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Abstract 
 
This paper presents our approach to unsupervised multi-
speaker conversational speech segmentation.  
Speech segmentation is obtained in two steps that employ 
different techniques. The first step performs a preliminary 
segmentation of the conversation analyzing fixed length slices, 
and assumes the presence in every slice of one or two 
speakers. The second step clusters the segments obtained by 
the previous step, estimates the number of speaker, and refines 
the segment boundaries using more accurate models. 
We evaluated our algorithms on the speaker segmentation 
tasks proposed by the 2000 NIST speaker recognition 
evaluation where the proposed approach produces state-of-the 
art segmentation error rates and on the 2004 NIST multi-
speaker conversation tests where we compare the verification 
performance using automatically segmented training data with 
the one obtained using single speaker data. 

1. Introduction 
Speaker segmentation is an important topic for speaker 
detection and tracking. Clustering conversational speech into 
sets of regions corresponding to a putative single speaker is a 
reasonable approach when the speaker turns are frequent and 
the duration of a turn can be very short, as happens in the 
CallHome Corpus collected by the Linguistic Data 
Consortium that has been used in the 2000 NIST speaker 
recognition evaluation [1].  
Our approach to speech segmentation works in two steps that 
make use of different techniques, and does not rely on a-priori 
knowledge. The techniques are different because they account 
for the amount of data that can be used for obtaining reliable 
speaker model estimates. The first step does not look for 
speaker changes using a sliding variable length analysis 
window (as done for example in [2-3]). It performs, instead, a 
preliminary blind segmentation (as proposed for example in 
[4-6]). This blind segmentation of the conversation is carried 
out analyzing signal slices of fixed length.  
The length of a slice is chosen so that it can be assumed that 
most of the times a maximum of two speakers are present in 
every slice.  This assumption is reasonable because the second 
step, relying on more information, is able to update the 
number of the detected speaker segments and the preliminary 
segment boundaries in every slice. The second step clusters 
the segments obtained by the previous step, estimates the 
refines the segment boundaries using more accurate models.  
number of speaker participating in the conversation, and 

We evaluated our algorithms on the speaker segmentation 
tasks proposed by the 2000 NIST speaker recognition 
evaluation, and on a 2004 NIST multi-speaker conversation 
test.  Real-time constraints are ignored in this work, the offline 
segmentation process, however, is fast because it only takes 
on average about 6% of the duration of a conversation.  
The paper is organized as follows: Section 2 describes the 
method for obtaining a preliminary segmentation from fixed 
length slices. The final speaker clustering, the estimation of 
the number of speakers and the refinement of speaker 
homogeneous intervals are illustrated in Section 3. In Section 
4 we validate our approach presenting the experimental 
results. Conclusions and comments are given in Section 5.  

2. Preliminary segmentation 

We process the audio file to produce a feature vector of 23 
Mel-cepstral coefficients every 10 ms according to [6]. 
Automatic end-point detection is performed to remove long 
chunks of silence. Silence or noise regions inside the 
endpointed conversations are eliminated using the same 
energy-based Voice Activity Detector that we use for robust 
speech recognition in noisy conditions. The remaining signal 
is processed in slices of fixed length. 
For the conversational speech tasks we set the slice length to 
60 seconds: our assumption is that in 60 seconds of 
conversation most of the times only the turns of one or two 
speakers are present, otherwise it would be difficult to reliably 
detect homogeneous segments of more than two speaker using 
a limited amount of data. Moreover, this assumption does not 
harm the possibility for the second step, relying on more 
information, to update the number of speaker segments in a 
slice and their boundaries. 
Using the reference segmentation, including silences, of the 
first minute of all the CallHome multi-speaker conversations, 
we computed the number of slices where the contributions of 
all the K speakers included has a duration greater than T 
seconds. These statistics, summarized in Figure 1, confirm our 
assumption because there are no slices including 4 speakers 
where a speaker talks more than 5 seconds, and there are a few 
3-speaker slices where a speaker contributes for more than 10 
seconds. Moreover, in these statistics we did not take into 
account overlapping speakers segments, which occur more 
frequently when several speakers take part to the conversation. 
We point out that the assumption of a maximum of two  
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Figure 1: Number of speakers in the first minute of all the 
CallHome multi-speaker conversations versus the maximum 
duration of their turns. 
 
speakers per slice is not critical because the structure of our 
preliminary segmentation is similar to the framework 
proposed in [5], where it is possible to automatically 
determine the “best” number of speaker per slice. 
Every slice is partitioned into 60 analysis windows of one 
second that are processed using tied Gaussian Mixture Model 
density functions. The choice of tied GMM density functions 
allows very fast estimation, comparison, and adaptation of the 
speaker models [4,6]. 

2.1. World model 

First we estimate, using all the frames in a slice, the 
parameters of the initial “world” GMM through vector 
quantization: we use 64 Gaussians for this model. This set of 
Gaussians is kept fixed for each window of the slice: only the 
mixture weights are re-estimated. Since the set of Gaussians is 
fixed, it is possible to compute once for all the emission 
probability of every Gaussian for each frame in the slice. The 
most significant emission probability contributions per frame 
only are stored, associated with the index of their 
corresponding Gaussian.  
Few EM iterations are performed to re-estimate the initial 
weights. These operations are very fast because the number of 
processed frames is small, and because the number of 
emission probability contributions per frame, after pruning the 
insignificant ones, is on average 3.  

2.2. Blind segmentation 

A blind segmentation is performed using an ergodic 2 state 
HMM [4-5] with all the transitions costs are set to 0. The 
difference of our approach with respect to [4] is that, like in 
[5], we don’t use neither supervised nor random initialization 
of the estimates of the HMM states. We initialize, instead, as 
suggested in [5] the state S0 model by estimating the weights 
of the tied GMM model using the frames of a window, and the 
model of state S1 using the frames of all the other windows of 
the slice. The weights are obtained, according to MAP 
estimation, as a linear combination of the weights estimated 
for the current window and the weights of the “world” model.  
Few iterations of Viterbi decoding allow to re-estimate the 
two state models, and to label each window according to the 
best sequence of states.  
Our approach for the preliminary segmentation differs from 
[5] because we use tied mixtures. This allows us to produce 

better initial speaker clusters, as will be described in the next 
sub-section. 
Using tied mixtures, given the models λx and λy estimated 
with the frames of window x and y respectively, it easy to 
estimate the model λxy from the collection of the frames of 
both windows without performing any expensive likelihood 
computation. Since the free parameters to be estimated are the 
Gaussian weights only, they can be simply obtained according 
to [4] as: 
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where wxy refer to the segment that merges windows wx and 
wy including nx and ny frames respectively. 
It is very fast, thus, to estimate first the model of state S0 – i.e. 
the set of weights {g(S0,w)} – for every window w, and then 
to obtain the corresponding model for state S1 interpolating 
the weights of the models according to (1). The same formula 
can be used during the process of re-estimation of the models 
of the two HMM states. MAP re-estimation is always 
performed due to the limited amount of data.  

2.3. Selection of the best preliminary segmentation  

In [5] the model of state S0 is initialized with the parameters of 
the window that achieves the maximum likelihood given the 
“world” model. We have found that the choice of the seed 
model has significant influence on the segmentation: 
initializing the state S0 model using the frames of different 
windows often produces quite different segmentations; this 
adversely affects the final speaker clustering as will be shown 
in Section 4.  
Thus, an original contribution of this paper is a procedure to 
obtain the best preliminary segmentation. 
Since the segmentation procedure is very fast, we estimate the 
initial models using, at each run, the frames of a different 
window. We obtain, thus, a set of different segmentations 
represented by strings of 60 labels, one per window. We want 
to generate a string, resulting from the combination of all 
these strings, which produces the maximum segmentation 
agreement among them. It is worth noting that the putative 
speaker label for a given window can differ in each 
segmentation string even if it represent the same speaker. For 
example, the following strings  
 

1001101111….. 
0110010000….. 

 
represent the same segmentation because the two putative 
speaker labels (0 and 1) have been permuted.  
Since different seed models will produce different 
segmentation strings, we must define a similarity measure 
between strings taking into account speaker re-labeling. 
An optimal procedure for this task would be combinatorial 
with the number of the windows (60). We use, thus, a sub-
optimal procedure, combinatorial with the number of speakers 
in a slice, which performs sequentially the optimization. This 
is possible because the segmentations differ, due to different 
initialization of the seed model, but their labels are not 
assigned randomly. 
The procedure uses a matrix M with a row for each putative 
speaker s, and a column for each window w. M(s,w) stores the  



Table 1: Set Z of strings with permuted labels 

1 0 0 2 2 0 1 1 0 2 . . 

0 1 1 2 2 1 0 0 1 2 . . 
1 2 2 0 0 2 1 1 2 0 . . 
2 1 1 0 0 1 2 2 1 0 . . 
1 2 2 0 0 2 1 1 2 0 . . 
2 0 0 1 1 0 2 2 0 1 . . 

 
number of times that window w has been assigned to speaker 
s. 
The matrix is initialized as  

60,,11)),(( K== wwwzM         (2) 
where z(w) is the first segmentation string. 
Each segmentation string is processed as follows: 
1) A set of n=S! strings Z is generated accounting for all 

possible permutations of the speaker labels as shown in 
the Table 1 example for S=3 putative speakers.  

2) For each string zi in Z, a copy of the matrix M is created, 
and then updated according to 

60,,11)),(()),(( K=+= wwwzMwwzM iii
   (3) 

and total number of matching labels is computed as 
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Copying back the matrix b having best matchingb value 
),(),( wsMwsM b=   (5) 

the current best segmentation is obtained as 
),(maxarg)( wsMwz

s
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This procedure finds, thus, the segmentation that maximizes 
the number of matching identifiers in each window for all the 
segmentations. 

2.4. Speaker-homogeneous segments 

The preliminary best segmentation is used to estimate the 
initial models of two speakers, then two iteration of Viterbi 
decoding are performed to produce the hypothesized speaker-
homogeneous intervals, and to refine their boundaries. This 
procedure works frame-by-frame using a sliding window of 
100 frames.  It assigns to the central frame of the window the 
state identifier that maximizes the likelihood of the window 
frames given the state model. Again, this procedure is very 
fast because, for each window step, the decision requires only 
that the likelihood of a new frame is added and the likelihood 
of the oldest frame removed. A final step is performed to 
reassign short intervals (less than 10 frames) to the adjacent 
ones. The overall result is a set of intervals that identify two 
speaker-homogeneous segments. 

2.5. Analysis of the speaker segments  

Since it is possible that only one speaker has actually spoken 
in the current slice, the Bayesian Information Criterion is used 
to compare the likelihood of the two segments and to decide if 
they belong to different speakers, or if the entire slice has to 
be assigned to a single speaker. 
The complete preliminary segmentation procedure is 
performed on every slice of the conversation. 

3. Speaker clustering 
The set of all the segments produced by the preliminary 
segmentation for every slices of the conversation is the input 
to the clustering algorithm. 

3.1. Global world model 

Since the amount of data in each putative speaker-
homogeneous segment is not limited to one second, as was the 
case for the windows in the preliminary segmentation, it is 
possible to increase the resolution of the models to enhance 
their capability of clustering the segments.  
Since we insist in using tied Gaussian mixtures, we must 
estimate a “global world” GMM. 
To estimate the parameters of the initial “global world” GMM, 
we perform 3 iterations of a K-Means clustering algorithm 
using the frames of all the segments. The initial seeds for the 
K-Means algorithm are computed by clustering the mean 
vectors of the Gaussians belonging to the world models of all 
the conversation slices. The number of Gaussians for the 
enhanced model is set to 128 or 256 according to the total 
number of frames of the conversation. Again, only the 
significant emission probabilities for all the frames are stored. 
A complete linkage hierarchical clustering is finally 
performed using a matrix of the distance between two 
segments whose element DIJ is defined as  
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JIJI
IJ nn

LLL
D

+
−+

=                 (7) 

where Lx, is the log-likelihood of the nx frames of segments x 
given the model λx estimated on the same frames. LIJ is to the 
log-likelihood of the union of the frames of segments I and of 
segment J given the model λIJ estimated as combination of the 
models λI  and λI . 
The agglomerative clustering merges similar segments until 
the distance between two clusters is greater than a fixed 
threshold depending on the number of Gaussians of the 
models: this correspond to a BIC similarity criterion [2]. The 
threshold value controls, thus, the number of speakers that are 
detected in the conversation and the speaker clusters. It is 
worth noting that, for the sake of efficiency, we do not re-
estimate the cluster models and their likelihoods. 
Finally, 2 iterations of Viterbi decoding are performed to 
refine the speaker models and the boundaries of the cluster of 
segments. 

4. Experimental results 
To assess our approach we addressed the speaker 
segmentation tasks of the NIST 2000 evaluation both on 
Switchboard and on the multilingual CallHome data [1].  
All scores have been obtained using the scoring script 
seg_scoring.v2.1.pl provided by NIST, ignoring collar periods 
of 250 msec, as it is usual for these tests. The segmentation 
has been performed without knowledge of the number of 
speakers taking part to the conversations.  
Table 2 compares the segmentation errors, on Switchboard 
data, using a single seed model for obtaining the preliminary 
segmentation of a slice, like in [5], rather the best preliminary 
segmentation illustrated in sub-section 2.4. These results show 
significant performance degradations due to an inaccurate 
initial segmentation. The same considerations can be made 



considering the results of the same experiment performed on 
the CallHome evaluation data reported in Table 3. For these 
experiments we kept fixed the same thresholds used for the 
Switchboard. Our results on these tasks, are in line with to the 
ones reported in [1] for one of the best sites system 
participating to the NIST 2000 evaluation. 
The performance improvement due to the detection of one or 
two speakers per slice (sub-section 2.5) can be compared with 
the results – shown in the last column of the table – that are 
obtained assuming that two speakers are always present in a 
slice.  
The performance of our approach has also been assessed on 
the CallHome n-speaker segmentation subtask. Again our 
results, shown in Table 4, are comparable with the one 
presented in [1]. 
It can be noticed that, with the current setting of the threshold 
in the segment clustering algorithm, we slightly underestimate 
the actual number of speakers in conversations. Overall, the 
mean difference between the estimated number of speakers 
and the actual one is 0.36.  
Finally, the speaker clustering procedure has been tested on a 
2004 NIST multi-speaker conversation test, training speaker 
models with reference (3-sides) and automatically segmented 
(3-convs) data. Comparing the DET functions, shown in 
Figure 2, obtained testing the 1-side data with the two set of 
models, we can observe how the use of contaminated data 
affects our GMM speaker verification system. The two 
families of functions are produced by two GMM systems. The 
best one, however, is trained and tested using MFCC feature 
warping (FW) and world-model adapted to the NIST 2004 
data. We observe that feature warping gives very good results, 
but that it has greater impact on the accuracy of impure 
speaker models, while models trained with un-warped features 
are more tolerant to segmentation errors.  

 
Table 2– Segmentation errors on Switchboard data 

 
Segment speakers Best seed All seeds 

Male 18.0% 7.0% 
Female 19.3% 11.4% 
Mixed 14.6% 4.9% 
Total 17.1% 7.6% 

 
Table 3– Segmentation errors on CallHome data 

 
N. of  

speakers  
Best  
seed 

All 
seeds 

2 speakers 
 per slice 

2 17.1% 11.5% 13.4% 
3 22.9% 18.5% 19.7% 
4 20.2% 14.6% 16.5% 
5 23.0% 18.7% 19.1% 
6 33.2% 22.6% 23.4% 
7 33.1% 28.4% 28.4% 

 
Table 4– Number of speakers on CallHome data 

 
Number of speakers 2 3 4 5 6 7 

Average number 
 of detected speakers 1.9 2.3 3.3 4.4 4.8 6.5 
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Figure 2: DET functions comparing contaminated and 
pure speaker models, and feature warped and un-

warped systems 

Conclusions1 
An approach to unsupervised multi-speaker conversational 
speech segmentation has been presented that has shown its 
capability of detecting and segmenting conversations with 
unknown number of speakers. It tries to carefully exploit the 
available data performing a preliminary blind segmentation, 
analyzing conversation slices of fixed length. A second step, 
relying on more data, can use more accurate models to clusters 
the segments obtained by the previous step, to finds the 
number of speaker, and to refine the speaker segment 
boundaries. Good results have been reported for the multi-
speaker segmentation and verification of conversational 
speech using standard data and tools.   
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