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Introduction

The method of moments (MoM) is widely used to discretize and numerically solve in-
tegral equations modeling complex electromagnetic structures made of impenetrable
materials (perfectly conducting or metallic structures). However, it is rather diffi-
cult to numerically model structures containing edges because of the large dynamic
range of the solution in the neighborhood of edges. Indeed it is well known that near
the edge of a wedge, surface current and charge densities, as well as electromagnetic
fields, are generally singular [1],[2]. To clarify the problem, let us consider for a
moment the fields at angular frequency to in the neighborhood of a straight metal
wedge of internal wedge angle a immersed in free space with electric permittivity
and magnetic permeability equal to eo and elo, respectively (see Fig. 1).

y! P(p,(PZ)

Figure 1: Straighit perfectly coniducting wedge withi aperture angle a atid local longitudinal
axis z.

In a polar reference frame (p. 0, z) with origin at the edge of the wedge and with
the z-axis parallel to the edge itself, the surface charge p. and current densities J8
on a face of the wedge in the vicinity of the edge take, when expanded in a power
series, the following forins (only the leading terms are reported):

J,= (A+jwBz)pC½1.+(C+ljwDp')p (1

p., --(B + D)p'-1 (2)
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where A, B, C, D are coefficients that depend on the excitation. The surface charge
is found from the current density by the continuity equation. The constant com-
ponent in the radial part of the surface current, when present, does not pose any
numerical modeling problem. Indeed, when combined with the surface current from
the opposite face for a zero-thickness metal edge, the constant terms cancel since
no charge can accumulate at the edge. For a perfectly conducting wedge of internal
wedge angle a, one has v = 7r/(27r - o). The smallest value, v = 1/2, occurs for
a half plane (a = 0), while v = 1 represents a flat plane. The current component
parallel to the metal edge and the charge density are, in general, infinite at the edge.
The surface current component normal to the edge is finite, but is still singular in
the sense that its derivative does not exist there.

Many electromagnetic structures of practical engineering interest contain conducting
(or even penetrable) edges and, in the vicinity of these edges, the surface charge and
the field behavior can be singular. Unfortunately, though the singular behavior of
the electromagnetic field or current is isolated near the vicinity of the edge, the
usual non-singular (regular) bases require the expensive use of a dense mesh in the
neighborhood of edges in order to accurately model the fields, even when high-
order (regular) vector bases are used. Indeed, the difficulty is that no polynomial
adequately approximates the algebraic behavior of fractional orders v present in the
factor p" in (1); even worse, no polynomial can approximate the infinite behavior of
the factors pU-l in (1, 2).

State of the Art and Open Problems

In order to model singular algebraic behaviors, it is much more efficient to introduce
and use singular vector basis functions able to precisely model the singular edge be-
havior of fields and currents, rather than using regular vector functions on very dense
meshes. In this respect, the state of the art is well summarized in [3, 4], and refer-
ences therein. The wedge faces in the neighborhood of the edge profile are meshed
using edge singularity quadrilaterals and/or two types of singularity triangles: the
edge (e) and the vertex (v) singularity triangle, with local edge numbering schemes
as shown in Fig. 2. There is no need for considering vertex singularity quadrilaterals
since the vertex singularity triangle may serve as the only element-filler needed for
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Figure 2: a) Local edge-numbering scheme used for edge singularity quadrilaterals and
edge (e) and vertex (v) singularity triangles. Notice that the element edges i ± 1 always
depart from the edge profile. b) Although two edge singularity triangles can have an edge
in common, the basis functions cannot model a corner singularity.
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meshing in the neighborhood of the edge profile. The local edge-numbering scheme
sketched in Fig. 2 has been chosen so as to associate the i± 1 labels with the element
edges departing from the edge profile. Lowest order bases are first constructed on
the edge and vertex singularity elements. Higher order bases can then be generated
from the lowest order one by techniques similar to that of [3]. The basis func-
tions defined on the singular elements (i.e., on the elements attached to the edge of
the wedge) must incorporate the edge conditions and be able to approximate the
unknown fields in the neighborhood of the edge of a wedge for any order of the sin-
gularity coefficient v (see eq. (1)), supposed given and known a priori. Several ways
to derive singular and complete lowest-order vector bases have been investigated by
the authors. We suggest that the lowest order divergence-conforming bases must
satisfy the following fundamental requirements:

1. Both the bases and their divergence are complete to lowest order in the sense
that they model all terms of (1) and (2) (completeness and singularity modeling
properties).

2. The bases must exactly model the null space of the divergence operator, i.e.,
there must exist a linear combination of the bases on an element with an
identically vanishing divergence (null-space modeling property).

3. The bases must be fully conformable (continuous) along all edges with the
lowest order bases defined in adjacent elements (conformity property).

The above requirements are not completely independent of one another, and they
may be generalized to higher order elements. Higher order bases are typically derived
from lower order ones by multiplying them by polynomials complete to successively
higher orders. In this process, subsets of dependent bases are generated that must
be recognized and eliminated. The identification of dependency relations among
the bases aids in recognizing these subsets. A significant complication for singu-
lar bases, however, is that higher order terms of the form of (1) and (2) but with
vrn = mv replacing v also appear as terms in the wedge series expansion. Each of
these additional singular terms of different order appears to require a separate mul-
tiplicative polynomial for modeling current and charge up to a prescribed order, and
this leads to a proliferation of "additive" bases in the edge current representation.
It is instructive to note that as the wedge degenerates to a flat plate (a = 7r, ii = 1),
all such terms degenerate into the usual simple polynomial forms of higher order
regular elements. Not only does it appear that these higher order VUr expansions
are necessary in a fundamentally-based formulation, but they can be the dominant
terms if the excitation is such (see Fig. 3) that leading terms in the representation
vanish[11,[51.

In the paper, the authors explore various possible approaches for generating lowest
order and higher order bases for modeling surface currents and their divergence for
moment method application to integral equations. The bases developed are defined
on curved triangular and quadrilateral elements. All the bases are conveniently
defined in parent element coordinates, and each expansion function spans one or
two patches. For example, the bases given in [3] are either associated with an edge
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Figure 3: There are special source configurations that do not excite lower order wedge
field-singularities [1]. Left: a linearly polarized plane wave normally incident on a A/2
metal groove yields finite fields. Right: two linearly polarized plane waves incident on a
cylindrical "aircraft wing" along the direction ul = o& - j3y, u2 = Ct -+,/3y yield finite fields
also on the wing edge.

of the mesh, or they are edgeless. Edgeless functions are represented in [31 by the
symbol V, obtained by overturning the symbol A.

In the presentation we review the properties of existing bases. In particular we
present the solution of several problems that at the moment are still considered
open. For example, we present a technique used to perform self-term integration on
curved singular elements based on a modification of the algorithm given in [6]. We
also discuss methods for obtaining singular basis functions from lowest order bases,
and dependency relations that arise in their construction. The problem of scattering
by a circular disk illuminated by a plane wave serves to illustrate the use of singular
vector bases.
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