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COMPARISON BETWEEN THE CLASSES METHOD
AND THE QUADRATURE METHOD OF MOMENTS FOR
MULTIPHASE SYSTEMS

D.L. Marchisio', A.A. Barresi, G. Baldi

Dipartimento di Scienza dei Materiali ed Ingegneria Chimica
Politecnico di Torino, Torino, Halia

and R.O. Fox

Department of Chemical Engineering

lowa State University, Ames, IA, USA

Abstract

Investigation of muitiphase systems generally requires the soiution of the
population balance equation; bubble columns, crystallisation and
precipitation reactors are some examples of important industrial
applications. As mixing also plays an important role in determining phase
interactions, often the population balance has to be included in a
Computational Fluid Dynamics (CFD) code. This can be accomplished only
if the source term is provided in an adequate way. Several methods have
been proposed; cne of the most popular is the Discretised Population
Balance (DPB) which presents the disadvantage of requiring an elevate
number of scalars to be solved, leading to high computation times. A
promising alternative is the Quadrature Method of Moment (QMOM) in
which the population balance is written in terms of the transport equation of
the moments of the number density function, and all the integrals involving
this function are solved through an ad-hoc quadrature approximation. The
method has been validated and extended fo breakage in previous works,
while in this work its performance is compared with those of a DPB
approach. The comparison is made in terms of accuracy of prediction,
computational time and simplicity of implementation in a CFD code.

! Corresponding author: marchis@iastate edu; current affiliation: Dept. of Chem.
Eng., lowa State University, 3131 Sweeney Hall, Ames (IA) 50011-2230, USA
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1. introduction

The solution of the population balance equation by using Moment Methods
(MMs) has been first proposed by Hulburt and Katz [1]. In their work they
highlighted the promising possibilities but also the strong iimitations of the
method. MMs are based on the solution of the population balance equation
through the moments of the Particle Size Distribution (PSD). Thus if

n(L:x,t)is the PSD in terms of the particle length L, the K" moments of the
PSD is defined as follows:

m, {x.t) = Tn (Lix ) dL.

The main advantage of this method stands in the possibility of defining the
PSD only by tracking a few lower-order moments. However, the method is
not suitable when modelling size-dependent molecular growth, and size-
dependent aggregation and breakage.

Different methods have been proposed in order to solve the closure problem
raised by Hulburt and Katz and the subject is extensively discussed in [2].
One of the most promising is the QMOM that was first proposed by McGraw
(3] for studying aerosol evolution. The method is based on the solution of the
integrals involving the PSD through a quadrature approximation:

0 N
m (x£) = [n(LixtyidL~ ;wif_ﬁ.
o =

where abscissas L; and weights w; are calculated from the lower-order

moments by using the Product-Difference (PD) algorithm [4].

The method has been validated in the case of molecular growth and
aggregation through comparison with analytical solutions and Monte Carlo
simulations [5] and compared with other available approaches, such as
Laguerre quadrature approximation and the finite element method, for the
solution of the aerosol general dynamic equation [6]. Moreover, lately the
QMOM has been extended to the description of bivariate population
balances [7, 8], where the PSD is written in terms of more than one internal
coordinate (e.g., particle volume and surface area). The QMOM can be also
- used for modelling breakage and extension and validation of the model for
this case can be found in [9]. The aim of this work is to compare its
performances with those of a Classes Method.
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2. The Quadrature Method of Moments
The Reynolds averaged transport equation of the K" moment is as follows:

am, (x,t) . (u,.)am" (xt) @ [Fz om, (x, t)] _, (x)

ot OX; ox; X

where (u;) is the Reynolds-averaged velocity in the i*™ direction, T',is the
turbulent diffusivity, and the source term is

S, (x6) = (0) J(x.t)+ [KG(L)n(Lix.t)aL +B, (%)~ D (xt)

In this expression, J(x.t) is the nucleation rate, G(L) is the molecular

growth rate, and B, (x.t) and D, (x,t) are the birth and death term due to
aggregation and breakage, that can be expressed as follows:

B (x6)= [n(3x0) [ B+ £ n(uxt)ducs
+ ! L* Gj a(A)b{L|A)n{%x,t)dAdL
and
B(x)= JLin(Lxt) | B(LA)(Ax f)drdL
:jL"a(L)n(:.;x,t)dL

where B(u.A) is the aggregation kemel, a(4) is the breakage kernel, and

b(L|4) is the fragment distribution function.

" When the QMOM is used, alt the integral terms included in the above
equations are calculated through a quadrature approximation leading to
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kf3

S, (xt) = (0) J(x.6)+ Tk G(L)w, +32-§"jw,§;w,. (2 +2)" 5,
=1 i=1 i=t

N -‘(k} N N N
+y abiw, =S lhw, Y w By - ) Liaw,
i1 i1 i =1
where g, = A(L.L;), & =a(L) and
BY = [Lb(L)L)d
o}

The number of nodes N used in the quadrature approximation determines
the number of moments to be tracked. In fact, in order to calculate a
quadrature approximation of order N, the first 2N moments have to be
calculated. For example if N=2 then k=(0,...,3) or if N=3 then k=(0,...,5) or if
N=4 thus k=(0,...,7).

The role of this parameter on the model performance has been already
investigated in a previous work [9], and a quadrature approximation with
three nodes (N=3) was found to be a good trade off between accuracy and
computational costs.

3. Classes methods: the Hounslow’s approach

A number of discretised population balances (DPBs) or classes methods
(CMs) have been proposed for simultaneous modelling of nucleation, growth
and aggregation and breakage; recently Vanni [10] reviewed and compared
a wide variety of zero-order CMs.

Here we consider the method proposed by Hounslow and co-workers [11].
Hounslow's ap;aroach is based on the idea that aggregates are formed of
particles of 2 monomers (as if only particles composed 1, 2, 4, &...
monomers exist). As already mentioned, by using this method the internal
coordinate is discretised, and thus in terms of length-based expressions, it
becomesL,,, = L;2".

In the original formulation the discretisation was fixed and the model was
proposed only for molecular growth and aggregation. The model is derived
by defining 4 binary interaction mechanisms that produce a birth or a death
in the i  interval. Aggregation between a particle in the (-1)" and of a
particle in the first to (i-2)"" interval produces a new particle in the /" interval.
Aggregation between two particles both in the (i-1)" interval resuits in the
formation of a particle in the J t interval, Death occurs to a particle in the J
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interval should it aggregate with a particle of sufficient size for the resuitant
aggregate to be larger than the upper size limit of the i ™ interval. If a particle
in the i " interval agqregates with a particle from that or a higher interval, a
death occurs in the i " interval.

The final model consists of the following set of transport equations:

N, a(:(,t) u) aNéS(,t) - "a% [Fz ﬁ’\%g&ﬂ] =8 (x.t)

i I I

2 r r
s&xqz(NJNW(R_AGU$JM4+9@JM_szeuwgmn]

11 1
+N,_, Z;zmam BramNy + §ﬂ1-1.m-1Ni1
m=

[ o
- Nl Z 2m-—l ﬂl.mNm - NI Zﬂf.mNm
m=1 m=!

where N, is the population of the class of particles of size L, and r =L, ,/L, .
From the function N,, it is possible to derive the moments of the PSD by
using the following expression:

w@@:é&&@ﬂ

where E is the appropriate mean size and C is the total number of classes.

It is interesting to notice here that differently from the QMOM, using a CM
the PSD is known but generally only two of the moments of the PSD can be
tracked correctly [usually k=0 (total particle number density) and =3 (total
particle volume)], whereas using the QMOM all the tracked moments are
known with very small errors [5,6,9]. In this formulation of the model the total
number of classes C has fo be chosen {with L,), in order to cover the entire
range of particle iength.

More recently, a revised version of the model has been proposed [12] using
an adjustable discretised population balance, by means of a parameter g,
and thus the discretisation scheme becomes: '
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L= L (ZW )1/3 .

This modified version of the original mode!l has been also extended to
breakage problems [10] and in this case the total number of classes is C-g.
Hounslow's approach gives quite good performances in the case of
aggregation with simuitaneous nucleation and growth. Other methods exist,
but give good performances only in the case of purely aggregation, or purely
nucleation and growth.

In general, in order to work with good accuracy, an elevated number of
classes is needed {e.g., 20-30 for simple problems, and 100-200 for
complex problems) and as already mentioned for CFD applications this
would result in an enormous amount of calculations, since this elevate
number of transport equations has to be solved in every cell of the
computational domain.

4. Operating conditions and computational details

As already mentioned, simulations using the DPB for modelling the solid
evolution is computationally expensive, whereas the QMOM proposed here
presents the main advantage of requiring much less computational
resources; however both approaches must be coupled with CFD codes. By
using CFD every cell of the computational domain can be seen as a
perfectly mixed reactor that exchanges mass and energy with the
surrounding cells because of mean velocities and turbulent diffusion. Since
both the approaches are linked with the CFD code, use of one of the two
affects model predictions locally.
The aim of this work is the investigation of this local difference of accuracy.
Both simulations are carried out in a simple fluid dynamic system: the
perfectly mixed reactor (i.e., a single cell of the computational domain). in
this ideal reactor no spatial macro-gradients exist, and therefore the
properties of the system are constant throughout the domain.
The QMOM has been already validated through comparison with analytical
solutions and Monte Carlo simulations, leading to the conclusion that three
nodes are sufficient to track the first six moments (my,...,ms) With very small
errors [5]. For this reason in what follows the QMOM will be considered the
exact solution of the problem.
The implementation of the models requires the solution of a system of
ordinary differential equations (ODE) and the solution of the eigenvalues
~ problem. The first one was solved by using the ODE package ODEPACK
(LSODE Fortran double precision subroutine), whereas for the second one
the linear algebra package EISPACK (IMTQL2 Fortran double precision
subroutine) was used.
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in this work only aggregation is considered, and the comparison is carried
out in three different conditions:

1. Constant kemnel g{L,1) = 5,
(L+4)
LA

2. Brownian kernel g(L,2) = B,

3. Hydrodynamic kernel (L, A) = B, (L + 1)3

The three cases were tested with different initial PSDs and here results for
monomodal and a bimodal initial PSDs are presented.

5. Results and discussion

The monomodal PSD is shown in Fig. 1 and in the same figure is also
reported the PSD at different time steps after aggregation with constant
kernel (8, = 10" m¥s) by using the DPB proposed by Hounslow. As it is
possible to see aggregation causes the disappearance of smaller particles
to form bigger particies. The evolution of the moments is reported in Fig. 2.
Results clearly show that m; remains constant, since during aggregation
total particle volume is conserved. The moments of order lower than three
decrease whereas the others increase.

in order to quantify the ability of the model to predict system properties it is
useful to define the intensity of aggregation [13].

o =1l
9 m, (t =0)

l4; 15 0 when the number of aggregation events is null and goes to 1 as this

number increases. In the case under investigation (constant kernel) the
QMOM was proved to predict moment evolutions with errors lower than
0.01% [5]. For this reason the QMOM will be considered as exact solution,
and the DPB predictions will be compared. From the comparison an error of
4% was detected when [, is equal to 0.95. In Fig. 3 the error committed by

~ using DPB (assuming the prediction of the QMOM to be exact) is reported
against /.., . As it is possible to see the error on moments of order lower

than three is less than 2%, whereas the third moment is perfectly predicted.
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For moments of order greater than three the error is still less than 10% for
l,4s CloSe to one. Note that in normal crystallisation/precipitation reactors

l.ee typically falls in the range between 0.5-0.6, where the errors are lower.

The behaviour of the bimodal PSD in case of aggregation with constant
kernel is shown in Fig. 4. In Fig. 5 the percentage errors for the first six
moments are reported. As it is possible to see the situation is slightly
different, in fact the error on mg is quite high and when /,,, is equal to 0.5

becomes stable at about 10%. All the other moments behave in a similar
way, but the errors are greater than for the monomodal case.

The previous results are obtained by using 20 classes; only after adopting
the modification proposed by Lister [12] with =5 the prediction is as good as
the QMOM. Thus for equivalent accuracy, the QMOM requires six scalars
while the DPB requires 100 for the constant kernel case.

in the case of Brownian aggregation, the PSD at different time steps is
reported in Fig. 6 using the same initial conditions, but with 5, = 2.5 107
m°/s. This different value of £, was used in order to have comparable values
of I, - Asitis possible to see, the evolution is slightly different, especially

for smaller particles that seem to aggregate faster. The errors (always
calculated assuming the QMOM to be exact) are of the same order of
magnitude of the previous case (see Fig. 7). Moreover, results confirm that
in this case {and generally for the monomodal distribution) the case of
Brownian aggregation can be treated with constant kernel: in fact, under the
hypothesis of aggregating particies of the same size

2

;L) =45,

(L+
LA

ﬁ(Lr ’1) = f

For the bimodal distribution, results are very similar. in Fig. 8 the PSD at
different time steps is reported. Again in this case smaller particles
aggregate faster, but their weight on the final mean crystal size is small. Also
in this case the error in mg is quite high, but remains lower then 10% until
lgg <0.5 (see Fig. 9).
in the case of hydrod;mamic kernel, the same initial conditions were used
with g8, = 1.5 10% m>s. This value of 8, was used in order to obtain
comparable values of /,,, . The evolution of the PSD predicted by the DPB is
reported in Fig. 10. As it is possible to note, the tail of the PSD increases
faster with time as a proof of the increased ability of bigger particles to
collide and aggregate. In this case agreement between the two models is
not as good as in the previous cases. However, it is useful to highlight that
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for moderate aggregation rates (/,,, <0.5) errors are around 10-1 5% (see

Fig. 11). The presented results were obtained using 30 classes. Comparison
with the QMOM showed that only using g=5 are the errors of the same order
of magnitude as QMOM for the hydrodynamic kernel.

in Fig. 12 the PSD at different time steps, in the case of initial bimodal
distribution for the hydrodynamic kernel, is reported. Note that in this case in
order to obtain the same range of /,,, a different 5, was used (£, = 5.0 10*

m®s). Up to I,,, < 0.25 all the errors are lower than 10%, but for f,,, close
to one the m, error goes up to 800% (see Fig. 13).

Fig. 1. Aggregation with constant kernel (4, = 10" m%/s): PSD at different
time steps calculated with the DPB approach.
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m, (A, (=0)

Fig. 2. Aggregation with constant kernel (8, = 1077 m%s): time evolution of
the normalized moments of the PSD predicted by the DPB.

10

ERROR %
=
e

5.01

o oBm o5 em 1
nE
Fig. 3. Aggregation with constant kernel (5, = 10™"" m%/s): percent errors of

the first six moments caiculated with the DPB (mj; is not reported since the
error is lower than 10°°%).
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Fig. 4. Aggregation with constant kernel (4, = 1077 m%s): PSD at different
time steps calculated with the DPB approach.

ERROR %

Fig. 5. Aggregation with constant kernel (8, = 10" m¥s): percent errors of
the first six moments calculated with the DPB (m; is not reported since the
error is lower than 10°%).
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Fig. 6. Aggregation with Brownian kernel (8, = 2.5 10 m%s). PSD at
different time steps calculated with the DPB approach.
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0 .25 0.5 75 1

L

Fig. 7. Aggregation with Brownian kerne! (8,= 2.5 10718 m3/s): percent errors

of the first six moments calculated with the DPB (m; is not reported since
the error is lower than 10°°%).
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Fig. 8. Aggregation with Brownian kemnel (g, = 2.5 10" ms). PSD at
different time steps calculated with the DPB approach.
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Fig. 9. Aggregation with Brownian kemel (8, = 2.5 10™* m¥s): percent errors
of the first six moments calculated with the DPB (m5 is not reported since
the error is lower than 10°%).
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Fig. 10. Aggregation with hydrodynamic kernel (5, = 1.5 10° 1/s): PSD at
different time steps calculated with the DPB approach.
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Fig. 11. Aggregation with hydrodynamic kernel (3, = 1.5 10° 1/s): percent
errors of the first six moments calculated with the DPB {m3 is not reported
since the error is lower than 10°°%).
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Fig. 12. Aggregation with hydrodynamic kernel (f, = 5.4 10* 1/s). PSD at
different time steps calculated with the DPB approach.
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Fig. 13. Aggregation with hydrodynamic kernel (f, = 5.4 10* 1/s): percent
errors of the first six moments calculated with the DPB (m; is not reported
since the error is lower than 10°%).
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6. Conclusions and further developments

The comparisons presented above lead us to the conclusion that in the case
of constant or Brownian kernel, the DPB proposed by Hounslow in the
original formulation (g=1) works quite well by tracking only 15-20 classes,
but in order to have errors as low as the QMOM, 75-100 classes have to be
used.

Nevertheless, even for this simple case some limitations were detected. For
example, the model performance in the case of initial bimodal PSD was
worse than with a monomodal PSD.

The DPB used in this work can be applied also in case of hydrodynamic
aggregation for moderate aggregation rates, but in order to predict the
moments with the same accuracy of the QMOM, the number of classes has
to be increased at least to 150.

The comparison between the QMOM and the DPB proposed by Hounslow
showed that the QMOM method is indeed fascinating for several reasons.
The method is very fast, in fact the reduction of the number of scalars to be
tracked is drastic (from 50-100 to 6) and in general does not depend on the
width of the PSD. This reduction of scalars has a strong impact on CPU
time, in fact by using the QMOM method a reduction of 150-200 times was
detected with respect to the DPB. In addition, as mentioned before, the
QMOM does not present the problem of fixing the intervals to be considered
in the simulations. Thus, unlike the DPB approach, it can be used without
any modification for different PSDs. '

The QMOM has been already implemented in a commercial CFD code for
modelling aggregation-breakage problems in solid-liquid systems [14] and
its applications can be easily extended to other practical cases, such as
solid-gas, gas-liquid and liquid-liquid systems. The currently available
treatment for the bivariate case [7,8] has an implicit formulation that requires
an optimisation procedure for its solution and seems to be too heavy for
CFD applications. For this reason we are currently working on an explicit
formulation of the problem (Direct Quadrature Methed of Moments) that will
be reported in a future communication [15].

Acknowledgements - The research has been partially supported by an
{talian National research project (PRIN — Analysis and modelling of solid-
liquid mixing processes).
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Notation

a breakage kernel

b fragment distribution function

By birth rate

C total number of classes

Dy death rate

G molecular growth rate

lagg intensity of aggregation

J nucleation rate

L particle length

L abscissa of quadrature approximation

my kth moment of the PSD

n PSD in term of the particle length

N number of modes in quadrature approximation

N population of the class

q Hounslow's parameter

Sk source term

t time

{up Reynolds-averaged velocity

W weight of quadrature approximation

X coordinate vector

)] aggregation kernel

T turbulent diffusivity
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