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Abstract For lubricated slider bearing the elementary theory of lubrication does not allow to
describe the pressure build up at the entrance section.

In this work the whole flow field is subdivided into three regions: a first one, upstream of the
entrance, where the fluid behaves like a perfect fluid; a second region, immediately downstream,
where the two boundary layers gradually grow, extending up to a distance determined by means
of a model based on analytic functions. The third region is described by Navier – Stokes, solved
adopting a shooting method.

Numerical computations were carried out to determine the pressure distribution and the position
of the center of pressure for different values of Reynolds number and pad angle.

Sommario. La teoria elementare della lubrificazione nel caso del pattino piano lubrificato non è
in grado di evidenziare il fenomeno della sovrappressione nella sezione di ingresso.

Nel presente lavoro viene proposto un modello che suddivide il campo di moto in tre regioni:
una prima a monte della sezione di ingresso, in cui il fluido si comporta come un fluido perfetto;
una seconda regione immediatamente a valle, in cui si tiene conto del graduale sviluppo dello strato
limite e la cui estensione è determinata tramite un modello basato sulle funzioni analitiche. La
terza regione è studiata risolvendo l’equazione di Navier – Stokes con tecnica numerica basata su
un metodo di shooting.

In questo lavoro viene riportato l’andamento della pressione all’interno del cuscinetto e la
posizione del centro di pressione per differenti valori del numero di Reynolds e per varie inclinazioni
del pattino.
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1 Introduction

The elementary theory of lubrication is based on a number of assumptions among which:

• the inertial effects are negligible;

• the over–pressure vanishes both at inlet and outlet sections.

These hypotheses hold only under well determined working conditions; to this concern, engi-
neering practice owns a large literature reporting critical conditions that cause these hypotheses
to fail, together with their effects on working characteristics.

The hypothesis of negligible inertial effects progressively loses validity with increasing velocities,
that is with growing Reynolds number; consequently many authors were induced to develop new
models to better represent the bearing actual behavior. Among the others, the works of Slezkin
and Targ [1], Constantinescu [2] and Kahlert [3] appear to be relevant. These authors adopt the
boundary conditions derived from the elementary theory and highlight the effect of convective
terms on pressure distribution. The conclusions drawn from the analysis of these results lead to
consider inertia relevant at high values of Reynolds number. However the results drawn from
numerical solution of Navier–Stokes equation applied to plane slider bearings do not match these
conclusions, thus proving that the proposed models are inadequate.

The hypothesis of zero over–pressure at inlet section simplifies the problem; however many
researches dealing with fluid behavior around the entrance (Malvano and Vatta [4], Buckholtz [5],
Tuck and Bentwick [6]) proved the existence of an over–pressure. Malvano et al. consider this over–
pressure essentially due to the combined effects of the viscosity and of the free surface upstream of
the inlet; other authors (Buckholtz [5], Tichy [7]) assume that the fluid is inertial upstream of the
entrance, while it is viscous downstream: then they determine the inlet over–pressure by imposing
constant flow rate.

To this extent it is evident that the slider bearing behavior cannot be accurately modeled
without determining both the inlet over–pressure and the flow field of an inertial – viscous fluid.

This flow field can be modeled with Navier-Stokes equation, that is a nonlinear elliptical equa-
tion. Applying the hypothesis of small fluid film thickness, it yields a single fourth order partial
differential equation in the stream function. By means of a finite differences method, the problem
can be reduced to the solution of a system of four first order ordinary differential equations, with
given boundary conditions both on the pad and on the slider: the solution at any section is com-
pletely determined when the stream function is known in the upstream section. Therefore, if the
flow field at entrance is known, it can also be determined for all downstream sections by means of
a step by step method.

As a matter of fact, the main difficulty in modeling the actual behavior of a slider bearing lies
exactly in determining the flow field around the entrance.

Therefore, the aim of the present work is firstly to determine the influence of the geometric
discontinuity at entrance and secondly to propose a simplified model to represent the transition
taking place in the aforesaid region. To this aim, for a length x̄? downstream of the inlet section
we determine the pressure gradient taking into account the gradual development of the boundary
layer caused by the presence of a fixed wall (the pad) and of a moving one (the guide).

Therefore the whole flow field can be described with three different regions: a region upstream
of the entrance, a transition region and finally the region inside the slider bearing, where the
boundary layer is fully developed.

2 Analysis of entrance region

The inlet section is a geometrical discontinuity; it generates perturbations that propagate both
upstream and downstream of the entrance. The aim of this section is to determine, at least
qualitatively, the extension of this region. To simplify this complex problem, we refer to the model
shown in Fig.1: the pad is assumed to be a semi–infinite wall (plane problem) parallel to the guide.
This hypothesis is reasonable since the tilting angle is so small that it has negligible influence on
thickness variations in this region.

The governing equation of a two–dimensional, incompressible, steady flow at constant viscosity,
under the assumption that inertial effects can be neglected, can be expressed as follows:

~∇P = −2µ~∇× ~ω (1)
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Figure 1: Plane slider bearing geometry

where

~ω =
1

2

(
∂v

∂x
− ∂u

∂y

)
~k

Letting

P =
P

2µ
=
p− p∞

2µ
and Ω = − ω

we get the following Cauchy–Riemann differential equations:
∂P
∂x

=
∂Ω

∂y

∂P
∂y

= − ∂Ω

∂x

(2)

Therefore, P and Ω are respectively the real and imaginary part of the function W in the
complex variable z. According to the geometry above described, we can approximate the free
surface with half–line AA−∞. The boundary conditions associated to equation (1) are: z = x+ i h/2 x ≤ 0 P = − (∂u/∂x)

z = x+ i h/2 x ≥ 0 u+ i v = 0
z = x− i h/2 −∞ ≤ x ≥ ∞ u+ i v = U

(3)

where the first condition follows from the equilibrium in y–direction of a generic fluid element
belonging to the free surface.

It is worth noting that the presence of viscosity alone justifies the existence of the inlet pressure
build–up, in contrast with the elementary theory hypotheses; as a matter of fact, in the neighbor-
hood of the stagnation point A, for x < 0, ∂u/∂x is negative. Therefore necessarily p− p∞ must
be positive.

In order to determine the flow field, we apply Schwarz’s formula [8], which allows to calculate
the function W (z) (apart from a purely imaginary constant) when the values of its real part are
given on the border of the area: therefore P and Ω are determined inside a strip of the plane
through the values assumed by the pressure on the walls delimiting the strip itself. Schwarz’s
formula relative to the strip (see Appendix A) is given by the following expression:

W (z) =
1

2π

{∫ ∞
−∞

[f (X1) + g (X1)]
Θ

Φ
dX1 − i [a sinh (X) + i b cosh (X)] ·

·
∫ ∞
−∞

[f (X1)− g (X1)]
Θ

cosh (X1) Φ
dX1

}
− i Ko (4)

where

X =
π x

h
X1 =

π x1

h
Y =

π y

h
a = cos (Y ) b = sin (Y )

Φ (X1, X, Y ) = a2 cosh2 (X1 −X) + b2 sinh2 (X1 −X)
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Θ (X1, X, Y ) = a cosh (X1 −X) + i b sinh (X1 −X)

Therefore pressure P is given by the following expression:

P (X,Y )=
µ

π

{
a

∫ ∞
−∞

[f (X1) + g (X1)]
cosh (X1−X)

Φ
dX1 + a b

∫ ∞
−∞

[f (X1)− g (X1)]
dX1

Φ

}
In the present case, assuming that the fluid film thickness is constant, according to the ele-

mentary theory of lubrication the pressure is also a constant, its value being p∞; therefore we can
assume:

f(X) = f + ε1 (X) g(X) = g + ε2 (X)

where ε1 (X) and ε2 (X) are small and hence negligible with respect to the mean values f and g.
On the upper boundary, due to the discontinuity caused by the presence of the pad, it is necessary
to assume two different constant values; a similar procedure is applied on the lower boundary.
Assuming:

x < 0 f(X1) = f1 g(X1) = g1 x > 0 f(X1) = f2 g(X1) = g2

it yields

P (X,Y ) =
µ

π
{a (f1 + g1) I1 + a (f2 + g2) I2 + a b (f1 − g1) I3 + a b (f2 − g2) I4} (5)

where

I1 =

∫ 0

−∞

cosh (X1−X)

Φ
dX1 I2 =

∫ ∞
0

cosh (X1−X)

Φ
dX1 I3 =

∫ 0

−∞

dX1

Φ
I4 =

∫ ∞
0

dX1

Φ

Figure 2: Plot of the integrals of eq.(5)

Figure 2 plots integrals I1, I2, I3, I4, computed at Y = 0.25 and at different values of X, versus
lower and upper integration limits (respectively Xinf [I1 and I3] and Xsup [I2 and I4]).

From the analysis of these plots, it is possible to draw the following conclusions:

• for each integral there exists a finite integration limit whose growth does not affect the value
of the integral itself (which remains constant). This limit models the condition at infinity;
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• the distance where the disturbance due to the geometrical singularity vanishes is of the same
order of the fluid film thickness;

• the region upstream of the entrance has small influence on the fluid field inside the lubricated
pair.

Finally, the simplified model sketched in fig.3 can be adopted; it consists of three main regions:

a) the first one, starting from infinite upstream and extending up to the inlet section, where
the fluid can be regarded as a perfect fluid (pressure and velocity follow Bernoulli’s law);

b) a transition region, consisting of a “core” of inviscid flow inside the two boundary layers
attached respectively to the guide and to the pad; moving downstream, the two boundary
layers grow, progressively reducing the inviscid fluid “core”. At a distance x̃? the flow
completely loses the characteristics of a perfect fluid; it is worth while to emphasize that in
any section the pressure is constant;

c) a third region where the fluid is both inertial and viscous.

Figure 3: Model of the flow field

To determine the pressure distribution inside region b), we assume the boundary layer thickness
δ of the pad to be similar to that due to a flat plate. Therefore the well known Blasius’s relation
holds:

δ = hΓ
√
x̃ where: Γ = 5

L/h√
Re

, Re =
Uo L

ν
and x̃ =

x

h

With no boundary layer due to the moving surface, the boundary layer of the fixed wall grows
up to the thickness δ = h at a distance x̃?. It yields:

δ = hΓ
√
x̃? = h ⇒ x̃? =

1

Γ2
.

If the boundary layer of the moving surface behaved like that of the fixed wall, then, for
symmetry reasons, the two layers would meet at y = h/2. Hence we would get:

δ = hΓ
√
x̃? =

h

2
⇒ x̃? =

1

4Γ2
.

As a matter of fact, the boundary layer due to the moving surface grows more slowly than
that due to the fixed wall: while on the fixed surface the longitudinal pressure gradient is negative
(Malvano e Vatta [4]), on the moving wall the longitudinal pressure gradient is positive, hence the
boundary layer grows more slowly. Therefore the two boundary layers meet at y = k h; the value
of constant k can be determined by means of the following expression:

δ = hΓ
√
x̃? = k h (6)

We can now state as follows: for very low Reynolds (i.e. ≤ 10 4), the results shown in Fig.2
hold: the transition region extends downstream of the entrance up to a distance X ≈ 2 (x̃? ≈ 0.6).
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From eq.(6), for the same Reynolds number, we get k ≈ 3/4. Under the hypothesis that such
value holds also for larger Reynolds, it is possible to determine the value of x̃? corresponding to
the length of region b). From the continuity equation, under the assumptions that the velocity
distribution inside the boundary layer is linear and that the fluid film thickness is constant (the
last hypothesis is acceptable because of the very small value of the pad angle), we have:

3

4
Uih = U

(
3

4
h− δ

)
+

1

2
U δ,

which allows to determine the velocity distribution inside the inviscid “core” as follows:

U

Ui
=

1

1− 2

3

δ

h

∼= 1 +
2

3

δ

h
.

Applying Bernoulli’s equation, we get:

p̄ = p̄i −
2

3
β2 Γ

√
x̃ where: β = Ui/Uo

Finally, the longitudinal pressure gradient in the transition region is given by

dp̄

dx̃
= −1

3

β2 Γ√
x̃

where: p̄ =
p

%U2
o

(7)

3 Analysis of the region downstream of entrance

In the region we are now considering the boundary layer height equals the fluid film thickness. In
this flow field, Navier – Stokes equation for a two – dimensional incompressible flow at constant
viscosity can be expressed by means of the stream function ψ as:

ψy∇2ψx − ψx∇2ψy = ν∇4ψ. (8)

For lubricated plane slider bearings the variation in the x direction can be neglected with
respect to that in the y direction; therefore we get:

ψyψxyy − ψxψyyy = νψyyyy. (9)

Let us introduce the following non dimensional variables:

ψ̄ =
ψ

Q
ȳ =

y

h (x)
x̄ =

x

L

where Q is the lubricating flow rate, h (x) is the fluid film thickness and L is the pad length.
Hence expression (9) can be rewritten in the form:

∂ψ̄

∂ȳ

∂3ψ̄

∂x̄ ∂ȳ2
− ∂ψ̄

∂x̄

∂3ψ̄

∂ȳ3
− 2

h (x̄)

dh

dx̄

∂ψ̄

∂ȳ

∂2ψ̄

∂ȳ2
=

ν L

h (x̄) Q

∂4ψ̄

∂ȳ4
(10)

The flow rate Q evaluated at entrance is given by:

Q =

∫ hi

0

ui dy = Uo hi β where β =
Ui
Uo

;

therefore the coefficient
ν L

h (x̄) Q
on the right hand side of eq.(10) becomes:

ν L

h (x̄) Q
=

1

Re

L2

h (x̄) hi

1

β
(11)

By substitution we have:

∂ψ̄

∂ȳ

∂3ψ̄

∂x̄ ∂ȳ2
− 2

h (x̄)

dh

dx̄

∂ψ̄

∂ȳ

∂2ψ̄

∂ȳ2
− ∂ψ̄

∂x̄

∂3ψ̄

∂ȳ3
=

1

Re

L2

h (x̄) hi

1

β

∂4ψ̄

∂ȳ4
(12)

Derivatives in x̄ can be computed with a first-order accurate backward difference approxima-
tion:
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∂ψ̄

∂x̄
=

ψ̄ (x̄, ȳ)− ψ̄ (x̄−∆x̄, ȳ)

∆x̄

∂3ψ̄

∂x̄ ∂ȳ2
=

∂2ψ̄ (x̄, ȳ)

∂ȳ2
− ∂2ψ̄ (x̄−∆x̄, ȳ)

∂ȳ2

∆x̄

dh

dx̄
=

h (x̄)− h (x̄−∆x̄)

∆x̄

so that eq.(12) is now given by:

d4ψ̄

dȳ4
=

dψ̄

dȳ
Z (x̄)

[
d2ψ̄ (x̄, ȳ)

dȳ2
− d2ψ̄ (x̄−∆x̄, ȳ)

dȳ2

]
− dψ̄

dȳ

d2ψ̄

dȳ2
Z (x̄) W (x̄) + (13)

−d
3ψ̄

dȳ3
Z (x̄)

[
ψ̄ (x̄, ȳ)− ψ̄ (x̄−∆x̄, ȳ)

]
where:

Z (x̄) =
Reβ

∆x̄

h (x̄) hi
L2

(14)

W (x̄) = 2
h (x̄)− h (x̄−∆x̄)

h (x̄)
. (15)

Letting:

ψ̄1 (ȳ) = ψ̄ ψ̄2 (ȳ) =
dψ̄

dȳ
ψ̄3 (ȳ) =

d2ψ̄

dȳ2
ψ̄4 (ȳ) =

d3ψ̄

dȳ3

(16)

K1 =
d2ψ̄ (x̄−∆x̄, ȳ)

dȳ2
K2 = ψ̄ (x̄−∆x̄, ȳ)

equation (13) changes into the following system of first order ordinary differential equations:

dψ̄4

dȳ
= ψ̄2 Z(x̄)

(
ψ̄3 −K1

)
− ψ̄4 Z(x̄)

(
ψ̄1 −K2

)
− ψ̄2 ψ̄3 Z(x̄)W (x̄)

= f4

(
ψ̄1, ψ̄2, ψ̄3, ψ̄4

)
dψ̄3

dȳ
= ψ̄4 = f3

(
ψ̄1, ψ̄2, ψ̄3, ψ̄4

)
dψ̄2

dȳ
= ψ̄3 = f2

(
ψ̄1, ψ̄2, ψ̄3, ψ̄4

)
dψ̄1

dȳ
= ψ̄2 = f1

(
ψ̄1, ψ̄2, ψ̄3, ψ̄4

)
(17)

with the following boundary conditions:

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ·


ψ̄1 (0)

ψ̄2 (0)

ψ̄3 (0)

ψ̄4 (0)

+



0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 ·


ψ̄1 (1)

ψ̄2 (1)

ψ̄3 (1)

ψ̄4 (1)

 =



0

h (x̄)

hi

1

β

1

0


(18)

Among the numerical methods available, we chose a shooting method, namely Newton’s method;
in this way the original problem is reduced to the solution of an initial values problem.
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If velocity distribution ui at entrance is known, it is possible to determine β, K 1 (ȳ)| i and
K 2 (ȳ)| i , that are given by:

β = Ui/Uo K 2 (ȳ)| i = ψ̄ =
y

hi
K 1 (ȳ)| i =

∂ 2

∂ ȳ 2
K 2| i = 0

We can now evaluate the flow field at the downstream section of co–ordinate ∆x̄; then, with
a step–by–step technique, all the variables at any section can be determined. Appendix B briefly
describes this method.

4 Computational strategy

Pressure distribution inside the slider bearing is determined in the following way: by means of
Bernoulli’s equation, inlet pressure can be written as a function of parameter β, so that we have:

p̄in =
1− β2

2
.

Then, given β a trial value, by applying the shooting method, it is possible to determine
unknown values of the functions ψi, and, in particular, the value of ψ4(0). The meaning of this
function is evident if we consider the momentum equation in the x direction, given by:

ψyψyx − ψxψyy = −1

%
px + ν (ψyxx + ψyyy)

Vanishing at y = 0 both the velocity v and the longitudinal gradient ∂u/∂x, being ψyxx � ψyyy,
the previous equation can be reduced to the form:

1

%

dp

d x
= ν

∂ 3 ψ

∂ y 3
(19)

which, in non dimensional form, becomes:

d p̄

d x̄
=

1

Re

L 2

h 2 (x̄)

h i
h (x̄)

β ψ4 (0) . (20)

It is therefore evident the relation between ψ4 (0) and d p̄/d x̄.
Finally the solution of system (17), with the boundary conditions given in (18), allows to

determine the distribution of d p̄/d x̄. Such values hold only in region c, while in region b gradient
dp̄/dx̄ has to be computed by means of expression (7). The pressure gradient inside the bearing is
now fully determined. The pressure distribution on the pad can be computed by integration, the
outlet boundary condition given as zero pressure build – up. In general, the value of inlet pressure
obtained by integration is different from the trial value; it is then necessary to vary parameter β
to reach convergence.

Figure 4: Pressure distribution for a linear slide bearing with thickness ratio hi/he = 1.6667
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Figure 5: Pressure distribution for a linear slide bearing with thickness ratio hi/he = 2.5

Figure 6: Pressure distribution for a linear slide bearing with thickness ratio hi/he = 4.0

5 Analysis of results and conclusions

Figures 4÷6 show the pressure distribution inside the bearing at different Reynolds numbers; this
three plots are obtained for three different values of the ratio between inlet and outlet thickness
(i.e. hi / he ). It is worth noting that inlet pressure different from 0 implies a load capacity
greater than the one obtained from the lubrication elementary theory. It can be observed that
the non dimensional pressures decreases with growing Reynolds numbers (on the contrary the
actual pressure grows with Re). Moreover non dimensional pressure at entrance is constant with
increasing Reynolds numbers: therefore also inlet pressure grows with Re.

Now, let us examine the pressure behavior in the neighborhood of the inlet section: in this
region pressure initially decreases along the bearing; then, when transient is over, pressure rises up
to its maximum value and successively decreases again to meet the outlet boundary conditions.

From the analysis of the results it can be stated that the inlet pressure increase is due both to
Reynolds number and to the pad angle.

Beyond these results, the proposed numerical technique allows to evaluate the reliability of the
analytical methods developed by different Authors to determine pressure distribution when inertial
terms in the equation of motion are not neglected. Among the Authors that studied this problem,
it is worth mentioning Slezkin and Targ [1], Kahlert [3] and Constantinescu [2]. Slezkin and Targ
propose a method known as mediate inertia, which basically consists in substituting the convective
terms with their mean value. Kahlert uses a perturbation technique; finally Constantinescu assumes
a velocity distribution that, though in presence of inertial terms, can be given by adding the Couette
motion to the Poiseuille one.

Adopting as inlet values the velocity distribution and the longitudinal pressure gradient de-
termined with the above approximate techniques, the results are practically coincident with those
obtained adopting the exact method.
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Figure 7: Pressure center xpc versus Reynolds number

Finally, Fig.7 shows the position of the pressure center xpc =
∫ L

0
px dx/

∫ L
0
p dx plotted against

the Reynolds number for different ratios hi/he. It is worth noting that the pressure center shifts
upstream at increasing Re, thus explaining the bidirectional operation for a tilting pad bearing.
In fact it is possible to determine operating conditions corresponding to xpc/L = 0.5; therefore the
centrally pivoted pad satisfies the conditions to reverse motion direction.

As a conclusion, we can state that the proposed analytic – numerical method can be applied to
the analysis of a lubricated plane slide bearing, in presence of a very complex phenomenon, such
as the inlet transient. The inlet pressure build – up causes both load capacity to increase and the
pressure force resultant to shift towards the inlet section.
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Appendix A

Schwarz’s formula for a circle of radius R, apart from a purely imaginary constant, has the following
expression ([8]):

W (ζ) =
1

2π

∫ 2π

0

φ (ζ)
ζ̄ + ζ

ζ̄ − ζ
dσ̄ (21)

where:
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• φ is the real part of analytical function W (ζ) on the circle boundary;

• ζ̄ = Re i σ̄;

• ζ = Re i σ;

• 0 ≤ r ≤ R.

For a strip of height h, eq.(21) must be modified by means of the following conformal mapping:

ζ = tanh
π z

2h
= tanh

π x ± i y
2h

ζ̄ = tanh
π z̄

2h
= tanh

π x ± i h/2
2h

Let dσ̄ = dζ̄/ζ̄; then eq.(21) has the form (4), where f and g are the real part of function
W on the strip upper and lower border respectively.

Appendix B

Let us consider the following system of ordinary differential equations:
y′1 = f1 (t , y1 , y2 , y3 , y4)

·
·

y′4 = f4 (t , y1 , y2 , y3 , y4)

(22)

with the following boundary conditions: y1 (a) = k1 y2 (a) = k2

y1 (b) = k3 y2 (b) = k4

with a ≥ t ≥ b.
Consider now the following initial value problem:

u′1 = f1 (t , u1 , u2 , u3 , u4)
·
·
·

u′4 = f4 (t , u1 , u2 , u3 , u4)

(23)

with the boundary conditions: u1 (a) = s1; u2 (a) = s2; u3 (a) = s3; u4 (a) = s4.
If

s1 ≡ k1 and [u1 (k1 , k2 , s3 , s4)] b ≡ k3

s2 ≡ k2 and [u2 (k1 , k2 , s3 , s4)] b ≡ k4

then the functions ui coincide with the functions yi and the boundary value problem (22) is
substituted by initial value problem (23).

Let  φ1 (s 3 , s 4) = [u1 (k 1 , k 2 , s 3 , s 4)] b − k3

φ2 (s 3 , s 4) = [u2 (k 1 , k 2 , s 3 , s 4)] b − k4

(24)

then the problem changes into the determination of the values of s3 and s4 such that both
φ1 and φ2 vanish at point t = b. Let us call s3 and s4 p1 and p2 respectively: they are system
parameters and can be determined with iterative technique, applying Newton’s method.

We get the system:

(
∂u 1

∂p 1

) r (
p r+ 1

1 − p r1
)

+

(
∂u 1

∂p 2

) r (
p r+ 1

2 − p r2
)

= − (φ 1)
r

(
∂u 2

∂p 1

) r (
p r+ 1

1 − p r1
)

+

(
∂u 2

∂p 2

) r (
p r+ 1

2 − p r2
)

= − (φ 2)
r

(25)
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that allows to determine the parameters pi at iteration “r + 1” if the same parameters are
known at iteration “r”. Coefficients (∂ui/∂pj)

r
can be computed from the following system:

∂u′1
∂p1

∂u′1
∂p2

· ·
· ·
· ·

∂u′4
∂p1

∂u′4
∂p2

=

∂f1

∂u1
· · · · · ∂f1

∂u4
·
·
·
∂f4

∂u1
· · · · · ∂f4

∂u4

∂u1

∂p1

∂u1

∂p2

· ·
· ·
· ·

∂u4

∂p1

∂u4

∂p2

(26)

Being

∂

∂pj

(
dui
dt

)
=

d

dt

(
∂ui
∂pj

)
=

d

dt
Ui j

we have:

U ′1 1 U ′1 2

· ·
· ·
· ·
· ·

U ′4 1 U ′4 2

=

∂f1

∂u1
· · · · · ∂f1

∂u4
·
·
·
∂f4

∂u1
· · · · · ∂f4

∂u4

U1 1 U1 2

· ·
· ·
· ·
· ·

U4 1 U4 2

(27)

with the following boundary conditions:

U1 1 U1 2

U2 1 U2 2

U3 1 U3 2

U4 1 U4 2 a

=

0 0

0 0

1 0

0 1

(28)

When coefficients Ui j are determined, system (25) becomes: U 1 , 1 (b) ·
(
p r+ 1

1 − p r1
)

+ U 1 , 2 (b) ·
(
p r+ 1

2 − p r2
)

= k 3 − u r1 (b)

U 2 , 1 (b) ·
(
p r+ 1

1 − p r1
)

+ U 2 , 2 (b) ·
(
p r+ 1

2 − p r2
)

= k 4 − u r2 (b)

hence it is possible to compute the increments to (p r1) and to (p r2).
Integrating system (23) with these new initial conditions we get the value of errors:

ε r+ 1
1 = k 3 − u r+1

1 (b) ε r+ 1
2 = k 4 − u r+1

2 (b) .

If convergence is not reached, the method goes on computing new increments δp 1 e δp 2.
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