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Abstrucf-This paper introduces a new algorithm for the au- 
tomatic synthesis of SPICE-ready equivalent circuits of complex 
multiport lumped interconneet structures. The method is named 
Tie-Domain Vector Fitting (TD-VF) due to its analogy to the 
well-known Vector Fitting algorithm, which operates in frequency 
domain. The TD-VF computes a rational approximation of the 
transfer matrix for the structure under modeling using as raw 
data its transient port responsw to suitable excitations. These 
include, e.g., the case of transient port scattering responses as 
typically obtained by lull-wave electromagnetic solvers based 
on the Finite-Differences Time-Domain (FDTD) or Finite In- 
tegration (FIT) methods. The TD-VF algorithm works entirely 
in the time domain, without requiring any knowledge of the 
frequency-domain responses. This allows d i d  processing of 
possibly truncated transient msponses, therefore allowing for 
short full-wave simulations. This paper shows that the accuracy 
level schiavable by TD-VF is excellent. Hence, passivity can be 
enforeed a posteriori using the spectral properties of associated 
Hamiltonian matrices. Several examples of package, connectors, 
and dimntinnities are provided as illustratioa 

I. INTRODUCTION 

The signal integrity of electronic systems may be strongly 
affected by discontinuities in the signal propagation paths. 
Such discontinuities can be vias and via arrays, bends, junc- 
tions, connectors, etc. A careful assessment requires a proper 
modeling of such structures in order to be able to repro- 
duce their effects on the signals. This modeling procedure 
should take into account geometry and material properties, 
thus requiring a complex full-wave electromagnetic analysis. 
Instead of applying this costly analysis to the entire system, 
we consider its subparts separately. Each sub-structure is 
characterized via full-wave analysis (and/or by direct measure- 
ment). The pon responses that are obtained are used to derive 
suitable macromodels of each sub-structure. Finally. all the 
macromodels are translated into an equivalent circuit, in order 
to connect them and to run a system-level transient analysis 
using a standard SPICE-like circuit solver. This analysis can 
be finalized to investigate couplings, to compute eye diagrams 
for safe transmission, etc. 

The macromodeling problem has received much attention 
in the recent literature, and several macromodeling techniques 
are now available (see, e.g., Refs. 111, 121, 171, [SI). Each of 
these techniques is tailored to the specific form in which the 
structure under investigation is characterized. We focus here 
on linear macromodeling from transient port responses, and 
we present a new macromodeling technique that we denote 
Time-Domain Vector Fitting (TD-VF). The algorithm is an 
extension of the well-known standard Vector-Fitting (VF) 

technique 181, whose accuracy and efficiency is widely rec- 
ognized. Standard VF operates entirely in frequency domain, 
providing rational approximations of transfer functions starling 
from frequency-domain samples. Conversely, the proposed 
TD-VF technique produces rational approximations directly 
from transient inputloutput responses. A specific application 
where this approach is convenient is the equivalent circuit 
extraction for three-dimensional interconnect smctures (like, 
e.g., electronic packages or connectors), that are characterized 
using a full-wave electromagnetic solver based, e.g., on the 
Finite-Difference Time-Domain (FLlTD), Finite Integration 
(FIT), or transient Partial Element Equivalent Circuit (PEW) 
methods. Due to the high computational cost, it is desirable 
to terminate the full-wave analysis before all transients have 
extinguished, thus obtaining truncated time responses. The 
presented algorithm is ideally suited for this type of native 
data, whereas a frequency-domain approach would not be 
feasible. In addition, in order to handle the large number of 
port responses in case of a high ports count, a decomposition 
strategy is devised to compute partial macromodels from 
separate subsets of port responses, and to assemble them into 
a global state-space realization of the macromodel. 

The synthesis of a SPICE equivalent circuit from state-space 
equations is conventional. However, we remark that passivity 
should be tested and enforced before performing this synthesis. 
The macromodels generated by TD-VF are either passive or 
nearly-passive due to the excellent accuracy of the macro- 
modeling algorithm. Therefore, passivity can be enforced a 
posteriori. We use here a recently-developed algorithm based 
on spectral perturbations of associated Hamiltonian matrices, 
which leads to a necessary and sufficient passivity test and to 
an iterative passivity compensation procedure that ensures a 
minimal impact on the macromodel accuracy. Full derivation, 
theorem proofs, and details can be found in [5] ,  [6]. The 
combination of TD-VF and Hamiltonian-based passivity tools 
leads to a powerful macromodeling methodology that has been 
verified on several applications. 

11. TIME-DOMAIN VECTOR FITTING 

We consider a multiport structure with an arbitrary number 
P of ports. Input and output vectors are denoted as x and 
8. respectively. Usually, a transient characterization of such 
a multiport structure is obtained by exciting one port at the 
time and compntinglmeasuring the responses at all ports. As 
a result, the raw data set is a matrix of response waveforms 
y v ( t )  at port (i), due to an excitation source zl(t)  located at 
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port (j). If we denote with H ( s )  the transfer matrix of the 
structure, we have 

Y ( s )  = H ( s ) X ( s ) ,  (1) 

Vij(t) Y L - t { H < j ( s ) }  * Zj(t), i , j  = l,.. . , P ,  

where C-' is the inverse Laplace operator and t denotes 
convolution. We remark that this type of data set is the natural 
outcome of time-domain full-wave electromagnetic solvers 
(transient scattering waveforms being the typical format). The 
objective is the derivation of a rational approximation 

since this can b e  easily translated into an equivalent circuit. 

we first split them into separate subsets. Let 
Since the entire dataset of port responses may be very large, 

xk = Pkx, yk = Qky, k = 1,. . . ,K (3) 

collect some Pk pairs of input-output responses selected from 
the global set. Matrices Pk and Qk are pk x P port selectors 
having a single unitary entry in each row with all the other 
entries vanishing. These vectors of partial responses can be 
related in the Laplace domain via 

Y ~ s )  = H k ( s ) X k ( ~ ) ,  (4) 

where H ~ ( s )  is diagonal and stores the entries of the global 
transfer matrix H ( s )  corresponding to the selected port re- 
sponses. It is assumed that all input-output pairs appear only 
once in this subdivision for some index k. Therefore, we can 
easily show that 

Y 

In the following we will first look for a partial macromodel 
for each H ~ ( s )  in the form 

with diagonal Hk,,  and Rk,n. Then, we will use ( 5 )  to 
recover the global macromodel for the entire structure. 

The identification of the unknown poles, residues and direct 
coupling constants in (6) from the set of time-domain re- 
sponses is performed here by the Time-Domain Vector Fitting 
(TD-VD algorithm 131, [4]. This is a time-domain reformula- 
tion of the well-known Vector Fitting (VF) method [SI, which 
operates in frequency domain. The main steps of the TD-VF 
algorithm are summarized in the following paragraphs. 

We first introduce, as for standard VF [SI, a scalar weight 
function 

with fixed (initial) poles { q k + }  and unknown residues {rk,,,}. 

This function is used to enforce the following condition, 

According to this condition, the right-hand-side must have 
the same poles { q k , , , }  as the weight function, a cancellation 
between the zeros of U k ( S )  and the poles { p k + }  
of H k ( s )  must occur. Therefore (8) is first solved for the 
unknown residues {rk,*}, then the zeros {qn} are computed 
using standard techniques 181. This procedure leads to the 
macromodel poles pk,n = z~,,. 

In order to use transient responses in the poles identification, 
we reformulate (8) in  time domain by applying it to the input 
signals X , ( s )  and by using inverse Laplace transform. We 
get 

where the transient waveforms 
t 

X k , a ( t )  = e"..vn('-T)+k(T),-T, (10) 
t 

yk,n(t) = I eqt. ,*(t-r)  Yk(T)dT 

are convolutions resulting from inverse Laplace transform of 
each partial fraction in the expansions (7)-(8). These wave- 
forms are easily obtained by applying a suitable discretization 
of the convolution integrals. We remark that due to the expo- 
nential nature of the convolution kernels, a fast implementation 
based on recursive convolutions, i.e., digital IIR filtering, is 
used [31, [4]. 

The condition (9) is enforced in least squares sense using 
raw and filtered inputloutput sequences. Solution of this linear 
system returns the residues {rk,"} of the weight function, 
which in turn are used as in standard VF to compute its 
zeros { ik ,"} ,  and consequently the poles {pk , , , }  of the sought 
approximation. Once these poles are known, the residues R k . *  
and the direct coupling matrix Hk,m in  (6) are computed by 
solving another linear least squares problem, 

Nk 

Yk,"(t) Hc,,zdt) + R k , n & , n ( t ) ,  ( 1  1) 

with %+(t) defined as in (10) with {ql; ,n}  replaced by the 
estimated poles {pk , , , } .  As a final step, the poleslresidues 
representation (6) is translated by standard techniques into an 
equivalent state-space representation 

n=1 

( & k ( t )  = A l i W k ( t )  + BI;z:k(t) (12) 

This representation allows to construct a state-space represen- 
tation for the macromodel of the entire structure by tiling the 

Yk(t)  = C k W k ( t )  + Dkzk(t)  
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fig. 1. Permfiation of eigenvalues of Hamiltonian mauix M @) and 
its induced effect on the singular values of rhe macromodel (a). Uemtive 
application leads to displseement of the eigenvalues off the imaginary axis 
(d) and consequently lo passivity enforcement (c). 

partial state matrices as basic blocks into the global matrices 
below 

(13) $w(t) = Aw(t)  + Bz( t )  { y ( t )  = Cw(t) + Dz( t )  
This is performed using the port selector matrices in (5).  Note 
that the resulting state matrices are possibly large but vely 
sparse by construction. 

The resulting macromodel is usually characterized by excel- 
lent accuracy. It is stable by consuuction. However, it might 
not be passive since it was identified by a sequence of least 
squares solutions that do not guarantee passivity a priori. Since 
a non-passive macromodel can lead to unstable solutions when 
its terminations are changed, passivity must be checked and 
enforced. 

111. PASSIVITY CHARACTERIZATION AND COMPENSATION 
We recall that passivity for the adopted scattering represen- 

tation requires that all singular values of the transfer matrix be 
bounded by one. Here we check this condition using a purely 
algebraic criterion based on the so-called Hamiltonian matrix. 
This matrix is defined for the scattering representation as 

M A - BR-'DTC -BR-' B~ 
-AT +CTDR-'BT 

(14) 
with R = (DTD - I )  and S = (DDT - I ) .  Under some 
technical conditions that are always verified for the particular 
form of macromodel here considered (61, the existence of 
purely imaginary eigenvalues of this matrix can he related 
to the existence of passivity violations of the macromodel. 
In particular, one of the singular values of the macromodel 

Fig. 2. Single via SrmetUre (courtesy by Dr. Ruehli. IBM) 

reaches the threshold value y = 1 at a frequency wo if and 
only if jwo  is an eigenvalue of M. This condition can be 
applied to detect very precisely the frequency bands where 
passivity violations occur. Details of this procedure can be 
found in [5].  [6]. 

If some violations are found, a procedure based on first- 
order perturbations is applied in order to eliminate them. 
This is achieved by perturbing the imaginary eigenvalues of 
the Hamiltonian matrix and forcing them to move off the 
imaginary axis as sketched in Figure 1, thus ensuring passivity. 
Each imaginary eigenvalue is displaced by an amount Au,, 
determined on the basis of the location of the violation 
bands. This displacement is enforced by computing a suitable 
correction term dC for the state matrix C .  Using a first- 
order analysis, this c m c t i o n  term is related linearly to the 
the set of eigenvalue perturbations Aw,, leading to a simple 
underdetermined linear least squares system to be solved. This 
system can be expressed in a compact matrix form as 

ZVK(dCk) = c ,  minIlvec(dCr))l2 (15) 

where each row corresponds to an imaginary eigenvalues to be 
perturbed by the amount colleded in c. The operator vet(.) 
stacks the columns of its matrix argumenr and the vector of 
unknowns is defined as 

dCk = d C K T .  (16) 

Matrix K denotes the Cholesky factor 

w = K ~ K ,  (17) 
of the controllability Gramian 

W =Jdmexp{At}BBTexp{ATt}dt, (18) 

which can be computed as the unique symmetric and positive 
definite solution of the Lyapunov equation 

AW + W A T  = -BBT. (19) 

These definitions, together with the selection of the minimum 
norm solution in (15). allow to compute the perturbation by 
ensuring the minimal impact (at each iteration) on the accuracy 
of the macromodel. In fact, it can be shown that the induced 
perturbation dh on the matrix of impulse responses of the 
macromodels can be expressed as 
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Fig. 3. Top: singular values fw the non-pahsive macromodel (solid lines) 
and for the passive macromodel (dashed lines). Bottom: msient  scattering 
responses (ar11: reflected, y21: aansmihed). 

A summary of the passivity compensation algorithm is as 
follows 

AIgorithm 1: (passivity compensation) 
Set m= 0 and CO = C ;  
Compute the set R of imaginary eigenvalues of M 
Repeat 

Increase the iteration count m := m + 1; 
Determine the perturbation T ,  see 161 
Solve (IS) and compute dC,  using (16); 
Update the state matrix C ,  = C,-I + dC,; 
Re-compute R 

Until R is empty. 
F u h e r  details can be found in [SI, [6]. 

IV. EXAMPLES 

The first example is a single via interconnect crossing a solid 
metal plane (Fig. 2). Two pow are defined between the vertical 
conductor and tophonom ground planes. The structure has 
been meshed and analyzed via the Partial Element Equivalent 
Circuit (PEW) method. A time-domain full-wave formulation 
has been adopted to obtain the scattering port responses 
(referenced to 500 loads) to a unitary triangle pulse excitation 
with a IO ps rise and fall time. These responses have been pro- 
cessed by TD-VF using a 5-pole approximation. The resulting 
macromodel is characterized by a small passivity violation, 
which has been corrected by the Hamiltonian-based algorithm 
(Fig. 3, top panel). The three sets of transient responses 
(original, non-passive macromodel, passive macromodel) are 
depicted in the bottom panel of Fig. 3, showing excellent 

Fig. 4. SOIC-I4 package 

Tmnsient Kdnetinng responses 
I 

I 
0 0.5 1 1.5 2 2.5 3 

-0.2 

l ime 151 X l O - l o  

v :  

Frequency [nil 
1 2 3 4 5 

x 10~0 

Fig. 5.  Top: some responses of the passive macromodel for the SOIC-14 
package compared to the.raw FDlD responses. Bonom: singular values of 
the passive macromodel. 

accuracy. On this scale, almost no difference is visible between 
the raw data and the two macromodel responses. 

The second example is a commercial 14-pin package de- 
picted in Fig. 4. The structure has p = 28 ports, half being 
defined between a corresponding pin and the printed circuit 
board on which the package is mounted, and half being defined 
between the bonding pad on the included die and the reference 
plane below the die itself. The structure has been meshed and 
analyzed with a full-wave electromagnetic solver based on the 
Finite-Difference Time-Domain (FDTD) method, obtaining a 
set of 28 x 28 transient scattering responses to Gaussian 
pulse excitation having a 30 GHz frequency bandwidth. The 
combination of TD-VF and Hamiltonian-based algorithms has 
been applied to obtain a passive macromodel. Some of the 
responses are depicted in the top panel of Fig. 5 ,  showing 
excellent accuracy. The bottom panel of Fig. 5 depicts the 
frequency-dependent distribution of the singular values for the 
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Fig. 6 .  Segmented power bus suuctwe See text for details, 

. .  
island has been cut. The dimension of the power island is 
30 mm x 30 mm; the gap width (thick black line in the figure) 
is 2.5 mm; the width of the metal connecting the two power 
areas is also 2.5 mm. The two ports are depicted by small 

model transfer (scattering) matrix. All these singular values are 
below 1 at all frequencies, as required by the standard passivity 
conditions. Note also that the distribution of the singular values 
is very close to 1 throughout the modeling bandwidth, since 
the full-wave simulation did not include any losses in both 
metal and dielectric. 

squares in the figure, one being located (pon n. I)  at (40, 30) 6 
and the other (pon n. 2) at the point (140; 90) (units are in mm 0.2 

The last example we investigate is the powerlground struc- 
t u x  depicted in Fig. 6. A 16cm x IOcm FCB with thick- 
ness I .4 mm is considered. For isolation Dumoses a power 

1 

defined using a 500 reference load. The raw-dataseiconsists 
therefore of a 2 x 2 matrix of transient scattering responses 
due to Gaussian pulse excitation having a 3 GHz frequency 
bandwidth at the -20 dB level. Due to the geometry of the 
structure, the electromagnetic energy remains trapped for a 
long time between the two metal planes, exciting the board 
resonances. As a result, the transient waveforms exhibit a 
long transient. In order to let this transient vanish so that FFT 
can reliably used to compute the frequency-domain scattering 
matrix, a long simulation time would be required (up to 
loo0 ns). However, we stopped the transient simulation after 
100 ns (i.e., 10% of this minimum time) and we used the 
truncated waveforms for the estimation of the macromodel 
using the TD-VF algorithm A total number of 80 poles were 
used for the macromodel in order to capture all the resonances 
within the bandwidth of interest. The macromodel resulted 
non-passive after the Hamiltonian-based test, as illustrated in 
Fig. 7, top panel. After 15 iterations of the Hamiltonian-based 
passivity compensation algorithm a new passive macromodel 
was obtained. The distribution of its frequency-dependent 
singular values is depicted in the bottom panel of Fig. 7, 
showing that all singular values are uniformly bounded by 
one. 
The transient responses of the passive macromodel are 

Fig. 8. Sekred transient rrsponss for the macmmodel of the PCB powex 
bus of Fi. 6. The respoases of the passive maaomodcl2uc rntnpamd to the 
original transient data "red for its identificatim. 
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Fig. 9. Scattering matrix entries fa the PCB pow- bus of Fig. 6. The 
responses of the passive macmmodel are comparrd to the corresponding 
ratking matrix elements obtained by full-wave simulation. 

compared in Fig. 8 to the raw dataset obtained by the full- 
wave solver and used for the TD-VF identification. This figure 
shows that, as expected, a very good accuracy is mantained 
even after the passivity enforcement stage. As a final check, 
we have computed via FFI the frequency-domain scattering 
matrix using the transient waveforms obtained by the long 
complete simulation (up to loo0 ns). The frequency responses 
of the macromodel are compared to these reference data in 
Fig. 9. Apart from a marginal deviation near the edge of the 
modeling bandwidth, a very good agreement is evident. 

This example shows that the T I - V F  algorithm combined 
with Hamiltonian-based passivity compensation can be very 
useful in modeling structures characterized by strong reso- 
nances, since truncated transient responses can be used for 
the model identification. 

V. CONCLUSION 

This paper presented a new macromodeling technique that 
works entirely in the time domain. A complete set of transient 
responses of the structure under investigation to given stimuli 
constitutes the raw dataset used for the identification of a 
lumped macromodel, which can he synthesized using standard 
techniques into a SPICE-ready subcircuit for system-level 
Signal Integrity analysis. This method is applicable whenever 
frequency-domain data are unavailable or difficult to compute. 
An example can be highly resonant structures characterized 
by slowly decaying transients. The computational core of the 
technique is the Time-Domain Vector Fitting algorithm, here 
formulated in a partitioned form enabling the macromodeling 
of structures with possibly many ports. In addition, passivity is 
checked and enforced a posteriori using spectral perturbation 
of associated Hamiltonian matrices. 
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