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Abstract − This paper presents strategies and schemes to 
implement higher-order two dimensional singular elements in  
Finite Elements codes. Accurate numerical results are 
presented and the efficiency of the schemes is discussed. 

1 INTRODUCTION 

This paper shows how higher-order two- 
dimensional singular curl-conforming vector bases [1-
5] can be implemented in existing Object-Oriented 
Finite Elements codes. 

This procedure can be extended to 3-D FEM codes 
and to Object-Oriented Method of Moments 
applications using higher-order singular div-
conforming functions [3-6]. 

We refer in particular to the bases used in [3-5]. 
In these papers the basis functions incorporate the 

edge conditions [7-9] and are obtained as the product 
of lowest-order functions times Silvester-Lagrange 
interpolatory polynomials [10]. 

In general singular elements must be fully 
compatible with the standard, high-order regular 
vector functions used in adjacent elements [11]. 

The use of singular high-order bases provides more 
accurate and efficient numerical solutions of 
differential problems [4-5]. 

Sample numerical results confirm the faster 
convergence of these bases on wedge problems. 

The use of singular elements is required to achieve 
high-precision results in particular problems 
concerning different application fields, ranging from 
electromagnetic compatibility to radio astronomy 
equipments, low power signal measures and scattering 
problems. 

 
 

Figure 1. A curved metallic wedge. 

2 HIGHER-ORDER TWO-DIMENSIONAL 
SINGULAR BASIS FUNCTIONS IN FEM 

Singular elements have to model the field’s 
behavior in the neighborhood of the edge of the 
wedge for any order of singularity ν. The coefficient 
ν is known a priori as described in [7-9] and it is 
frequency independent [12]. It depends on the 
material and geometrical properties of the wedge 
through the aperture angle α, Figure 2. 

 
Figure 2. Cross-sectional view of the region around a 

sharp 2-D curved edge: triangular and quadrilateral 
curved singular elements. 
 

Singular elements must model the dynamic and the 
static behavior of the fields near the edge as 
described by Van Bladel and Meixner [7-9].  

The principal properties of the basis functions 
described in [3-5] are: 
• to model the singular behavior of the field and 

the behavior of its curl (static and dynamic) 
• minimum number of degrees of freedom 
• higher order singular functions according to 

Meixner series 
• conformity to regular elements of the same 

regular order 
• curl conforming 

The basis functions of [3-5] have been used for the 
numerical tests discussed in the following sections. 

3 IMPLEMENTATION 

3.1  FEM formulation 

In order to test the capabilities of singular basis 
functions we used the 2D FEM formulation 
presented in [13] where the unknown is the electric 
field. 
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Equation (1) is the Galerkin form of the finite-
element method applied to the transverse vector 
Helmholtz equation for shielded waveguides.  

The solution is reduced to a generalized eigenvalue 
problem that can be solved through iterative 
methods. 

3.2 FEM Integration tool 

The major problem to implement singular elements 
is the integration tool development. 

Equation (1) shows that several stiffness elements 
are integrals of functions with a singular behavior. 

By using the same notation of [11], the problem is 
to perform high precision integration of singular 
functions of the following type:  
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the stiffness integrand (related to ν as nν+m with n, 
m Є Z), ξ)(J  is the Jacobian, k ЄN, ),( ξξ ∇F  is a 
combination of parent coordinates and their 
gradients. For curved patches ξ)(J  is a polynomial 
of the ξ  variables. 

Several methods are suitable to integrate singular 
functions. 

3.2.1  Full numerical integration 

Gauss integration schemes are used for FEM codes 
involving non-singular integrands, as polynomials. 

In these schemes the singularity is treated using 
adaptive numerical schemes, as Gauss-Kronrod [14], 
or standard numerical integration schemes after 
variable transformation as Double Exponential. 

3.2.2  Analytical-Numerical integration 

Higher precision results can be obtained by mixing 
analytical and numerical integration. 

We elaborate the singular term of the integrand by 
adding and subtracting a constant Jacobian version 

of the integrand (J= ξ)(J  for ξ  at the singular vertex 
i): 
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The first term is non singular and its integration is 
performed through standard numerical methods. The 
second integrand is singular and its integration is 
performed by use of the following known analytical 
result: 

 
with a,b,c ЄN and δ >-(b+c+2). 

4 C++ OBJECT ORIENTED 
PROGRAMMING IN FEM 

Highly specialized finite element codes are 
nowadays available for research, education and 
practical engineering applications.  

Special applications, as the one presented in this 
paper, require special elements, material models, 
special solvers according to the particular Partial 
Differential Equation (PDE) model. In such situations 
the user is interested implementing new elements to 
obtain stable algorithms and to provide new facilities 
with the least possible effort. 

This requirements are well satisfied by Object-
Oriented Programming (OOP) in which related data 
and methods are collected in one entity: the object.  

Object-oriented programming is therefore a way to 
improve the program structure of finite element 
codes, making modication and extension simpler 
[15].  

Object-oriented programming supports modularity 
and data structuring by organizing the problem in 
objects with very few internal bindings. 

Objects can inherit functionality from each other, 
thus using the same code for several types of PDE 
problems. 

For the numerical parts procedural programming 
could still be used, therefore for FEM applications 
one of the best choice among programming 
languages is C++. 

C++ includes C standard language which is an 
efficient procedural language and it includes OOP 
features [16], too. 



4.1  Object-oriented computational 
electromagnetics 

The object-oriented design for Computational 
Electromagnetics is useful to abstract the key concepts 
of FEM [15] and MoM application [17]. 

OOP computer codes are easily modified and 
extended to treat new classes of problems with 
incremental features, such as new elements, new 
computer algebra, etc. 

Our C++ object-oriented code computes the modal 
longitudinal wavenumbers kz at a given frequency f 
as well as the modal fields. 

A symbolic representation of the singular FEM 
integrals is implemented to integrate the singular 
functions by adding up analytic integral results., as 
shown in section 3.2.2. This technique is highly 
effective and does not require complex programming 
to provide integral results to machine precision.  

Numerical integration of the singular functions 
applied on integrand as (2) yields slightly less 
accurate results. 

5 NUMERICAL RESULTS 

Our first numerical test consider the circular vaned 
waveguide already studied in [2], that is a circular 
homogeneous waveguide of radius a with a zero-
thickness radial vane extending to its center.  

The problem is formulated as presentend in section 
3.1 to study with higher-order singular curl-
conforming elements the eigenmodes of the 
waveguide. 

This structure is of interest because the analytical 
exact closed-form solution of this problem is known in 
the literature through Bessel functions (Jm/2, J’m/2) in 
terms of TM and TE eigenmodes. 

The first subscript labelling these modes is m; the 
second subscript n indicates the order of the zero, as 
usual.  

Even values of m correspond to modes supported 
also by a circular waveguide, although the vane 
suppresses all the TM0n circular waveguide modes. 
The modal fields exhibiting a ν=1/2 singularity at the 
edge of the vane are those of the TE1n and the TM1n 
modes. The calculated transverse electric field 
topographies of the first two singular modes (TE11 and 
TM11) are reported in Figure 3. 

Figure 4 reports the percentage error in the 
computed square values k2

z of the longitudinal 
wavenumbers versus the number of unknowns. The 
comparison is among regular elements (p=3) [11] and 
singular elements. 

Singular elements provides a noticeable 
improvement also in the regular mode results, since 
any lack of precision in the stiffness matrix 
coefficients yields to errors on all modes, see Figure 5.  

Table 1 shows the matrix fill-in time versus the 
number of extra DOF’s required to study the problems 
of Figure 4 with singular elements and for p = 3 (order 
of regular elements) on Pentium IV Xeon@2.4 GHz 
machine. 

 

Figure 3. Transverse electric field component of the 
first two singular modes supported by the circular 
vaned waveguide. 

 
Figure 4. Percentage errors for the first modes of the 

circular vaned waveguide at koa = 11 (a is the WG 
radius). Average error on the first twenty modes. Mesh 
A, B, C, D, E consists respectively of 24, 54, 96, 150, 
and 6 triangular curved elements, with only six 
singular elements near the edge. 

6 CONCLUSIONS 

This paper presents the benefits of using of vector 
bases that incorporate the edge conditions: optimal 
treatment of singular behavior, highly improved 
numerical precision, no need of mesh refinement, low 
increase of the Matrix fill-in time. Implementation 
features are described in the context of Object-
Oriented Finite Element Analysis. 
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Figure 5. Percentage error in the computed square 
value of the longitudinal wavenumber (k2

z) for each of 
the first twenty modes of the circular vaned waveguide 
at koa = 11. 

 

mesh time time add. time add. time Add.
type n ele reg s=0 % S=1 % s=2 % 
A 24 10.84 11.75 1.08 13.16 1.21 21.50 1.98
B 54 22.64 24.03 1.06 25.80 1.14 36.91 1.63
C 96 43.56 44.78 1.03 46.86 1.08 56.48 1.30
D 150 67.50 67.69 1.00 71.53 1.06 79.70 1.18
extra unknown 16  50 102 

 

Table 1: Absolute matrix fill-in times (seconds) and 
percentage of additional time versus the number of extra 
DOF’s required to study the problems of Figure 4 with 
singular elements for p=3 compared to regular 
elements for p = 3 on Pentium IV Xeon@2.4 GHz. 
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