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Abstract based State-Space System Identification (4SID). 

This paper compares the performance of different reduced- 
order modeling techniques applied to the description of cam- Block Complex Frequency Hopping (BCFH) 
plex interconnect structures. In particulal; we analyze two 
main classes of modeling tools, the Block Complex Fre- 
quency Happing (BCFH) and the Subspace-based Srate- 
Space System IdentiJication (4SID) techniques. The strong 
and weak points of both methods are analyzed with particu- 
lar attention to robustness and sensitivity to the control pa- 
rameters of the algorithms. 

INTRODUCTION 

The high complexity of modem electronic systems calls for 
simplified modeling tools in order to perform system-level 
simulations for Signal Integrity and Electromagnetic Com- 
patibility applications. Indeed, it is widely recognized that a 
system-level 3D electromagnetic simulation, including the 
effects of nonlinear drivers/receivers, is non-feasible even 
with today's powerful computing tools. 

Order reduction techniques tackle the modeling problem un- 
der a different perspective. Various subparts (henceforth De- 
vices Under Modeling, DUM) of the system are character- 
ized separately at their accessible ports, either via numeri- 
cal simulation or direct measurement. This procedure can 
be applied, e.g., to linear interconnects, junctions, pack- 
ages, or connectors. Reduction techniques allow for the 
generation of simple equivalents mimicking the dominant 
input/output pori behavior of the DUM. Such equivalents 
can be easily synthesized as SPICE subcircuits for system- 
level simulations, in order to include nonlinear effects of 
drivers/receivers. Next section gives a brief overview of the 
reduction techniques that are considered in this work. Nu- 
merical examples illustrating the strong and weak points of 
each method will follow. 

REDUCED-ORDER MODELING 

In this paper we analyze the performance of two main 
classes of reduction techniques applied to complex inter- 
connects structures characterized via transient time-domain 
pori voltages and currents. These techniques are the well- 
known Block Complex Frequency Hopping (BCFH) algo- 
rithm and two different variations of the so-called Subspace- 
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The BCFH algorithm [l, 21 is a moment matching order re- 
duction method leading to estimate the true set of poles of 
the DUM within a prescribed bandwidth of interest. This is 
achieved by computing the moments of port transfer func- 
tions at several complex expansion points { a k } .  The theory 
of Pad6 approximants is then used to determine the poles set, 
which in tum is used to represent each transfer function with 
a partial fraction expansion, whose residues are computed by 
a least squares fit. The obtained models have a solid phys- 
ical foundation, because their poles are approximations of 
the actual natural frequencies of the DUM. The synthesis of 
a lumped equivalent circuit is a standard problem once the 
poles-residues approximation is known. In the following we 
assume as known the BCFH algorithm, pointing the reader 
to references [l ,  21 for further details. 
The main weak point of such approach for present applica- 
tion lies in the high sensitivity of the poles estimation algo- 
rithm to the duration of the observation time. The record- 
ing time for port variables should indeed allow for all tran- 
sients to be extinguished, since the moments p:b of some 
port waveform x ( t )  can be only computed through numeri- 
cal discretization of the integral 

where, however, z( t )  is only known up to a maximum time 
2'. This applies when z ( t )  is obtained via numerical simula- 
tion or through direct measurement. Only an estimate of the 
moments is therefore available through 

The effects of this truncation error worsen with an increasing 
order n of the moment. Conversely, such effects can be par- 
tially compensated by tuning the real part of the expansion 
centers a k  in order to force the magnitude of the integrand to 
be negligible beyond 7'. Namely, there is a minimum (posi- 
tive) allowed value of R(ak ) .  The following procedure can 
be used to estimate it. 



First, let us suppose that the waveform x ( t )  is the response 
of a linear system characterized by some poles and residues. 
Therefore, the asymptotic behavior of its magnitude is dom- 
inated by the real part U,, of its dominant pole, i.e., 

ix(t)l  c ."Ot. (3) 

A rough estimate of U@ is easily obtained, e.g., by perform- 
ing a least squares logarithmic fit of the cumulative energy 
of z(t) .  Assuming this asymptotic behavior, we can substi- 
tute Eq. (3) in the expression of the n-th order moment and 
compute analytically the relative error 6& ( T )  due to trun- 
cation. The expression of this error requires the use of the 
incomplete Gamma function. However, a truncated asymp- 
totic expansion leads to the following estimate 

This expression can he used to determine the location of the 
expansion centers a k  in the complex frequency plane allow- 
ing a negligible truncation error for given order, truncation 
time, and dominant pole of the response. 
As a final remark, we note that the larger the real part of the 
expansion centers, the least significant will be the trunca- 
tion error. Unfortunately, this condition worsen the behavior 
of the Pade convergence, leading to a possibly failed poles 
estimation. This can be mathematically justified noting that 
the system poles (obviously constrained to have negative real 
pan) are "seenn from a far location. Therefore, poor con- 
vergence is expected. Consequently, a careful compromise 
must be adopted to balance the truncation error and the pole- 
convergence properties. This strategy will be used through- 
out this paper in conjunction with the BCFH algorithm. 

Subspace-based State-Space System Identification 
(4SID) 

The 4SID methods [SI determine a state-space representation 
of the DUM via direct identification of the state matrices. 
The identification algorithm makes use of highly reliable nu- 
merical tools (QR and SVD decompositions), and proves less 
sensitive to time-domain truncation of the port signals with 
respect to BCF'H (see the numerical examples). Some details 
on the identification algorithm follow. 

The DUM is represented in Fig. 1.  Some linear interconnect 
structure is considered at a limited number m of accessible 
ports. The structure is of distributed nature, therefore an in- 
finite number of poles would be required for an accurate rep- 
resentation of the inpuvoutput relation Y ( s )  = H ( s ) U ( s ) ,  
where U and Y are vectors collecting all port variables. 
The goal is to identify a reduced-order h e a r  lumped sys- 
tem, characterized by n poles and represented by the state 
matrices {A ,  B,  C, D } ,  such that all inputJoutput transfer 
functions E?(jw) approximate the true ones over a specified 
bandwidth IwI < R. The starting point is a set of transient 

Device Under Modeling 

Y ( s )  = H ( s ) U ( s )  

Lumped Macromodel 

Y ( s )  = { C ( s I  - A)-'B + D }  U ( s )  = f i ( s ) U ( s )  

Figure 1: State-space based macromodeling. Arrays Y 
and U collect input and output variables at all ports. 

waveforms of outputs Yk, where k denotes the time index 
with a suitable sampling time T,, subject to some combma- 
tion of input waveforms uk. 
Since the inputJoutput sequences are sampled, it is conve- 
nient to focus our attention on the discrete-time system, 

(5) 

where I denotes the set of internal discrete-time states. 
This formulation allows us to use the several theoretical re- 
sults available for system identification of discrete-time sys- 
tems [6]. In order to simplify the presentation of the main 
algorithm, we first consider a Single-Input Single/Output 
(SISO) system. Generalization to a large number of ports 
will follow. 

First, we note that the above system may be rewritten in ma- 
trix form as 

y = r x + * u ,  (6) 

X k + l  = ' X X k  + E U k  { Y k  = E x k  + E U k  

where U, Y ,  X denote block Hankel matrices of input, out- 
put, and state time sequences, respectively. We recall that 
given some sequence z k ,  the corresponding Hankel matrix 
is defined as (Z), = t , + > - l .  In the above expression r 
represents the observability matrix 

while iP is a Toepliz matrix of impulse responses. A remark- 
able feature of Eq. (6) is that the output matrix is expressed as 



a h e a r  combmation of state matrix and input matrix. There- 
fore, a suitable projection of Y onto some linear space or- 
thogonal to U leads to an estimate of the observability ma- 
trix, which in turn can be used to estimate the state matrix A. 
Some details follow, whereas a more complete formulation 
can be found in [SI. 
One of the most convenient ways to perform this projection 
is through the following RQ factorization 

where QTQ = I .  If we post-multiply the various terms in 
Eq. (6) by QT, we get 

YQT = R22 = r X Q ? ,  (9) 

where we used the orthogonality relations QzQF = I and 
QIQT = 0. A consistent estimate for the observability ma- 
trix r may be obtained by performing the SVD decomposi- 
tion 

R z z = F C V T .  (10) 

The number of relevant singular values in C gives an es- 
timate of the effective rank of the observability matrix, 
and consequently the order n of the state-space_system to 
be identified. The corresponding columns of r form the 
reduced-ofder ob2ervability matrix. Using now Eq. (7), both 
matrices C and A are easily found. 
Several approaches [4,7,8] :an now be used to estimate the 
remaining matrices B and D, like, e.g., a time-domain or 
frequency-domain least squares fit. Once all four state space 
matrices are known a straightforward discrete-to-continuous 
time conversion leads to the model representation of Fig. 1. 
We remark that for multiport circuit elements, all input and 
output sequences at the ports can be collectively used in a 
block matrix form in order to obtain the model realization in 
one step. All ports must be persistently and contemporarily 
excited for this task. However, due to the size of the involved 
matrices, this procedure can only be applied to cases with a 
limited number of ports (e.g., up to some ten ports). For a 
large number of ports a modified procedure is to be preferred. 
This procedure is described next. 

Column-oriented 4SID Method 

Reduced-order macromodeling of linear multiport elements 
with a large number of ports can be tackled using a slightly 
modified version of the above-described 4SID technique. We 
repeat all s t p s  of the algorithm up to the computation of 
the matrix A. Then, we determine its eigenvalues A ,  and 
consequently the poles of the continuous-time macromodel 
through 

(11) p ,  = -In(&) . 

Each transfer function of the reduced-order macromodel will 
have poles taken from the above set. 
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In case of a DUM with many ports, the best numerical ac- 
curacy was obtained hy repeating m times the poles estima- 
tion with excitation at a single port at the time, henceforth 
the denomination column-oriented 4SID that we adopt for 
the algorithm. All output sequences resulting at the DUM 
ports from a single excitation are used collectively in a block- 
matrix form. The obtained m sets of estimated poles, one 
set per excited port, are then post-processed by a suitable 
clustering algorithm to extract the global poles set for the 
entire multiport macromodel. It should be noted that when 
real-world packages are considered, often each set of inde- 
pendently estimated poles can actually be used directly for 
the entire macromodel, thereby skipping the clustering step. 
This will be illustrated by the examples in the forthcoming 
section. 
Once the poles of the DUM macromodel are known, the par- 
tial fraction expansion 

is considered, where H ,  are unknown matrices of residues 
and H ,  is a matrix collecting the direct coupling constants 
between all DUM ports. These matrices are easily obtained 
by a linear least squares fit from original iuput/output data 
sequences. This fit can be performed either on time-domain 
sequences or using frequency-domain data. Some examples 
will he provided in the numerical results section. 
The h a 1  step in the algorithm is the identification of the state 
matrices { A ,  B, C, D }  from poles and residues. Once such 
matrices are found, they can be used to synthesize SPICE- 
like equivalent circuits through well known techniques. The 
particular form of the state matrices depends on some ar- 
bitrary choice, since several realizations are possible. In 
this work we compute the Gilbert’s representation from the 
residue matrices as proposed in [3]. This solution guarantees 
a final macromodel characterized by minimum complexity. 
The following remarks are important. First, there is no theo- 
retical limit in the number of DUM ports. The algorithm has 
been developed in such a way that the critical operations re- 
lated to the poles estimation are performed without using all 
ports information at once, thus leading to very accurate poles 
estimates. It is well !mown that this feature is the key fac- 
tor for an accurate least-squares approximation and for the 
subsequent steps of the macromodeling algorithm. Second, 
since the above algorithm is very accurate, the enforcement 
of the passivity for the DUM macromodel can be performed 
a posteriori by applying small corrections if some passivity 
test fails [ 5 ] .  

NUMERICAL RESULTS 

In this Section, the BCFH and the 4SID techniques are ap- 
plied to the characterization of two test strnctures and a 
realistic 32-port package. In all the tests carried out, the 
DUMs are stimulated by gaussian pulses and their transient 
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Figure 2: Test linear system with truncated input and out- 
put transient waveforms. 

responses are recorded and used in the estimation processes. 
In the fitst example we consider a synthetic DUM defined by 
a transfer function with hown poles and residues. The top 
panel of Fig. 2 shows the gaussian input and the output tran- 
sient waveforms used by the BCFH and the 4SID estimation 
process. In this case we consider the basic 4SID technique 
where the B and D matrices are obtained via least squares 
fit in the frequency domain. The bottom panel reports the 
poles estimated by both algorithms compared to the original 
ones. As expected, the evident truncation of the time win- 
dow leads to a rough estimate of the poles through BCFH, 
even after optimization of the expansion points. On the con- 
trary, 4SID is more robust and less sensitive to the duration 
of time sequences. Poles estimation is the most important 
part of both methods, since a representative set of poles gen- 
erally leads to good approximations of the DUM responses. 

H(w), magnitude (linear) 

Normalized angular frequency 
H(w), magnitude (linear) 

Normalized angular frequency 

Figure 3: Performance of BCFH and 4SID algorithms ap- 
plied to a test case (Figure 2) with truncated input and 
output transient waveforms. 

This can be clearly appreciated in Fig. 3, where the transfer 
function predicted by the two methods is compared to the 
reference one. 

As a second example we consider the three-port structure of 
Fig. 4 consisting of lumped and distributed elements. In this 
case the time window is set long enough to avoid truncation 
of the transient responses and again, the two approaches are 
considered and applied. The estimation of matrices B and D 
in 4SID are computed via least squares fit in both the time- 
domain and the frequency-domain, in order to point out the 
differences. Left panel of Fig. 5 shows the comparison be- 
tween the actual poles of the DUM and the poles estimated 
for the set ,912 through BCFH. It should be noted that BCFH 
is a inherently scalar approach and that any scattering pa- 
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Figure 4: Three-port test slructure composed of lumped 
and distributed elements. 
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Figure 5: Poles detected by BCFH and 4SID for the struc- 
ture depicted in Figure 4. 

rameter requires its own set of poles. Right panel of Fig. 5 
shows a similar comparison for the global poles estimated 
by 4SID. This example confirms that a sufficient duration of 
the time sequences leads to a good poles estimation also for 
BCFH. Consequently, the performance of both methods is 
comparable in terms of accuracy. This is illustrated in Fig. 6, 
which compares the original and the predicted 5'12 scatter- 
ing parameter. Conversely, a noticeable difference between 
the two methods is in the computing time needed by the re- 
duction process. In this case 4SID results much faster than 
BCFH, due to the long duration of the port waveforms. 
Finally, in the last example we consider a realistic 32-port 
package structure. Only the results of the column-oriented 
4SID algorithm are presented, since this is the only method 
that we find reasonably applicable to multipart elements with 
many ports. Indeed, the poles are more accurate when iden- 
tified through 4SID, in a shorter computing time. Figure 7 
shows the transient scattering waves at the DUM ports oh- 
tained through a full wave FDTD simulation. These wave- 
forms are used to estimate the global set of poles (one real 
and four complex poles), and to perform least squares fit for 
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Figure 6: Scattering element Slz obtained by BCFH (top 
panel), 4SiD with time-domain fit (middle panel), and 
4SID with frequency-domain fit (bottom panel). 
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Figure 7: Transient scattering waveforms obtained by a 
full-wave FDTD simulation of a 32-port package struc- 
ture. 

computation of the residues. Figure 8 shows the comparison 
between some predicted scattering parameters and the corre- 
sponding reference ones. We see that a very good accuracy 
is obtained. 

CONCLUSION 

We conclude noting that, based on the above examples, the 
proposed column-oriented 4SID method gives probably the 
best compromise between accuracy, complexity, and appli- 
cability to a wide range of structures, including packages and 
interconnects with a very large number of ports. The algo- 
rithm seems quite robust to numerical errom and to trunca- 
tion of the transient waveforms used by the macromodeling 
steps. Therefore, it is expected that in the near future opti- 
mized versions of the algorithm will allow macromodeling 
of more and more complex structures. 
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