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Abstract

This paper presents new techniques to compute with an extremely high accuracy the moment
integrals of high order vector basis functions on curved patches.

1 Introduction.

Fully interpolatory higher-order divergence-conforming vector basis functions on surface patches of tri-
angular and quadrilateral shape were defined in [1]. These basis functions become very effective in the
numerical solution of the electric or the magnetic field integral equation provided one is able to compute
with a good accuracy the moment integrals. The kernel of the moment integrals is the free space Green’s
function exp (−jkR)/R, and these integrals are quite difficult to compute when the integration patch
contains or is close to the observation point.

A feature of the bases derived in [1], is that they contain a factor 1/J , where J is the Jacobian of the
curved patch, which cancels with a similar factor in the differential surface area, allowing evaluation of
the moment integrals in parent dependent coordinates (ξ1, ξ2, ξ3 for triangular patches; ξ1, ξ2, ξ3, ξ4 for
quadrilateral patches). Furthermore, in parent coordinates, the bases are a product of a polynomial P
of degree p times a low order vector function, a feature which facilitates determining a Taylor’s series
expansion of each basis function near the observation point for arbitrarily high polynomial order p.

We present two integration schemes, both based on integration in the plane tangent to the surface of the
patch at the observation point, or its projection onto the patch surface. The first scheme, summarized in
Section 2, is used to deal with observation points not lying on the integration surface. This integration
scheme is based on a systematic (recursive) procedure able to express the integrand as the divergence of a
finite vector sum, so that surface integration is easily reduced to an integration along the patch contour.
The second scheme, discussed in Section 3, considers the case of observation points located on the patch
surface. In this case we define a new quadrature function qm(n, α) used to analytically integrate in one
direction [QRm exp (−jkR)], for m ≥ −1, where Q is a monomial of n-th degree (for a plane patch it
suffices to consider m = −1); the moment integrals are then reduced to one-dimensional integrals along
the patch contour. The functions qm(n, α) satisfy recursive formulas which permit their evaluation from
knowledge of q−1(0, α).

2 Integration for observation point located outside of the sur-
face of the patch or of the plane of the tangent patch

For sake of brevity we can consider in this Section only the case of a plane patch. We call Rt the
distance from the observation point r′ to the (integration) point rt located on the plane of the patch.
The subscript t is used to clarify that here we are talking of a distance from the observation point to a
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point on a plane patch (subscript t stays for “tangent” plane when dealing with curved patches). We
call ρ the length of the projection of rt − r′ onto the plane of the patch and ρ̂ the unit vector directed
toward rt along the projection of rt − r′ onto the patch plane.

Figure 1: a) Planar triangular patch with observation point r′ located outside the plane of the patch; b)
planar triangular patch tangent to a curved triangular element at the observation point r′.

Our derivation has been inspired after recognizing that it is very convenient to work in parent indepen-
dent coordinates; in fact, the polynomial P p (ξ1, ξ2) is supposed to be known as a function of the two
independent parent coordinates ξ1, ξ2. The normal projection of r′ onto the plane patch specifies the
point with parent coordinates (ξ′1, ξ′2). Hence, the vector ρ (in the observation domain, not in parent
domain) can be expressed in terms of the two unitary basis vectors �1, �2 as follows:

ρ = (ξ1 − ξ′1) �1 + (ξ2 − ξ′2) �2

where �1, �2 are constant vectors which are known for a given patch. The knowledge of the unit vector n̂
normal to the plane patch and the introduction of the reciprocal basis vectors h1 = �2 × n̂, h2 = n̂ × �1

allows one to write:
h1

Jt
· ρ = ξ1 − ξ′1 ,

h2

Jt
· ρ = ξ2 − ξ′2 (1)

Use of the above dot-product expressions is the key point of our derivation.

For both the triangular and quadrilateral patch h1 (h2) is the inward vector in the plane of P normal to
side 1 (2), and it is constant; Jt is the Jacobian relative to the plane patch P. By assuming, for a moment,
that the parent-domain point (ξ′1, ξ′2) is located outside of the parent patch we are able to demonstrate
the following result:

P p (ξ1, ξ2)
exp(−jkRt)

Rt
= −

p+2∑
m=2
m even

∇s ·
[
gmF p+2−m

]
(2)

where the differential operator ∇s operates on the unprimed (integration) coordinates and it is a surface
operator relative to the surface of the plane patch. This result will then be estended to consider also
the cases where the point (ξ′1, ξ′2) is inside or on the border of the parent patch. The nice features of
expression (2) are:

1. the scalar functions gm are computed recursively for increasing m, on the basis of the knowledge of
the function g0;

2. the vector functions F p+2−m are computed recursively for increasing m (decreasing p + 2−m), on
the basis of the knowledge of the function F p.

The scalar functions g2n are defined by the recursive formulas (the minus sign is important):

g0 (Rt) =
exp(−jkRt)

Rt

g2n (Rt) = −
∫

Rt

Rt g2(n−1) dRt =⇒ ∇s [g2n] = −ρ g2(n−1) for n ≥ 1 (3)



The integration constants defining each of these functions are chosen so to make the limit for k → 0
finite. The technique and all the details to obtain the vector functions F p+2−m will be presented at the
Conference. Knowledge of all the functions g2n up to a given n permits one to express P p exp(−jkRt)/Rt

as the divergence of a known vector, for all values of p up to p = 2(n − 1) (for example, one can easily
handle cases with p = 6 knowing g2n up to 2n = 8). Use of (2) yields:∫

P

P p (ξ1, ξ2)
Jt

exp(−jkRt)
Rt

dS = − 1
Jt

∑
i

ûi ·
∫

∂iP

p+2∑
m=2
m even

gm F p+2−m d� (4)

where ∂P is the boundary of the plane patch P and quantities with subscript i are associated with the
i-th edge, ∂iP, of ∂P. The surface divergence theorem has been used to convert the surface integral to a
line integral, and û denotes the outgoing unit normal to the boundary in the plane of P.

If the parent-domain point (ξ′1, ξ′2) is located inside or on the border of the parent patch one has to break
P into the two regions Pε and (P-Pε). Pε is the intersection of P and a small disk of radius ε centered at
(ξ′1, ξ′2). In the limit for ε → 0 (principal value integral) the following result is obtained:∫

P

P p (ξ1, ξ2)
Jt

exp(−jkRt)
Rt

dS =
∫
Pε

T p
0,0

Jt

exp(−jkRt)
Rt

dSε − 1
Jt

∑
i

ûi ·
∫

∂iP

p+2∑
m=2
m even

gm F p+2−m d�

(5)

where T p
0,0 = P p (ξ′1, ξ

′
2), and the integral over Pε is intended in the limit for ε → 0; expressions of the

integral over Pε are available in the literature. The technique used to integrate on a curved patch for
observation point located outside of the tangent patch will be discussed at the Conference.

3 Integration for observation point located on the surface of the
patch or on the plane of the tangent patch

In this section we consider the problem of integrating on a two-dimensional patch P a polynomial function
P p of p-th degree times a scalar function of the form

exp (−jkRt) Rm
t , m = −1, 0, 1, 2, . . . for a plane patch

exp (−jkR)/R , for a curved patch

where Rt is the distance from the observation point r′ to the (integration) point rt located on the plane
of the tangent patch; while R is the distance from the observation point r′ to the (integration) point r,
both located on the patch surface.

Indeed, the subscript t is used to clarify that here we are talking of a distance from the observation point
to a point on a plane patch (subscript t stays for “tangent” plane when dealing with curved patches).
The reason why to consider kernels of the form exp (−jkRt) Rm

t rather than just the 3D scalar Green’s
kernel is due to the fact that we want to derive formulas to be used to integrate on curved patches, where
the curvature of the patch plays a very important role when the observation point belongs to the curved
patch.

P p is a polynomial function of two independent parent coordinates ξ1, ξ2 as well as of some dependent
parent coordinates (ξ3 for a triangular patch and ξ3, ξ4 for a quadrilateral patch).

Our derivation is presented here by considering, for simplicity, the case of a triangular patch; however,
the results are readily estended to quadrilateral patches.

3.1 Integration on a plane patch for observation point located on the plane
of the patch

In case of a triangular patch, the parent coordinates of the observation point (point of tangency) are (ξ′1,
ξ′2, ξ′3). In the parent domain, the point of tangency (pot) is used to subdivide the triangular patch into



three subtriangles, by joining with straight lines the vertices of the triangle to the point of tangency. In
object space we call R1, R2, R3 the distances from observation point to vertex 1, 2 and 3, respectively;
while the length of side 1, 2, 3 is �1, �2 and �3, respectively. Each subtriangle of the parent domain is
mapped into a square domain {0 ≤ si ≤ 1 ; 0 ≤ λi ≤ 1}. For each subtriangle, the point of tangency
(ξ′1, ξ′2, ξ′3) is reached at λi = 1 (where si is undetermined). The Jacobian Ji of the i-th nonlinear
transformation (i = 1, 2, 3) has a first order zero at λi = 1.

In object space, the distance Rt of a point rt of the plane (tangent) triangle from r′ = r(ξ′1, ξ
′
2, ξ

′
3) is a

function of λ and s of the form Rt = (1−λi)
√

Ai − siBi + s2
i Ci, where Ai, Bi, Ci (i = 1, 2, 3) are known

positive constants

We will see that when dealing with curved patches one need also to evaluate some surface integral by
means of some quadrature rule which specifies the sampling points. When a sampling point is given, it is
important to be able to evaluate the λ and s coordinates. For a given sampling point (ξs

1, ξs
2, ξs

3) inside
one subtriangle (as said, the sampling points on the subtriangle are chosen, for example, by the surface
integration routine used to integrate the “regular” part), one can easily evaluate si (for i=1, 2, 3) and
then the parent coordinates (ξc

1, ξc
2, ξc

3) of any point close to (ξ′1, ξ′2, ξ′3) having the same value of si.

By use of the above specified nonlinear transformations, on each subtriangle of the plane (tangent) patch,
it is then possible to integrate polynomial functions of (ξ1, ξ2, ξ3) times some radial functions:∫∫

P (ξ1, ξ2, ξ3) exp (−jkRt) Rm
t dξ1 dξ2 for m = −1, 0, 1, 2, . . .

For m = −1, the singularity (1/Rt) is in fact eliminated by the first order zero of the Jacobian of the
NL-transformation. The first integration along λ is performed analytically, the remaining integration
along s is performed numerically. This technique “de facto” reduces the surface integration to a contour
integration along the oriented contour of the patch.

To perform this integration the polynomial function P p must be represented in terms of the λ and s
variables. Since P p is of p-th degree and the parent variable vary linearly in λ, the expression of P p as a
function of λ will be a polynomial in λ of p-th degree:

P p = ap(s)λp + ap−1(s)λp−1 + ap−2(s)λp−2 + · · · + a0(s)

The algorithm to obtain the coefficients ar(s) (r =0, 1, . . . , p) on the basis of the expression of ξi (i=1,
2, 3) in terms of λ and s variables and of P p(ξ1, ξ2, ξ3) is so simple that does not need to be discussed.

3.2 The quadrature function qm(p, α)

The potential integrals we are interested in have the following form∫∫
P (ξ1, ξ2, ξ3) exp (−jkRt) Rm

t dξ1 dξ2 =

=
∑

i

ξ′i

∫ 1

0

dsi

[(
α

jk

)m pmax∑
p=0

ap(si)
∫ 1

0

dλλp exp{−α (1 − λ)} (1 − λ)m+1

]

with α = jk
√

Ai − siBi + s2
i Ci

Thus, to integrate along λ we need to define and use the following function:

qm(p, α) =
∫ 1

0

(1 − λ)mλp exp{−α (1 − λ)} (1 − λ) dλ

m and p integer; m ≥ −1 , p ≥ 0 (6)

For m = −1 and p = 0 this function has a simple analytic expression whereas, for other values of m and
p, this function can be evaluated by recursive formulas. In fact, for m = −1, one has:

q−1(0, α) =
1 − exp (−α)

α
(7)

q−1(p, α) =
1 − p q−1(p − 1, α)

α
, p ≥ 1 (8)



(7), (8) permit one to recursively compute q−1(p, α), for p = 0 up to p = pmax. This knowledge is then
used to compute the functions q0(p, α) for 0 ≤ p ≤ pmax which, in turns, allows computation of q1(p, α)
up to p = pmax, etc.. In fact, for m ≥ 0 one has:

qm(0, α) = qm−1(0, α) − qm−1(1, α) (9)

qm(p, α) =
(1 + m) qm−1(p, α) − p qm(p − 1, α)

α
, (p ≥ 1) (10)

The recursive evaluation of qm(p, α) becomes critical for |α| ≈ 0. In this case one can use Taylor series
approximations which are always convergent and, for α real positive, take the form of alternating series.
For |α| small, a general and more effective (under a computational point of view) expression can be given
in terms of infinite continued products.

3.3 Integration on the tangent plane or on a plane patch

For a plane patch Pt, the results of the previous two subsections yield:∫
Pt

P p (ξ1, ξ2, ξ3)
J

exp(−jkRt)
Rt

dS =
∫
Pt

P p (ξ1, ξ2, ξ3)
exp(−jkRt)

Rt
dξ1 dξ2

=
∑

i

ξ′i

∫ 1

0

dsi√
Ai − siBi + s2

i Ci

[
pmax∑
p=0

ap(si) q−1(p, α)

]

with α = jk
√

Ai − siBi + s2
i Ci (11)

In order to derive the result valid for a curved patch we first need to study an approximation of the 3D
Green’s kernel on the tangent plane. This is done in the following subsection.

3.4 Approximation of the kernel on the tangent plane along a line s = con-
stant

Let us call R the distance from a point r(ξ1, ξ2, ξ3) of the curved patch and the point of tangency
r′ = r(ξ′1, ξ′2, ξ′3) (observation point). In the neighborhood of the point of tangency, the integral kernel
exp(−jkR)/R can be approximated by a function of the distance Rt from a point rt(ξ1, ξ2, ξ3) on the
tangent patch and the point of tangency. The point rt of the tangent patch is reached for the same values
of dependent coordinates relative to the point r of the curved patch. In the neighborhood of the point
of tangency, and along a line s= constant, one has:

exp(−jkR)
R

≈ exp(−jkRt)
Ra

= exp(−jkRt)
[

1
Rt

− κ1(s) + κ2
2(s)Rt + κ3

3(s)R
2
t

]
(12)

The argument of the exponential function on the left-hand side of eq. (12) is approximated on the right-
hand side to first order in Rt, whereas the factor inside the square brackets on the right-hand side of (12)
is obtained by assuming the following representation for small R (≈ Ra) and Rt:

Ra =
Rt

1 − κ1(s)Rt + κ2
2(s)R2

t + κ3
3(s)R3

t

which yields

1
Ra

=
1
Rt

− κ1(s) + κ2
2(s)Rt + κ3

3(s)R2
t

and

Ra ≈ Rt

{
1 + κ1(s)Rt +

[
κ2

1(s) − κ2
2(s)

]
R2

t +
[
κ3

1(s) − 2κ2
2(s)κ1(s) − κ3

3(s)
]
R3

t + · · · }



In the latter equation κ1(s) approximates the curvature of the patch at the point of tangency (where
Rt ≈ 0), but it is not the true curvature. For κ1(s) to become the curvature one should represent R in
the neighbourhood of the point of tangency as it follows (infinite series):

R =
Rt

1 − κ1(s)Rt + κ2
2(s)R2

t + · · · + κn+1
n+1(s)Rn

t + · · ·
Therefore, the function coefficients κ1(s), κ2

2(s) and κ3
3(s) must be evaluated numerically by enforcing

(12) at three points located very close to the point of tangency. Because of the presence of the complex
exponential functions, these coefficients are complex. The three points used to evaluate the coefficients
have the same value of s-coordinate (s is known when one integrates along s, while it can be evaluated
when integrating the regular part, since the sampling quadrature-point is always given); whereas the λ-
values are (1−Δ), (1−2Δ) and (1−3Δ) (with Δ = 10−2, for example). By calling (Rt1, R1), (Rt2, R2),
(Rt3, R3) the distance couples (Rt, R) relative to the three interpolation points, the numerical-curvature
coefficients are easily expressed in terms of matrix product.

The numerically obtained values for κ1, κ2
2 and κ3

3 yield a regular part which, numerically, is zero at
r = r′ (i.e., at the point of tangency, where R = Rt = 0) and with zero first and second derivatives along
the direction s=constant.

Since R and Rt are continuous functions of s, also κ1(s), κ2
2(s) and κ3

3(s) are continuous functions of s.

3.5 Integration on a curved patch

We either recall or introduce the following functions:

exp(−jkRt)
Ra

= exp(−jkRt)
[

1
Rt

− κ1(s) + κ2
2(s)Rt + κ3

3(s)R
2
t

]
(13)

α = jk
√

Ai − siBi + s2
i Ci (14)

P p = ap(s)λp + ap−1(s)λp−1 + ap−2(s)λp−2 + · · · + a0(s) (15)

Q (si) =
q−1(p, α)√

Ai − siBi + s2
i Ci

− κ1(si) q0(p, α)

+κ2
2(si) q1(p, α)

√
Ai − siBi + s2

i Ci + κ3
3(si) q2(p, α)

(
Ai − siBi + s2

i Ci

)
(16)

For a curved patch one has:∫
P

P p (ξ1, ξ2, ξ3)
J

exp(−jkR)
R

dS

=
∫
Pt

P p (ξ1, ξ2, ξ3)
[
exp(−jkR)

R
− exp(−jkRa)

Ra

]
dξ1 dξ2

+
∑

i

ξ′i

∫ 1

0

[
pmax∑
p=0

ap(si)Q (si)

]
dsi (17)

The surface integral on the right-hand side is evaluated by first subdividing the parent patch into sub-
triangles. The quadrature rule used to integrate on each subtriangle defines some sampling points in
parent space. To evaluate Ra one needs first to evaluate the si coordinate of the sampling point (and
then κ1(si), κ2

2(si), κ3
3(si)), as explained previously.
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