-at.

2. FAUST Architecture

The tool deals with applications written in every
language supported by GDB and does not require any
modification of the target application. From the user
point of view, the injector appears as a command line
tool whose parameters are:
- injection location (code segment, data segment,

stack segment, CPU registers, variables);
- injection type (transient or permanent);
- injection time (random or user chosen);
- number of injections.

Faust exploits the previous parameters to:
- generate the sequence of instructions to load and

run the application within the debugger;
- inject the fault;
- collect the results.

For each injection experiments the tool categorizes
the program results by comparing them with the cor-
rect one previously gathered. The expected result can
be of three different types: no errors if the injection
doesn’t affect program execution, crash if the program
halts and wrong output when program provides results
different from the expected ones. Then, for each injec-
tion, the results are collected in one log-file.

The most important aspects of our approach deal
with the high portability of the tool which, thanks to
its implementation, can be exported to all the UNIX
based systems and to the reduced time overhead em-
ployed to perform the injections.

3. References

[1] P.P. Shirvani, N. Oh, E.J. McCluskey, D.L. Wood, M.N.
Lovellette, K.S. Wood, “Software-Implemented Hardware
Fault Tolerance Experiments: COTS in Space“ International
Conference on Dependable Systems and Networks (FTCS-
30 and DCCA-8), New York (NY), 2000, Page(s) B56-57.

[2] F. Faccio, C. Detcheverry, M. Huhtinen CERN, Geneva,
Switzerland,“First evaluation of the Single Event Upset
(SEU) risk for electronics in the CMS Experiment“ , CMS
NOTE 1998/054 CERN, Geneva, Switzerland.

[3] R. Stallman, R. Pesch, S. Shebs et al., Debugging with
GDB, June 2002. http://www.gnu.org/software/gdb

Proceedings of the 9th IEEE International On-Line Testing Symposium (IOLTS’03)
0-7695-1968-7/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

