Politecnico di Torino

Porto Institutional Repository

[Proceeding] A road bridge dynamic response analysis by wavelet and other
estimation techniques

Original Citation:

Fasana A.; Garibaldi L.; Giorcelli E.; Marchesiello S.; Ruzzene M. (1998). A road bridge dynamic
response analysis by wavelet and other estimation techniques. In: 3éme Conf. Int., Methodes
de surveillance et techniques de diagnostic acoustique, Senlis (France), 13-15 October 1998. pp.
167-175

Availability:
This version is available at : http://porto.polito.it/1411896/ since: October 2006

Publisher:
Conference organiser

Terms of use:

This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)


http://porto.polito.it/1411896/
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=1411896

A ROAD BRIDGE DYNAMIC RESPONSE ANALYSIS BY WAVELET AND OTHER
ESTIMATION TECHNIQUES

A. Fasana, L. Garibaldi, E. Giorcelli, S. Marchesiello, M. Ruzzene

Dipartimento di Meccanica
Politecnico di Torino
C.so Duca degli Abruzzi, 24
10129 Torino
ITALY
fasana@polito.it - garibaldi@polito.it - ruzzene@polito.it

ABSTRACT - In this paper, a dynamic test performed over a bridge located in northern ltaly is reported: the dynamic
measures are analysed by means of three different techniques to seek for the best algorithm within those appropriate
for the identification of dynamic systems excited by unknown input.

The bridge under test, in fact, is excited by the flowing traffic and by some other unmeasured excitations as wind or
other ground micro-movements; the analysis based on the flowing traffic excitation has shown to be extremely
advantageous for the road contractors, i.e. in the case of motorway, because it can be adopted for monitoring in-use
roads, without the need of traffic stop. The accelerometers data have been used for the identification of the natural
frequencies, viscous damping ratios and mode shapes of the bridge. The modal parameters have been extracted using
three approaches (ARMAV, CVA et WET) and a comparison within the performances of the adopted methods is also
given.

A FEM model has been set-up by using 8 nodes brick elements based only on a rough sketch of the bridge: this was
used to optimise the position of the reference accelerometers.

Due to the limited number of points measured along the bridge, the extracted experimental shapes have been expanded
into a larger number of points to accomplish a minimum set of locations coincident with the FEM nodes; this expansion
has been performed by means of the Guyan expansion based on the numerical modes. The non-symmetric distribution
of the updated stiffness matrix AK has shown the differences with the original model and a few comments are reported
as possible explanations of the bridge real behaviour.

RESUME - Dans cet article, on présente les tests dynamiques sur un pont autoroutier dans le nord de l'ltalie: les
mesures ont été analysées en utilisant trois techniques différentes parmi celles développées pour I'identification des
systémes dynamiques avec des excitations inconnues.

Le pont considéré est sollicité soit par le trafique soit par le vent et micro mouvements du terrain; ce genre de analyse
dynamique est trés convénients pour les compagnies gérantes les autoroutes, puisqu’il permet de controler le
comportement du pont dans les conditions d'usage habituelles, sans besoin de arréter le trafique. Les accélérations
mesurées ont été utilisées pour l'identification des fréquences naturelles, des amortissements et des modes du pont. Ces
paramétres ont été estimés avec trois techniques (ARMAV, CVA et WET) et une comparaison entre ces méthodes est
présentée dans l'article.

Un modéle simplifié aux éléments finis a été réalisé en utilisant des éléments ‘brick’ a 8 nodes et a été utilisé pour
étudier la dispositions optimale des accélérométres.

Vu le numéro limité des points de mesure, les modes expérimentaux ont dii étre étendus, en utilisant la technique
SEREP, pour obtenir un numéro suffisant de positions coincidantes avec les nodes du modéle. La distribution non
symétrique de la matrice AK recalée a montré des différences avec le modéle original, et quelques explzcatzons sur le
comportement réel du pont sont présentées.

1. INTRODUCTION

The dynamic of bridges has been extensively studied in recent years due to the increasing interest in the monitoring
techniques to predict and the lifetime of the structure or, more realistically, to assess the best maintenance program.
Many conferences around the world, as well as many journals concerning the dynamics of large structures have
extensively treated this matter [IMAC, SPIE, etc ].

Up to now, the dynamic monitoring is still in a development phase, being the current techniques sometimes difficult to
apply, too expensive or simply not sufficiently sensitive.

The paper presents a review of a few methods currently used and highlights the pro and cons of the different
procedures. At the end, an attempt of system updating is also given through five different methods: this is done
nevertheless the quality of the measurements and the modal parameters extracted is suffering from the poor number of
the acquisition points.



2. BRIDGE DESCRIPTION

The bridge we deal with in this paper is a simply supported structure 20 meters long and approximately 10 meters wide.
The acceleration responses have been measured in 7 points along one edge of the bridge and in 2 points along the other,
for a total of 9 measured points. A sketch of the accelerometers disposition and of the measured structure is presented in
Figure 1, where the black dots indicate the reference locations. More details on the experimental set-up, together with
some results can be found in [1] and [2].
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Figure 1: Sketch of the bridge and measured points location.

3. THE WAVELET ESTIMATION TECHNIQUE (WET)

The Wavelet Transform (WT) of the signal x(?) is defined as follows:
1 77 b
W,(ab)= :,;;jx(t)‘g (e M

where g*(t) is the complex conjugate of the analysing wavelet g(%), dilated by the scale parameter a and translated along
the time axis by parameter 5. The WT performs a linear decomposition of the analysed signal in the time-scale domain,
the time decomposition being given by b and the scale domain decomposition being given by a.

There are several functions that can be used as analysing wavelets and in this work Morlet’s Wavelet:

g()=e" e’ @
has been considered , being @, the wavelet’s frequency.

The scale decomposition of the signal can be related to a frequency domain decomposition by considering the dilated
version of the Fourier Transform of g():

1 2
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The value of frequency where the analysing wavelet is focused is the one giving a maximum value to G(a- @), that is
aw=0,.

The resolution of the wavelet decomposition in the time-frequency domain is determined by the duration A4¢, and
bandwidth 4f, of the analysing wavelet and by the value of the dilation parameter a [3,4]:

At =adt,; 4 =4, |a )

The resolution of the analysis therefore results good for high dilation in the frequency domain and for low dilation in
the time domain.

3.1 Natural frequencies and modal damping ratios

A very interesting property of the WT, discussed in detail in [3], consists in its capability of demodulating the analysed
signal both in amplitude and phase. If a general kind of signal is considered:

x(1)= k(t)-cos(gp(t) : t) (5)
where k(#) and @(?) are time-varying envelope and phase functions, the WT of x(?) has the following expression:
W(a,b)=a - k(p)-e ) s 6)
for a fixed value of the dilation parameter a (@=a;), that is for a fixed frequency:

(e, ) = k()¢ o) ™
Z[w(a;.0)] = 0(b)- b



being W (a,.,b)% and A[W (ai,b)] the modulus and the phase of the WT.

Equation (7) shows how general time varying envelope k() and phase @(t) can be effectively determined using the
modulus and the phase of the WT, for a fixed value of frequency.

The wavelet representation in the time-frequency domain results also very useful when the analysed signal is the free
response of a MDOF system. The time-frequency maps allow to follow the decay of each mode of the structure
separately from the others, only by selecting the right frequency value corresponding to the mode of interest. Using this
wavelet property, it is possible to follow the envelope decay and the phase variation in the time domain of each modal
component and to estimate the corresponding damping ratio and natural frequency.

3.2 Mode shapes estimation

When the transient time responses recorded from several points of the structure are available, phase and amplitude
relationships between the different degrees of freedom of the system can be easily detected through the WT analysis.
The j-th mode shape of the structure can be estimated by evaluating the WT of the time signals from all the measured
points, at the corresponding j-th frequency. Let for example be Why(b,a) and Wh,(b,a) the WTs of the signals at point k
and at the reference point r respectively. It is easy to notice how their ratio:

wh(sa) ®

is, in a noise-free case, constant with respect to time 5. The quantity y; =r,+i*s,; represents the k-th component of the
j-th complex mode shape of the structure, including amplitude and phase information, referred to the reference point.
When real data are considered, some errors may occur because of the presence of noise and equation (8) will estimate a

component &‘7 = 7“ +i* Ek/ # i, . It can be shown that the values of ;;15, giving the best estimate of the mode shape
component, that is minimising the following error function:

e = }"]th(b,.,a/)— v, 'Wh,(b,,aj)iz ©)
i=l :

are:
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being q,(b,a)=Re[Why(b,a)], pu(b,a)=Im[Whyb,a)] and » the number of time samples.
4. THE ARMAV TECHNIQUE

A general overview of the ARMAYV technique can be found in many recent papers by the present authors [5-8] and by
other research groups. This technique has already been applied in many circumstances, for bridge, dams, or building
monitoring. In many of the these cases, the excitation is due to the flowing wind or ground micromovements, which are
far to represent white noise, but are still better than the traffic excitation. For this case, in fact, a procedure to verify the
proper characteristics of the signals is needed.

Considering the stationarity of the signal is rarely respected over a relatively long acquisition period (i.e. for the typical
record lengths used in bridge testing), shorter data time spans can be adopted for the ARMAV analysis, being the
method well suited and properly working over very short data (i.e. hundred data points).

The ARMAYV model has the following structure, described by a matrix difference equation:

P

)= 3 Ak F[n—k] + uln] + gg[k] a[n-4] (1)

k=1

where i[n] ; E[n] eR¢ and A[k] : B[k] cRé#
Its poles are defined by the following matrix equation:

14
det(l—ZA[k]z"kJ.——O = p. k=l..gp (12)
k=1

which is a higher order eigenvalue problem with g solutions. The ARMAV model can be expressed in the state space
to obtain the following expression:



(<) =lalfafn- 1]} Lol (13
This expression can be used to estimate the model parameters (A[k])i ; and the algorithm can be organised in order to

split the main problem into g sub problems to be solved by an iterative method.
Once the model parameters have been estimated it's possible to solve equation (12) to find out the poles p, ; to reach
this result it's necessary to compute the eigenvalues of the following auxiliary matrix:

0 I
P : 0
A= 0o - I (14)
b
LA A2 - Ap-1] AP

Its eigenvectors express also the “modal vectors” of the ARMAV model.
In these parametric models the system output )?[n] is supposed to be caused by a white noise input ﬂ[n] and the
algorithm estimates the parameters' values that minimise the residual variance.

4.1 ARMAYV parameter estimation

It's possible to demonstrate that the discrete ARMAV(n, n-1) model is equivalent to a linear continuous system of order
n. Since we are analysing second order systems, ARMAV(2,1) models are adopted.
The parameter estimation algorithm works as follows: a first ARV model, whose structure is:

*[n]= é/}[k] x[n—k] + u[n] (15)

~

is fitted to the data; consequently, using the estimated autoregressive parameters A[k] , the residual vector E[n] is
estimated.

These estimated residual time series are used as input ﬂ[n] in the ARMAV model:

~ A

E[n]:i;i[k];[n—k] + uln] + ié{k] uln— k] ' (16)

k=1 k=1

and so an iterative procedure can be started, to alternately refine the estimated parameters A[k] , B[k] and the residual

Zl[n] to minimise the residual variance.

The procedure ends when the difference between the parameters A[k] and B[k], estimated in two consecutive
iterations, is smaller than a desired value.

4.2 Data verification

Some enhancements in the ARMAYV technique can be obtained by adopting a pre-screening of the data, i.e. by checking
the statistical characteristics of the raw time histories and their properties. This procedure, which has already been
presented in [2], is based on the idea that the closer the Probability Density Function (PDF), calculated on the data, to
the theoretical Gaussian distribution, the better the final quality of the results of the ARMAV technique [9]. In previous
papers [5-8], the Gaussianity was usually underestimated, being the method sufficiently robust to determine the modal
characteristics anyway, while in this case we found out that this control can be very effective to forecast the correct
convergence of the routine.

In Figure 2, the PDF obtained by the signal corresponding to the accelerometers located in position 2, in Figure 1, (one
fourth of the span) and 4 (near the support) are reported; it is evident how the PDF is close to gaussianity for location 4
only, corresponding to an almost fixed point. All the other locations with a non-negligible mobility show the same
statistical behaviour as location 2.

For this reason, a parameter giving the distance of the accelerometer data with respect to the Gaussian curve was hence
computed in order to check the quality of the available data. In particular, this parameter has been used in order to
choose the best data blocks suitable for the analysis.
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Figure 2. Time histories and their PDF for location 2 (a) and location 4 (b), near the support (see Figure 1).

5. THE CANONICAL VARIATE ANALYSIS (CVA)

In order to compare the results of the ARMAYV and WET methods, another technique has been here investigated, which
is based on the following stochastic state space system:

x(k+1) = Ax(k) + w(k) an
y (k) = Cx(k) + v(k)

where w(k) is the process noise and v(k) is the measurement noise, both assumed to be zero mean, white vector

sequences; moreover, x(k) and y(k) are the state vector of dimension » and the output vector of dimension N,
respectively at discrete time instant k. The eigenvalue decomposition of the discrete state matrix A4 is:

A=way! (18)
with A the diagonal matrix of discrete eigenvalues ( A, ,..., 4,). These can be transformed into continuous eigenvalues
(1) of the mechanical system as follows:

1
i =vA—['1n(/l,») (19)
The mode shapes at the sensor locations are the columns of @, given by:
@=CV¥. (20)

Let now the (block) Hankel matrix A, , and the covariance (block) matrices R* and R~ be [10]:

rcr)y r(z) . . I(p)

- r(.z) r(;) 1”(,0‘+1) 2}
I'(p) I'(p+1) . . I'(2p-1)
o) re) .. I'(p-1)

ar o TV rw) . . I'(p-2) (22)

I'(p-1) I'(p-2) . . I(0)



(o) (1) .. I(p=1)

r) ro) . . I'(p-2) X
- (23)
r'(p-1) I'(p-2) . . 1I(0)
where p is a user defined parameter and I are the sampled covariance matrices, given by:
] M
L= y(m+k)y(m) (24)

m=0
M being the number of observations and ‘ denoting transposition. These empirical covariance matrices substitute the
expected values Iy = E[y(m+k)y'(m)] defined in [10], giving empirical Hankel and Toeplitz matrices. Let the full-

rank factorisation of R* and R~ be:

R =L (L"), R =L"(L") (25)
The normalised Hankel matrix has the following singular-value decomposition:

Tl - [s:] (o] | 7]

Hpp=(L" )" Hyp(())" =[[UI] [UZH{ 0 15:]| 1] (26)

with:  [S/]=diag( oy,..., &), 6,20, ... 6,20
[S2]:diag(an+ll"'» %Nresp)» o'-n+120-n+2“' O—erE.Yp20 (27)

The model order # is generally selected so that 6,>>0,,., but often stabilisation diagrams are more suitable to find the
correct model order. The last step of the procedure consists in defining the extended observability and controllability
matrices as follows:

C

ca ool
0,= Cp=[c 40 . 4] (28)

car!
where G=E[x(k+ 1)y (k)]. Then the model parameters will be estimated from:
A=(s) " up L T o)) vies)”
C=first p rows of 0, = L*U,(5;)"? (29)
where HTp,p isthe H, , shifted up by p rows.

In order to select the physical modes stabilisation diagrams for both eigenfrequencies and damping ratios are then
needed. Furthermore the stabilisation between two consecutive mode shapes is evaluated by performing the Modal
Assurance Criterion, given by:

| o Hop 12

(cpi”qﬁ,-)(@j”cpj)

where H is the complex transposed.

(30)

MAC(i, ) =

Another, slightly different, stochastic subspace identification method, called Balanced Realisation in [11], simply
requires the Singular Value Decomposition of the matrix H,, , that is equivalent to setting L"=[ and L=/ in (26) and
(29), so no weighting for the Hankel matrix is involved.
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6. COMPARISON OF RESULTS

The three methods presented above have been applied to analyse the acceleration data measured on the bridge and to
extract its modal parameters. The estimated natural frequencies are presented in Table 1, where the results from the
three methods are compared (WET, ARMAV and CVA) and also the results obtained from a slightly different
stochastic identification method, mentioned in section 5, called here MBH, simply requiring the Singular Value
Decomposition of the matrix H,, in equation (29) are included.

Table 1: Natural frequencies and estimations standard deviations

WET ARMAV MBH CVA

Mode | Frequency oy Frequency o Frequency o Frequency o¢
[Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

1 5.25 0.00 5.27 0.11 5.33 0.10 5.29 0.16

2 6.36 0.13 6.68 0.10 6.61 0.06 6.59 0.17

3 8.99 0.03 8.97 0.13 8.83 0.15 9.03 0.27

4 1521 0.32 15.61 * 15.51 0.11 15.65 0.17

S 17.86 0.25 17.61 * 17.79 0.12 17.78 0.20

*Not enough samples

A very good agreement can be found between all the methods in the natural frequencies estimations, even if for modes
2 and 4 the frequencies estimated by the WET result slightly lower than the others. We should here mention the fact
that these techniques belong to completely different philosophies: the ARMAYV and the Stochastic Subspace techniques,
coming both from the Control Systems area, give a black-box approach to the identification problem, since they analyse
all the time data simultaneously, while the WET performs the analysis on each time history.

Table 2: Damping ratios and estimations standard deviations

WET ARMAY MBH CVA
Mode js ¢ ¢ oy ¢ o¢ g o¢

[Y] [%] [%] [Vo] [%] [%6] [%] [Y6]
1 0.2 0.08 3.0 0.93 24 0.78 4.5 0.75
2 1.0 0.32 1.8 0.91 2.4 0.89 3.7 1.32
3 1.6 0.38 1.4 0.37 1.8 0.61 2.3 0.84
4 1.4 0.94 3.0 * 1.5 0.36 2.6 1.14
5 0.8 0.16 2.6 * 0.8 0.21 1.7 0.49

*Not enough samples



The identification of the damping ratios (Table 2) results, as usual, very crucial. In particular, the results concerning the
first mode are in great disagreement, the WET giving a value of the damping ratio much smaller than the ones
estimated by the other methods. We should however consider that the first mode resulted much less excited than the
second and the third, for instance, the signal to noise ratio associated to it being therefore very low.

In estimations of the damping associated to the other modes (2 to 5) some encouraging similarities can be however
found. The uncertainties in damping estimations, do not allow us to choose the method assuring the best accuracy on
damping.

7. THE UP-DATING TECHNIQUES

An attempt has been done to apply a few different up-dating procedures on the parameter extracted with the methods
seen in previous paragraphs.

First of all, it should be mentioned that the number of measured points over the structure is too low to allow a reliable
estimation of the modified stiffness of the structure. For this reason, the measured points have been expanded into a
larger number by using a Guyan expansion which takes advantage of the numerical shapes obtained by a FEM model of
the original structure. The new matrix composed by 27 points and five modes has been used to up-date the model by
means of five procedures: i.e. the methods by Sidhu-Ewins, Chen, Dobson, Gaukrogen, Berman-Baruch.

While the first two methods faced some numerical problems due to the ill-conditioning of the system, the other three
have obtained almost the same positive results, as confirmed by the MAC values between the measured and the updated
modes (Table 3).

As already mentioned, the AK matrix determined by all these methods is mainly reconstructed from the numerical
model, hence giving larger errors for the real measured points and negligible discrepancies for those co-ordinates
generated by the Guyan expansion. Only one of these matrices is reported in Figure 5, being the others very similar.

It can be seen how the stiffness modifications mainly affect the corer closer to the view, i.e. the original nine measured
co-ordinates.

)

20 ” 30

Figure 5: AK matrix for Dobson’s up-dating procedure

Table 3: MAC between FEM and experimental modes

1.000 0.078 0.150 0.078 0.003
0.078 1.000 0.030 0.129 0.000
0.150 0.030 1.000 0.000 0.000
0.078 0.129 0.000 1.000 0.001
0.003 0.000 0.000 0.001 1.000

Due to the poor data, no deductions can be made on the presence of possibly damaged areas, being the map too affected
by the expansion procedure.

On the other side, an analytical fitting of the modes can be advantageously employed as already done by many authors:
in this specific case, however, the lack of some fundamental co-ordinates, as those on the midline of the bridge, leads to
a misinterpretations of the modes, hence giving origin to an ill-conditioned problem.




8. CONCLUSIONS

The only-output measurement techniques, as ARMAYV and CVA-MBH, have already demonstrated their robustness and
reliability when applied to stochastically excited MDOF’s systems. Particularly, dealing with the problem of real
bridges under traffic load, it has been demonstrated the advantage to carry on the identification procedure without
requiring the traffic slow-down or interruption. On the occasion of these tests, we have sought for the robustness of
these methods, even for those cases where data are particularly non-stationary and non-Gaussian.

It should be reminded, however, that the bridge test here presented suffered for the low number of measurement points,
hence giving a very poor spatial resolution in computing the mode shapes, not presented in the paper as being those of a
simply supported plate.

Particularly, the poor spatial resolution strongly affects the application of up-dating techniques, as can be deduced from
most of the literature on this topic. This is probably the challenge of the future work in bridge damage identification,
which has recently reached very enhanced results in terms of data fitting and system identification procedures, but still
suffers for the low spatial resolution when employed for damage identification and localisation.
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