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Abstract. An adjoint optimization method based on the solution of an inverse problem
is proposed. In this formulation, the distributed control is a flow variable on the domain
boundary, for example pressure. The adjoint formulation delivers the functional gradient
with respect to such flow variable distribution, and a descent method can be used for opti-
mization. The flow constraints are easily imposed in the parametrization of the controls,
thus those problems with many strict constraints on the flow solution can be solved very
efficiently. Conversely, the geometric constraints are imposed either by additional partial
differential equations, or by penalization. Constraining the geometric solution, the classi-
cal limitations of the inverse problem design are overcome. Two examples pertaining to
internal flows are given.
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1 INTRODUCTION

Usual optimization methods iterate on the geometry of a certain flow problem to deter-
mine a configuration minimizing or maximizing a given objective function, i.e., for each
optimization step a direct problem is solved [1]. In the present study we propose to iterate
on inverse problems [2][3], motivated by the fact that in such formulation fluid-dynamic
constraints on the solution are very easily imposed. In the following, the optimization
procedure is explained through its application to two problems of interest in the turbo-
machinery design practice. The first case concerns the problem of designing a diffuser
for maximal axial component of the flow at the outlet, with a maximum allowed pressure
gradient at the wall.
In the second example we investigate the application of the adjoint optimization method
to the flow design of turbomachinery bladings, based on a simplified model. The blades
of the turbomachine are modeled as flow surfaces of zero thickness which exert forces on
the fluid flow. This approximation introduces volume forces in the compressible Euler
equations, which is the model adopted for the flow. In our approach, instead of modifying
the shape of the flow surfaces modeling the blades, we give the force which the blades
exert on the flow, and let the geometry accommodate such distribution of forces. Then
the volume force distribution itself varies based on the functional gradient, so that, for
example, thrust is maximized.

2 DIFFUSER WITH MINIMAL AXIAL DEVIATION AT THE OUTLET

We consider a two-dimensional diffuser where the total pressure, total temperature and
flow incidence are imposed at inlet and the static pressure is given at outlet. The aim is to
design the diffuser walls so that the flow has minimal axial deviation at outlet, satisfying
some requirements on the wall pressure gradient to avoid premature flow detachments.
This simple problem finds its applications in the design of wind tunnels diffusers, air
intakes of airbreathing engines, or turbomachines casing.

2.1 Flow model and inverse problem

The flow considered is governed by the two-dimensional compressible Euler equations.
In a cartesian frame of reference, we have

∂ U

∂t
+
∂ F

∂x
+
∂ G

∂r
= 0 (1)

and

U =




ρ
ρu
ρw
e



, F =




ρu
p+ ρu2

ρuw
u(p+ e)




G =




ρw
ρuw

p+ ρw2

w(p+ e)




(2)
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as usual ρ is density, p pressure, e total internal energy per unit volume.
The solution of the inverse problem is based on the ideas presented in [2] and [3]. The
diffuser wall to be designed, can be seen as a deformable and impermeable surface con-
strained to the diffuser inlet section. It moves under the effect of the external pressure
imposed on its walls. An initial configuration of such surfaces is guessed. The following
transient is described by integrating in time the equations governing the time dependent
flow motion using a finite volume formulation, based on an approximate Riemann solver
[4] to compute the fluxes at cell interfaces. Second order spatial accuracy is obtained by
an ENO class method [5]. At the end of the transient, the walls assume the shape that
solve the inverse problem, i.e., find the shape which realize the given pressure distribution
on the walls.

2.2 Variational formulation, adjoint equations and gradient

We want to determine the wall pressure pγ(s) , so that the functional

D[pγ(s)] =
1

2

∫
out

(
w

u

)
dz (3)

is minimum subject to the flow equations. In order to solve such constrained minimization
problem we introduce the Lagrangian function

L(U , pγ,Λ) = D +
∫
Ω

tΛ E(U , pγ) dΩ (4)

where tΛ(x, r) = (λ1, λ2, λ3, λ4) are Lagrange multipliers. The Lagrangian will allow us
to treat the minimization problem as an unconstrained problem. A stationary point is
found when the variation of L vanishes with respect to all of its arguments, which are
now considered independent functions. We compute δL as in [1].
We have

δL = δLU + δLpγ + δLΛ (5)

with

δLU = δDU +
∫
Σ

tΛ(F U nx +GU nz)δU dσ −
∫
Ω
(tΛx F U +

tΛz GU)δU dΩ (6)

where Σ is the entire border of the flow field Ω, and F U , GU are the Jacobian matrices.
In order to have δL = 0 , all the single contributions to δL must vanish at the minimum.
Therefore, to find a stationary point, we enforce

δLU = 0, δLΛ = 0 (7)

In general this results in δLpγ �= 0 . To reach the minimum we take δpγ such that
δLpγ < 0 , for example using a conjugate gradient method. Note that the variations of
δL with respect to the Lagrange multipliers Λ simply yield the flow equations.
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From the condition δLU = 0 we obtain the so called “adjoint” of the Euler equations and
its boundary conditions, that is

tΛx F U +
tΛz GU = 0 in Ω (8)

and [
w

u

∂

∂U

(
w

u

)
h(Σ) + tΛ(F U nx +GU nz)

]
δU = 0 on Σ (9)

where h(Σ) is 1 at the outlet and 0 elsewhere. From the above equation we derive the
boundary condition for the adjoint.
For given pressure at the wall, the adjoint boundary condition is

λ1 + uλ2 + wλ3 + (e+
p

ρ
)λ4 = 0 (10)

The functional gradient is

δDpγ =
∫

wall
(λ2nx + λ3nz)δpds (11)

The wall pressure distribution must be constrained in order to obtain meaningful so-
lutions. Indeed, if the pressure is let free to vary, a constant pressure distribution would
represent an admissible solution, leading to a diffuser with parallel walls. Therefore we
consider a diffuser, with imposed inlet pin and outlet pout pressures. The main design limi-
tation is the maximum pressure gradient allowed in order to avoid detachment. Assuming
as control the pressure gradient at wall, we recover the pressure as

pγ(xk) = pin +
k∑

j=2

m(xj)dxj, m(xj) =

(
dpγ

dx

)
j

(12)

with the constraint
N∑

j=2

m(xj)dxj = pout − pin (13)

to match the exit pressure. N is the number of computational points in the x-direction.
The solution of the optimization problem is achieved by initializing the coefficients

m(xj), computing the corresponding wall geometry by the inverse problem, solving the
adjoint equations and updating the coefficients m(xj) according to the gradient eq.(11)
until the minimum is reached.

3 FAN STAGE WITH MAXIMUM THRUST

The fan of a turbojet engine is composed by a rotor, which works on the flow, and a
stator to deflect the flux. We want to determine by a simplified flow model, the rotor and
stator geometries resulting in maximum thrust of the fan. The work done on the fluid is
kept constant.
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3.1 Turbomachine flow model in the meridional plane

The flow deflection through rotors and stators of a turbomachine is the result of the
forces that rotors and stators blades exert on the flow. An axial-symmetric model of a
turbomachine can be set up by replacing the blade rows with volume forces. We assume
that the blade rows have vanishing thickness and infinite solidity, so that the single blade
coincides with a stream surface. Thus, in the case of an inviscid flow, the effect of solid
blades is modeled by volume forces orthogonal to stream surfaces.
Let

F = F x i+F r ξ+F ϑ η (14)

be the volume force, where i, ξ and η are the unit vectors pertinent to the axial, radial
and tangential directions in a cylindrical frame of reference {x i, r ξ, ϑη}.
The distribution of the tangential component F ϑ = F ϑ(x, r, ϑ) is the function to be
optimized, the same way the shape of a wall is typically optimized in usual optimization
algorithms.
The geometry of the blades, represented by 2D manifolds

Θ(x, r, ϑ) = 0. (15)

is found by solving
(q−jωrη) · ∇Θ = 0, (16)

as the blades are to be stream surfaces of the absolute or relative motion for stators and
rotors respectively. In the equation above q = u i+w ξ+v η is the flow velocity vector,
ω is the angular velocity of rotors and j = 0 for stators, j = 1 for rotors.
The components of the volume force F x and F r are determined enforcing the blade man-
ifolds to be orthogonal to the volume forces

F ×∇Θ = 0. (17)

which implies

F x = r
Θx

Θϑ
F ϑ, F r = r

Θr

Θϑ
F ϑ (18)

3.2 Inverse problem

In this section we detail the solution technique of the inverse problem taking as known
F ϑ(x, r, ϑ). However, it should be noted that this distribution is updated during the
optimization in order to maximize a cost function which in our case is thrust.
The solution of the inverse design problem is obtained by means of a time dependent
process. The blades can be seen as deformable and impermeable surfaces constrained to
the leading edge, like fastened sails waving under the wind effect. An initial configuration
of such surface is guessed. The following transient is described by integrating in time
the equations governing the time dependent flow motion. At the end of the transient the
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blades assume the shape that solve the inverse problem.
In a cylindrical frame of reference, the compressible Euler equations with volume forces
acting on the fluid are

∂U

∂t
+
∂ A

∂x
+
∂B

∂r
+Q = 0 (19)

where

U =




ρ
ρu
ρv
ρw
e



, A =




ρu
p+ ρu2

ρuv
ρuw

u(p+ e)




B =




ρw
ρuw
ρvw

p+ ρw2

w(p+ e)




(20)

Q =




ρw

r
+ ρuα

ρuw

r
− F x + ρu2α

2
ρvw

r
− F θ

ρ(v2 − w2)

r
− F r

w(p+ e)

r
− F · q+u(p+ e)α




as usual ρ is density, p pressure, e total internal energy per unit volume.
The boundary condition at the entry section are the two ratios between the velocity
components, the total pressure and the total temperature when the flow is subsonic,
while all the flow properties are prescribed if the flow is supersonic; at the exit section
the static pressure is prescribed if the flow is subsonic, while no boundary conditions are
needed when the flow is supersonic. The blades blockage is taken into account by the
terms containing the coefficient α, with

α =
∂

∂x
[log(2πr − T )] (21)

where T = T (x, r) is the sum of the estimated blades thickness, including the boundary
layers.
The system of eqs.19 is integrated in time using a finite volume formulation based on an
approximate Riemann solver [4] to compute the fluxes at cell interfaces. Second order
spatial accuracy is obtained by an ENO class method [5].
A blade surface changes its shape during the transient to obey the condition of imperme-
ability. Let us express eq.15 as

Θ(x, r, ϑ, t) = ϑ− g(x, r, t) = 0 (22)
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so that eqs. 18 become

F x = −rgxF
ϑ, F r = −rgrF

ϑ (23)

Flow particles on Θ(x, r, ϑ, t) = 0 must remain on the manifold for the impermeability
condition. It follows that during the transient the Langragian derivative of the function
Θ(x, r, ϑ, t) has to be null

dΘ

dt
= Θt + (q − jωrη) · ∇Θ = 0 (24)

that can be written as

gt = −ugx − wgr +
v − jωr

r
(25)

with j = 0 for stators and j = 1 for rotors. The above equation is solved coupled to
the Euler equations, and it is integrated in time upwinding the spatial derivatives of g
according to u and w.

3.3 Flow equations adjoint

In this section we derive the functional differential using the adjoint technique. As a
functional we consider the conventional thrust expressed as

T =
[∫ rt

rh

(p+ ρu2)r dr
]
outlet

−
[∫ rt

rh

(p+ ρu2)r dr
]
inlet

=
∫
Γio

H(U) dΓ (26)

where F ϑ, the distribution of tangential forces, is the control, rt and rh are the tip and
hub radius respectively. The maximum of T is constrained by the steady state Euler
equations

E(F ϑ) = Ax+Br +Q = 0 (27)

and by the kinematic constraint on the blades

G(U(F ϑ)) = ugx + wgr − v − jωr

r
= 0 (28)

In order to solve such constrained maximization problem we introduce the Lagrangian
function

L(U , g, F ϑ,Λ, µ) =
∫
Γio

H(U) dΓ +
∫
Ω

tΛ E(U , F ϑ, g) dΩ +
∫
Ω
µG(U , g) dΩ (29)

where tΛ(x, r) = (λ1, λ2, λ3, λ4, λ5) and µ = µ(x, r) are Lagrange multipliers. A stationary
point is found when the variation of L with respect to all of its arguments, considered as
independent functions, is 0. We have

δL = δLU + δLF ϑ + δLg + δLΛ + δLµ (30)
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In order to have δL = 0, all the single contributions to δL must vanish at the maximum,
so that we enforce

δLU = 0 δLΛ = 0 δLµ = 0 δLg = 0

In general this results in δLF ϑ �= 0. To reach the maximum we take δF ϑ such that
δL = δLF ϑ > 0, for example using a conjugate gradient method, as explained in the
following.
From the condition δLU = 0 we obtain the so called adjoint of the Euler equations and

its boundary conditions, that is

tΛx AU +
tΛr BU − tΛ

∂Q

∂U
− µ

∂G

∂ U
= 0 on Ω (31)

and [
∂ H∗

∂ U
+ tΛ (AU nx +BU nr)

]
δU = 0 on Σ (32)

where H∗ = H for the inlet and the outlet, and H∗ = 0 elsewhere.
The condition δLg = 0 yields to the adjoint of the kinematic constraint as

(µu)x + (µu)r +∇ · (tΛ K) = 0 in Ωb (33)

where n = (nx, ny) and

K = rF ϑ




0 0
1 0
0 0
0 1
u w




together with the boundary condition

[µ (q ·n) + (tΛ K) · n] δg = 0 on Γb (34)

The adjoint equation of the kinematic constraint is coupled to eq. (31) the same way the
kinematic constraint is coupled to the flow equations.
Note that the variations of L with respect to the Lagrange multipliers Λ and µ simply

yield the flow equations and the kinematic constraint respectively.
Finally, we are left with

δL = δLF ϑ =
∫
Ωb

tΛ
∂Q

∂F ϑ
δF ϑ dΩ (35)

This functional depends on U , Λ, µ; variables that satisfy the flow equations, the
kinematic constraint and the respective adjoints. Therefore if we update the present
distribution of F ϑ with

δF ϑ = ) tΛ
∂ Q

∂F ϑ
(36)
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taking ) > 0, then δL > 0. Iterating such procedure the maximum is eventually reached.
This method, namely the gradient method, has a very slow convergence rate. Better

convergence rates are obtained with the conjugate gradient method [6], in which the
correction to F ϑ at the iterate k is

(δF ϑ)k = )
[
ψk − βk−1(δF ϑ)k−1

]
(37)

with

βk−1 =

∫
Ωb

[ψk − ψk−1]ψkdΩ∫
Ωb

[ψk−1]2 dΩ
(38)

where

ψ = tΛ
∂ Q

∂F ϑ
(39)

4 ADJOINT EQUATIONS NUMERICAL SOLUTION

The numerical solution of the adjoint equations is obtained by using a first-order time-
dependent technique based on a finite volume discretization. The solver computes the
fluxes at cell interfaces by a flux-vector splitting technique. In a similar way, the boundary
conditions are imposed on the computational field edges.
Consider the adjoint equations. If a time derivative − tΛτ is added to eqs.(31), (32) we
are led to the hyperbolic system

tΛτ − tΛx AU − tΛr BU + tΛ QU +µGU = 0 (40)

with the same boundary condition of (31), that is[
∂ H∗

∂ U
+ tΛ (AU nx +BU nr)

]
δU = 0 (41)

The system (40) is linear, because AU , BU , QU , GU , depend only on x and r, and
its characteristics are the same as those of the flow problem, but with opposite speed.
We set

tΛx AU = (tΛAU )x − tΛ(AU )x (42)
tΛr BU = (tΛBU )r − tΛ(BU )r (43)

then, substituting in (40), we have

tΛτ −[tΛ AU ]x − [tΛBU ]r +
tΛ[(AU)x + (BU)r] +

tΛ QU +µGU = 0 (44)

Considering an elementary volume of integration Ω with surface σ, we can write eq. (44)
in conservation form and apply the Gauss theorem to obtain

∂

∂τ

∫
Ω

tΛ dΩ−
∫

σ

tΛ C dσ + tΛ
∫

σ
C dσ +

∫
Ω
(tΛ QU +µGU )dΩ = 0 (45)
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with C = AU nx + BU nr. In the above formula we considered Λ piecewise constant
over the discretization volume. A characteristic-based approach is used to evaluate the
convective fluxes at the cell interfaces. The total flux across the interface (int) is evaluated
as sum of two contributions which arise from the left (l) and right (r) side of the interface,
according to the wave-propagating nature of the hyperbolic system

(tΛC)int = (tΛ+ C+)l + (
tΛ− C−)r (46)

where
C+ = L D+ R, C− = L D− R (47)

and D++D− = D. The matrix D is a diagonal matrix having as track the eigenvalues
of C, that is

D++D− = D =




Vn 0 0 0 0
0 Vn 0 0 0
0 0 Vn 0 0
0 0 0 Vn − a 0
0 0 0 0 Vn + a




(48)

The matricesD+andD− are diagonal as well, and they consist of the positive and negative
eigenvalues of C respectively. The adjoint equation (33) for the kinematic constraint can
be manipulated in a similar way. By adding a time derivative −µτ we have

µτ − (µu)x − (µw)r +∇ · (tΛK) = 0 (49)

Once again the sign of the time derivate has been chosen in order to obtain a well-posed
problem. The finite volume approximation is straightforward

∂

∂τ

∫
Ωb

µdΩ−
∫
Γb

µ(unx + wnr)dΓ +
∫
Γb

(tΛK) · n dΓ = 0 (50)

where Ωb is the projection of the blade surface onto meridional plane, and Γb its contour.

5 RESULTS

5.1 Diffuser

The diffuser is discretized over a 40 × 20 grid. The inlet pressure is pin = 0.83, the
outlet pressure pout = 0.944. The imposed flow angle at the inlet varies from zero, at the
bottom wall, to 10 degrees, at the upper wall. We are looking for the diffuser geometry
that better approximate a zero flow angle at the outlet. As already told, the control is
here represented by the pressure gradient at each computational point lying on the upper
wall. The number mj of design variables is one less than the grid discretization in the x
direction, therefore mj = 39.
As initial wall pressure distribution, we enforced a parabolic profile (see figure 3a), which

10
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Figure 1: Diffuser. Geometry and pressure field before (a) and after (b) the optimization process.
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Figure 2: Diffuser. Gradient residual and flow alignment versus optimization steps.
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Figure 3: Diffuser. (a) Optimal pressure distribution on the upper wall, (b) constraint on the pressure
gradient along the x-direction.

also satisfies the constraint on the pressure gradient. This constraint is based on mixed
theoretical and empirical considerations about the reasonable range of pressure gradients
attainable without incurring in flow separations. We represented it schematically as the
function π(x) shown in fig. (3b).
In figure 1 the initial and the final geometry of the diffuser are depicted. The initial
geometry is characterized by a non-zero flow angle σout at the exit. After the optimization
process the condition σout = 0 is matched with good approximation (figure 2b). The l2

norm of the gradient residuals is presented in figure 2a.

5.2 Fan stage

The distributed control F θ is null everywhere except on the blades, where it is dis-
cretized only along the radial direction. We have

F θ(x, ri) = F(ri)
[
1− cos

(
2π

x− xt

xl − xt

)]
(51)

so that the load on the leading (x = xl) and trailing (x = xt) edges is 0. For each blade
considered we have as many design parameters F(ri) as the number of computational
points in the radial direction.
Equation (35) is discretized as

δL =
∑

i

δF(ri)L(ri)(ri − ri−1) (52)

where

L(ri) =
∑

j
tΛ(xj , ri)

∂Q

∂F ϑ
(xj, ri)

[
1− cos

(
2π

x− xt

xl − xt

)]
(xj − xj−1) (53)
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Figure 4: Fan stage. Initial geometry .
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Figure 5: Fan Stage. Final geometry.
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Figure 6: Fan stage. Gradient residual (a) and thrust (b) versus optimization steps.

The gradient method, for example, is obtained taking δF(ri) = )L(ri), ) > 0, so to
let δL > 0 in the discretization accuracy. For the applications, however, we used the
conjugate gradient method.
As already mentioned, the formulation proposed in this paper allows an easy treatment
of the flow constraints. When optimizing the fan stage for thrust, it is necessary to keep
constant the work done by unit volume by the rotor, that is

∫
Ωb

F θωrdΩ = constant (54)

where ω is the angular speed. The increments δF(ri) are constrained to lay on the man-
ifold determined by eq. (54). Discretizing and linearizing such equation, we obtain an
hyperplane onto which the gradient can be projected in order to satisfy the constraint.
This procedure is much less expensive and complicated than solving an additional partial
differential equation (PDE) for the constraint as it would be necessary for usual optimiza-
tion methods. Clearly the trade-off should be critically evaluated in relation to eventual
geometric constraint, which in our method would be treated by an additional PDE.
The design variables for this test case, being the grid 60×24, are 24 for the stator and 24
for the rotor; ω = 1.58. The constraint on the total work done by the rotor allows very
small variations of the forces distribution on the rotor itself. This is seen in the gradient
components relative to the rotor that are two order of magnitude smaller compared to
those of the stator. Indeed in a different test case relative to a single rotor and not shown
here, we found that for a gradient residual decreasing of two orders of magnitude, the
thrust gain is very limited.
In fig.6 the gradient residual and the thrust are plotted against the optimization step.
The gradient decreases of more than two orders of magnitude and the thrust increases
about of 100%.
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The initial and the optimal stage are in figs (4–5); the first blade from left is the rotor,
the second is the stator. The flow at the entrance is axial (ε = 0).
In the initial configuration, the stator is not exerting any force to the flow, that is, it does
not exists at all. In figure 4 is represented the border of a free stream-surface. After the
optimization process an optimal force distribution for the stator is found, which increases
the thrust by recovering kinetic energy from the flow issuing from the rotor.

6 CONCLUSIONS

In this work we propose and derive an hybrid method for aerodynamic design, and
apply it to turbomachinery design. It takes advantage of the inverse solution of the equa-
tions to determine optimal flows. As opposed to shape design optimization (SDO), this
methodology could be named flow design optimization (FDO). The relative advantages of
using SDO or FDO must be evaluated case by case considering the number of flow con-
straints relative to geometric constraints. For aerodynamic components where the flow
quality is vital, we advocate the preferential use of FDO.
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