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Abstract— One of the most critical issues in wireless sensor
networks is represented by the limited availability of energy
within network nodes; thus, making good use of energy is a must
to increase network lifetime. We define as network lifetime the
period from the time instant when the network starts functioning
till the network runs satisfying its quality requirements, i.e., a
given level of coverage in the area of interest is guaranteed. To
maximize system lifetime, we exploit sensor spatial redundancy
by defining sub-sets of sensors active in different time period, to
allow sensors to save energy when inactive. Two approaches are
presented: the first one, based on mathematical programming
techniques, must run in a centralized way, whereas the second
one is based on a greedy algorithm aiming at a distributed im-
plementation. To asses their performance and provide guidance
to network design, the two approaches are compared by varying
several network parameters.

I. INTRODUCTION

Sensor networks are composed by small electronic devices,
named sensors, which can perform remote monitoring and
object-tracking in different environments and for a wide range
of applications. Due to their low-cost and low-complexity na-
ture, sensors are characterized by several constraints, such as
a short transmission range, poor computation and processing
capabilities, low reliability and data transmission rates, and
a limited available energy. Thus, sensor networks should be
designed with the aim to overcome these limitations, e.g., by
exploiting the synergy between multiple nodes.

The limited availability of energy within sensor nodes is
one of the most critical issues. Indeed, recharging or replacing
the nodes’ battery may be inconvenient, or even impossible
in disadvantaged working environments. This implies that the
time during which all sensors are able to sense, transmit,
receive and process information is limited; and, the network
lifetime, i.e., the interval during which the network functions
properly, becomes an important performance metric. There are
various possible definitions for network lifetime, depending
on the network application. In this work, we define network
lifetime as the time spanning from the instant when the
network starts functioning till a given level of coverage of
the area of interest can be guaranteed. Our objective is to
devise solutions that maximize network lifetime.

We take as a case study a video-surveillance network for
monitoring a given territorial area (for simplicity a rectangular
area), named area of interest, with a desired level of cov-
erage. While monitoring the area of interest, sensors gather
information (i.e., images), and send it to some gateway node.
Sensors that are unable to reach by direct transmission the
gateway node, deliver the collected information by using
intermediate sensors as relays. We assume that sensors can
be switched off if needed to reduce power consumption. We
also assume that the number of deployed sensors is large
enough that sensors sub-sets can provide the desired level
of coverage, if they are properly chosen. Given that sensor
battery lifetime should be maximized to maximize network
lifetime, a fairly intuitive approach is to switch on, at a
given time, only the minimum number of sensors needed to
guarantee the desired level of coverage in the area. Based
on the above observation, we divide sensors into sub-sets,
each sub-set being active in different period of time, and
devise an optimal scheduling of sensors’ activity, so that the
sensor battery lifetime is maximized and the quality of service
requirements (e.g., desired level of coverage) are met.

Our problem can be regarded as a generalization of the
set partitioning approach proposed by [1]. Their approach
entails finding the maximum number of disjoint subsets of
sensors, which is NP-hard. In fact, if we assume that energy
is consumed only for sensing and not for transmitting data, it
is easy to see that their problem can be transformed into our
problem, which is therefore NP-hard as well. Thus, we must
rely on heuristic solution methods. In this paper we propose
two approaches: the first one is based on a mathematical
programming model and is defined in detail in Sec. IV.
The second is a greedy approach that should be more easily
implemented in a distributed way in a realistic scenario,
although the definition of a proper protocol to support the
proposed approach is beyond the scope of this paper. The
second approach is described in Sec. V.

The main critical point of the first approach is that we
assume a centralized management scheme, in contrast to the
literature concerned with distributed protocols and decentral-

Globecom 2004 3170 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11375786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ized management (see, e.g., [2]). While this is a debatable
assumption, and there are application fields in which this
approach would probably be too difficult to pursue, we think
that the main contribution of the approach is in providing a
flexible framework that can be easily extended to deal with
more complex scenarios, as hinted later.

II. SYSTEM MODEL DESCRIPTION AND ASSUMPTIONS

Different models have been proposed for sensor networks
depending on the type of sensing involved and the specific
application. The basic network setting that we assume in this
paper rely on the work in [1], [3], [4].

We consider a set of sensors, indexed by j = 1, . . . , N ,
whose placement is known. Then, we consider a discrete set
of points as a good sampling of the region, indexed by i =
1, . . . , M . The quality of coverage may be measured and a
minimal quality is required; here, we require that at least a
certain percentage of points are covered. Since we do not
address the issues of information redundancy and reliability,
we assume that a point is covered by at most one sensor (of
course, a sensor may cover different points).

For each point i we know the set Si of nodes which can
cover i, and for each sensor j, we know the set of points
Cj that it can cover and the set Rj of reachable nodes, as
communication may be limited both by distance and natural
obstacles.

All sensors are equal and have an initial energy endowment
E. A special node, the gateway, is denoted by G; its energy is
unbounded. The gateway is the node to which all the data must
be routed. The other sensors may be used in different roles;
indeed, in the following we will speak of nodes rather than
sensors to point out the multiple roles they may take. Roles are
not mutually exclusive. Examples of roles are: sensing (which
we assume continuous rather than event-driven), compressing
data, routing data (implies either sensing and transmitting or
receiving and transmitting) to another node or the gateway.
Data compression may be performed by a sensing node to
minimize energy consumption.

For each point i, we define as di the corresponding data
flow, that is given as an input in the node covering the point
(e.g., number of images per unit time). In the following we
assume that the data rate is the same for any point. We also
assume as known:

• ET
jk: the energy required to transmit data (e.g., an image)

from node j to node k; it depends on the distance;
• ER: the energy required by any node to receive data

(e.g., an image);
• EC : the total energy required to sense and compress data.

Furthermore, we have a lower bound L on coverage, i.e., the
minimal percentage of points which must be covered. Hot
spots and more refined measures of coverage may be easily
dealt with by adapting the models below.

III. PROBLEM STATEMENT

As a first step, we leave aside the concept of sensor sub-
nets and consider a unique set of sensors. We introduce the
following decision variables.

• xij ∈ {0, 1}, set to 1 if point i is covered by node j, in
which case point i contributes an input flow di into node
j;

• wj ≥ 0: data flow rate from node j to the gateway (e.g.,
compressed images per unit time);

• fjk ≥ 0: data flow rate from node j to node k (e.g.,
compressed images per unit time).

We write the power required by a node as,

Pj =
∑
i∈Cj

ECdixij +
∑

k∈Rj

ET
jkfjk +

∑
k∈Rj

ERfkj + ET
jGwj .

Notice that when node j cannot reach the gateway, i.e.,
j /∈ RG, then wj ≡ 0. By multiplying the power by the
system lifetime T , we get the energy consumption which
cannot exceed the energy available at any node. To get a
linear model, the objective of maximizing system lifetime can
be rephrased in terms of balancing the power requirement
across nodes. In other words, by minimizing the maximum
power consumed Pmax = maxj Pj across the nodes, subject
to coverage constraints, we maximize system lifetime. Thus,
in this case, we have the following MILP (Mixed Integer
Linear Programming) model:

(L1) min Pmax

s.t.
∑
i∈Cj

dixij +
∑

k∈Rj

fkj =
∑

k∈Rj

fjk + wj

∀j = 1, . . . N (1)∑
j∈Si

xij ≤ 1 ∀i (2)

∑
i

∑
j∈Si

xij ≥ L · M (3)

Pmax ≥
∑
i∈Cj

ECdixij +
∑

k∈Rj

ET
jkfjk

+
∑

k∈Rj

ERfkj + ET
jGwj ∀j = 1, . . . N (4)

xij ∈ {0, 1}, wj ≥ 0, fjk ≥ 0. (5)

Eq. (1) expresses conservation of flows. Constraint (2) states
that each point must be assigned to at most one sensor,
whereas (3) enforces the minimal required coverage. Finally,
(4) sets the maximum power Pmax.

The above formulation does not exploit the possibility of
switching sensors off. To improve system lifetime, provided
enough redundancy in the sensors is available, we introduce
the concept of sensor sub-nets. We extend the approach of [1]
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by building a partition of nodes in terms of disjoint sub-sets
of nodes covering the points of interest. Given each sub-set,
which basically amounts to fixing the assignment decision
variables xij , we build the complete network by solving
the above formulation with respect to the flow variables wj

and fjk. However, the problem is too complex to be solved
with a direct approach. Therefore, we resort to two heuristic
solutions described in the following sections: one based on the
decomposition method of column generation, the other based
on a greedy approach.

IV. A COLUMN-GENERATION BASED DECOMPOSITION

FRAMEWORK

We describe here the mathematical programming approach
based on column generation. The overall problem we consider
has two main components:

1) a routing component, which is linked to defining roles
for each node and assigning points to nodes;

2) a scheduling component, since a node may play differ-
ent roles in different time instants.

The idea is generating a set of network configurations (sub-
nets), each of which is connected and meets the minimal
coverage requirements. Then we should decide how much
time each sub-net is used. By alternating the configurations,
we exploit the available redundancy in sensors.

Column generation is a general purpose framework which
has been often proposed either as a computationally efficient
alternative to standard methods or as a modeling tool when a
direct approach is infeasible. See, e.g., [5, chapter 11] for a
tutorial treatment, or [6] for a recent survey.

In our case, columns correspond to sub-nets, i.e., network
configurations. The aim of the master problem, described
below, is to select the columns and to decide the length of
the time interval a sub-net is used, subject to energy budget
constraints for each node. From the dual variables of the
energy budget constraints we derive costs which are used
in the column (sub-net) generation sub-problem. The sub-
net generation sub-problem aims at finding a feasible sub-net
ensuring the minimal required coverage.

A. The sub-net combination (master) problem

Let s be an index referring to a sub-net generated by the
sub-net generation sub-problem. Each sub-net is characterized
by the role of each node and by the power required for that
role. Since we do not assume mutually exclusive roles (each
node may both sense and route data from other sensors), the
role is basically characterized by the input and the output
flows through each node.

Let P s
j be the power required for node j in sub-net s (it

may be 0 if the node is not activated) and ts ≥ 0 a decision
variable corresponding to the time sub-net s is used. Then, to

maximize the network lifetime we solve the master problem
(MP):

(MP) max
∑

s

ts

s.t.
∑

s

P s
j ts ≤ E ∀j = 1, . . . N (6)

ts ≥ 0.

Note that further constraints could be easily dealt with, such
as the maximum number of sub-nets we want to use and a
minimal time an activated sub-net must be used.

This problem is a classical LP problem, solved with
standard simplex algorithm. As stated before, columns P s

represent network configurations, that is sub-sets of nodes
playing defined roles to which a given power requirement
is associated. They are generated on a as-needed basis by the
sub-net generation sub-problem described in the next section.
Let πj be the dual variable (shadow price) associated to the
energy budget constraint (6) for node j. This is used to define
the cost objective for sub-net generation. Intuitively, a large
shadow price for a node implies that using the corresponding
node is costly.

B. The sub-net generation sub-problem

In this sub-problem, denoted by GEN, we do not consider
energy limitations directly; the energy of each node is priced
by the dual variables from the master problem (MP). The
objective here is to cover the set of points with minimum
cost, subject to quality constraints. Thus the problem is a
modification of model (L1) of Sec. III.

(GEN) min
∑

j

πj


∑

i∈Cj

ECdixij +
∑

k∈Rj

ET
jkfjk

+
∑

k∈Rj

ERfkj


 +

∑
j∈RG

πjE
T
jGwj (7)

s.t. (1), (2), (3), (5).

Given an optimal solution to this sub-problem, i.e., x∗
ij , f∗

kj ,
w∗

j , we compute the power requirement for each node as,

P s
j =

∑
i∈Cj

ECdix
∗
ij +

∑
k∈Rj

ET
jkf∗

jk +
∑

k∈Rj

ERf∗
kj + ET

jGw∗
j

which is the information needed by the master problem (MP).
The generation sub-problem is a possibly hard MILP

model. We solve the sub-net generation problem at optimality
by standard branch-and-bound; however, from a practical
point of view, we should note that it can be solved sub-
optimally by introducing some sub-optimality tolerance in a
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standard branch and bound algorithm. Actually, this could
be useful during the first iterations, to enrich the initial
set of sub-nets as quickly as possible to get good shadow
prices. It is important to note that many variations may be
accommodated within this column generation framework: in
some applications, even using constraint-based search within
column generation has been proposed [7].

C. Initializing the column set and stopping criteria

To start-up the column generation process, an initial set of
columns is required, to be able to solve the master problem
(MP) once and obtain the first set of dual variables. It is
also important to start with a good set of columns. Solving
the basic problem (L1) is a way to get one initial column.
Partitioning the set of sensors according to [1] and solving the
basic problem with the covering variables setting accordingly
provides another set of columns. We have used this second
approach as it proved to be computationally faster and it
allows us to get a set of initial columns, and not only
one. Considering the dual of the master problem, it can
be demonstrated [5] that we should go on generating sub-
nets until we get an objective value less than one from the
generation sub-problem. In this case, it is impossible to find a
new column that, added to the master problem, increases the
network lifetime. We have observed that sometimes the last
columns which are generated do not contribute significantly
to the increase of network lifetime. In such cases, a possible
alternative (that we did not use in this work) is to stop the
master/sub-problem iterations when the maximum lifetime is
not increased significantly.

V. A GREEDY APPROACH

The general idea of the distributed approach is always based
on the fact that we can use the high spatial redundancy in
sensor nodes by making active a small sub-set of nodes in
a given sub-area, thus exploiting sensor activities in different
period of time. In other words, only a sub-set of sensors is
active for a given period of time, named scheduling period,
whereas all other sensors are in inactive state, saving energy
for future scheduling period.

The proposed approach consists of the following steps: 1)
form a proper (i.e., covering) sub-set of sensors that will be
switched on (active sensors); if the sub-set does not guarantee
the required level of coverage, discard this instance and repeat
step 1; 2) put all other sensors in off state (inactive sensors);
3) determine a suitable minimum cost routing to transfer the
sensed information from all active sensors to the gateway
node; if it is not possible with the selected sub-set of sensors to
guarantee full connectivity, i.e., all active sensor are not able
to communicate, possibly via multi-hop transmission, with
the gateway node, the sub-set is discarded and the process
is restarted from step 1; 4) determine the scheduling period

duration, i.e., the amount of time for which this sensor sub-
net lasts, while guaranteeing the target level of coverage; 5)
compute sensors power consumption, subtract it from each
sensor power budget, and eventually consider some of the
sensors as unavailable in the future due to energy depletion; 6)
iterate through this process until no other sub-set of covering
and fully connected sensors can be found.

Let us now describe the above steps with more details. For
what concerns the selection of the sensor sub-set (step 1),
we simply allow each sensor to decide independently with a
given probability (equal for all sensor nodes) whether to be in
the off (inactive) or on (active) state in the current scheduling
period. We check whether the selected sub-set is feasible, i.e.,
able to guarantee the required coverage. If infeasible, this sub-
set is discarded at no cost and the algorithm restarts. For each
point to be covered in the area of interest, only one randomly
chosen sensor among the currently active sensors is really
activated, whereas all other sensors are put in inactive state
(step 2).

If the sub-set is feasible, we solve the routing problem
(step 3) among sensors building a tree routed in the gateway,
obviously taking into account sensors transmission capabili-
ties. Standard techniques to determine a tree on an unknown
topology (e.g., spanning tree) could be used to solve this
problem. However, we implemented a simpler sub-optimal
algorithm to determine paths among sensor nodes. Each node
is assumed to know the reachable and active sensors closer to
the gateway; this could be simply implemented by periodically
broadcasting node identity and distance from the gateway.
Each node randomly selects one among the available sensors
closer to the gateway, to send the sensed information in multi-
hop fashion to the gateway node. All sensors not involved in
either sensing or routing operations are put in inactive state.
If some sensor is not able to find a neighbor, the sub-set is
not connected and the sub-set is discarded.

Finally, the duration of the scheduling period is determined
by the sensor that exhausts first its residual power budget
(steps 4 and 5).

This process is iterated until no more feasible sub-sets can
be found after a fixed, large, maximum number of iterations
was run (step 6).

Note that, if we neglect any cost in creating and discarding a
sub-set, it is always convenient to have all sensors potentially
active in a scheduling period, thus setting the probability of
being active equal to 1. However, this parameter is important
in realistic implementations to reduce the cost of exchanging
information among nodes to determine the feasibility of a
selected sub-set.

This algorithm is largely sub-optimal; however, it may be
reasonably implemented in a distributed fashion and shows
good performance in the considered scenarios.
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VI. TESTING SCENARIO AND NUMERICAL RESULTS

The column generation scheme was implemented using
the OPL STUDIO/CPLEX optimization modeling system,
whereas the greedy approach was implemented in MATLAB.
To assess the merits of the proposed algorithms, various
instance classes, were considered, whose parameters are re-
ported in Table I. Each class is characterized by a number of
sensors, a number of points to be monitored and a maximum
sensing range that is assumed to be equal to the maximum
transmission range of sensor nodes.

TABLE I

INSTANCE CLASSES

Class Sensors Points Range

1 25 5 2.5
2 25 5 3
3 25 10 2.5
4 25 10 3
5 50 5 2.5
6 50 5 3
7 50 10 2.5
8 50 10 3
9 100 5 2.5

10 100 5 3
11 100 10 2.5
12 100 10 3

For each class, the same 10 problem instances were gen-
erated for the two approaches according to the following
specifications:

• the area to be covered is a square with side Q = 10;
• the gateway node is located at the center (coordinates

(5,5)) of the covered area;
• sensors are uniformly distributed on the area;
• to position the points of interest in such a way to cover

the area as uniformly as possible we have used Halton
low-discrepancy sequences; low-discrepancy sequences
are the basis of quasi-Monte Carlo integration methods;
basically, they are just a way to cover unit hypercubes
(in our bi-dimensional case, a square) as uniformly as
possible by a deterministic sequence, rather than by
random sampling (see, e.g., [8, chapter 4]);

• minimal required coverage: 100%;
• initial energy endowment E: 0.75Ah*3.3V=8910 J
• energy required to transmit a compressed image [mJ], as

a function of distance d: 5.0 + 0.01 ∗ d2

• energy required to receive a compressed image: 5.0 mJ;
• energy required to compress an image: 3.6 mJ;
• sampling rate and transmission interval: one image every

15 s.
Note that we use the same radio model used in [9]: the radio
dissipates 50 nJ/bit in the transmitter circuitry, 50 nJ/bit in
the receiver circuitry, and 100 pJ/bit/m2 in the transmitter

amplifier. The compressed image size is of 12672 bytes; the
compression energy cost is derived by assuming that a JPEG-
based scheme with compression ratio 2:1 is executed on an
Intel StrongARM 1110 @ 59 MHz [10].

Using these instances, we tested both the column generation
scheme and the greedy algorithm; the results were averaged
over 10 instances for each class.

TABLE II

COLUMN GENERATION APPROACH SOLUTION

Class Generated nets Tot. LT [days] Used nets

1 12.1 147.48 4.2
2 15.2 160.71 4.4
3 13.3 67.82 4.3
4 15.0 89.55 5.5
5 58.7 318.18 13.4
6 85.6 470.27 14.8
7 64.3 143.09 13.9
8 125.7 236.43 17.2
9 190.4 681.09 30.0

10 282.0 974.84 32.0
11 248.6 331.72 39.2
12 314.9 485.11 34.3

TABLE III

GREEDY SOLUTION

Class Tot. LT [days] Used nets

1 124.10 2.4
2 141.90 2.5
3 67.10 2.5
4 81.90 2.6
5 237.10 7.2
6 412.90 13.7
7 122.00 6.7
8 212.80 12.1
9 637.10 24.3
10 946.10 34.3
11 330.70 24.2
12 482.30 33.9

Tables II and III report, for each class of instances, the aver-
age total lifetime (LT) of the system achieved by sequentially
using different networks and the average number of networks
employed to monitor the area under control. The results in
Table II refer to the optimal solution, while the results in Table
III have been obtained through the greedy approach. Table II
also presents the average number of networks generated to
reach the optimal solution; this metric is not reported when the
greedy approach is employed since, in this case, all generated
networks that meet the coverage and connectivity constraints
are used to build the final solution. Tables IV and V present
the characteristics of the networks used in the optimal and
greedy solution, respectively. The second column contains
the average lifetime of each used network, while the third
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indicates how many sensors are active, on average, in each
of these networks. Tables VI and VII report the performance
of the optimal and greedy solution, respectively, in terms of
maximum and mean value of power consumed (PW) by a
single sensor.

TABLE IV

NETWORKS USED IN THE OPTIMAL SOLUTION

Class Ave. LT [days] Ave. nodes’ no.

1 44.11 4.55
2 47.89 4.31
3 16.44 7.96
4 20.66 7.13
5 28.33 5.52
6 32.67 4.17
7 11.56 8.46
8 14.61 7.59
9 24.14 4.83
10 32.31 4.27
11 8.54 8.60
12 14.74 7.73

TABLE V

NETWORKS USED IN THE GREEDY SOLUTION

Class Ave. LT [days] Ave. nodes’ no.

1 66.40 8.05
2 70.64 7.90
3 28.64 14.06
4 37.52 11.71
5 31.39 10.60
6 38.69 9.51
7 18.03 17.33
8 23.47 15.07
9 26.88 11.36
10 28.12 9.63
11 13.91 19.10
12 14.35 17.33

First, let us consider system performance when we fix
both the number of sensors and the number of points of
interest, and vary the sensor sensing/transmission range (i.e.,
compare classes 1 and 2, 3 and 4, etc.). From Tables II and
III, we observe that the total system lifetime, as well as the
number of used networks, increase significantly. Indeed, the
number of sensors that can ensure the required coverage or
successfully route data toward the gateway node grows, thus
increasing the number of networks that can be employed.
This also implies that the average number of sensors in-
cluded in a single network decreases for larger values of
the sensing/transmission range (see Tables IV and V). As
for the sensor power consumption reported in Tables VI and
VII, we observe a reduction in both the average maximum
and the mean value as a larger sensing/transmission range
is considered. This behavior can be explained as follows.

TABLE VI

SENSORS’ POWER CONSUMPTION IN THE OPTIMAL SOLUTION

Class Ave. max PW [W] Ave. mean PW [W]

1 1.380 0.865
2 1.204 0.681
3 2.655 1.207
4 2.213 1.097
5 1.528 0.850
6 1.150 0.754
7 2.628 1.025
8 1.914 0.895
9 1.216 0.745
10 1.083 0.744
11 2.645 0.963
12 2.191 0.960

TABLE VII

SENSORS’ POWER CONSUMPTION IN THE GREEDY SOLUTION

Class Ave. max PW [W] Ave. mean PW [W]

1 1.305 0.774
2 1.196 0.737
3 2.648 1.011
4 2.131 0.948
5 1.489 0.770
6 1.423 0.732
7 2.739 1.069
8 2.665 1.009
9 1.418 0.767
10 1.230 0.723
11 2.825 0.970
12 2.424 0.913

Recall that the contribution to power consumption due to the
output transmit power is negligible, while the most relevant
contribution is due to the transceiver, in transmission mode
as well as in receive mode. By increasing the sensor range,
the route length from the point of interest to the gateway
node becomes shorter; this implies that less relay nodes
will be involved, i.e., less nodes would experience both the
transmission and reception cost.

Next, assume the sensor range and the number of sensors
to be fixed. Comparing classes 1 and 3, 2 and 4, 5 and 7, and
so on, in Tables II–VII, we can analyze system performance
for two different values of the number of points of interest
(namely, 5 and 10). As expected, the number of points to be
monitored has a great impact on the system lifetime and power
consumption. In particular, a large number of points leads to
an increase in the number of sensors needed in each network
and, hence, in the mean power consumption; as a conse-
quence, the total system lifetime decreases. Moreover, in each
single network, it is more likely that a node has to gather data
from more than one point, or route a larger amount of data to
the gateway node. It follows that the maximum value of power
consumption experienced by the sensors grows and, thus, the
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average network lifetime decreases. Note that the number of
used networks, as well as the number of generated networks,
always increase when the optimal solution is applied; while,
no significant variation is observed in the case of the greedy
solution. Indeed, as the number of points to be controlled
grows, it becomes harder to find an optimal solution, thus
more networks are generated and tried out. Instead, in the
case of the greedy solution, this phenomenon does not arise
since the generated networks are used, if feasible, until the
first network node exhausts its energy resources.

Given the sensor range and the number of points of interest,
consider the system performance as the number of sensors
changes from 25 to 100 (i.e., in Tables II–VII compare classes
1,5,9, or 2,6,10, and so on). As expected, the total lifetime
and the number of used networks increase as the number
of sensors grows (see Tables II and III). In fact, when a
larger number of sensors are available, a greater number
of feasible networks can be found. Moreover, as the nodes
exhaust their energy resources, further configurations that
meet the constraints on connectivity and coverage are formed
by using more nodes per single network. This is confirmed by
the values of average number of active sensors presented in
Tables IV and V. The fact that the number of used networks
significantly increases with the increase in the number of
available nodes justifies the reduction in the average network
lifetime. Indeed, most of the networks that are created as
the nodes start exhausting their energy have a short lifetime,
which clearly impacts the average lifetime. As for the average
power consumption, we can see from Tables VI and VII
that increasing the number of sensors implies a lower mean
power consumption per sensor. Indeed, a higher redundancy in
the available nodes allows for more power-efficient networks.
Also, note that in Table II the difference between the number
of generated networks and the number of used networks
increases while increasing the number of available sensors.
For instance classes from 1 to 4, the number of networks
used in the optimal solution is about 1/3 of the total number
of generated networks, while, for instance classes from 9 to
12, the ratio decreases down to about 1/7. This is due to
the fact that, for a large value of the number of nodes, the
number of feasible networks increases significantly; however
the number of “good” network configurations is limited by
the given placement of the points under control.

Finally, with the column generation approach longer net-
work lifetimes are experienced. This is not a surprise, given
the larger complexity of the approach. The greedy approach
provides network lifetime values closer to those obtained with
the column generation approach when the network size is
larger in terms of sensor nodes. This is rather encouraging,
since the column generation approach can be barely used
with networks with more than hundredth of sensors due to

its computational complexity. The differences among the two
approaches tend also to vanish when the number of points to
be covered is too close to the number of sensors (classes 3
and 4), since in this scenario the redundancy is so small that
it becomes difficult to optimize performance.

VII. CONCLUSIONS AND POSSIBLE EXTENSIONS

Two approaches to extend system lifetime in sensor net-
works were presented, the more complex one being based
on mathematical programming techniques, the simpler one
on a greedy algorithm. Both approaches exploit the high
spatial redundancy in sensor nodes: only a proper sub-set
of sensors is active for a given period of time, whereas all
other sensors save energy being in inactive state. Performance
analysis allowed us to obtain important insight on sensor
network design, as well as to determine the properties of
the two algorithms. Although the proposed mathematical
programming approach has the drawback of being centralized
and fairly complex to solve, it is very flexible and can be easily
generalized to deal with sensor’ failures and different quality
of service requirements. Moreover, it provides a useful term
of comparison for other distributed, heuristic design schemes
such as the greedy algorithm presented in this paper.
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