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Abstract

An analysis has been performed about the discretization of governing equations for com-
plex heat exchangers. The grid generation and the cell discretization have been discussed
separately, to investigate the possibilities for improving the accuracy of description. A
finite-volume and finite-element hybrid technique, which is compatible with semiexplicit
method for wall temperature linked equations (SEWTLE), is proposed. This technique
produces accurate temperature profile within the cell and reduces the number of grid
points. Advantages, drawbacks and application strategies are reported.
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Nomenclature

a, b dimensionless constants S specific thermal source (W/m3)
A heat transfer surface (m2) T temperature (K)
Bi Biot number P generic point (x, y, z)
cp specific heat (J/kgK) u velocity vector (m/s)
Ci dimensional constants (K) [U] matrix multipling upstream
[F] matrix multipling fluid fluid temperature vector (W/K)

temperature vector (W/K) V volume (m3)
G mass flow rate (kg/s) x, y, z spatial coordinates (m)
h specific entalphy (J/kg) x0 fin length (m)
J specific thermal flux (W/m2) z0 fin height (m)
k thermal conductivity (W/mK) Z̄ set of index vectors
n unit vector [W] matrix multipling wall
N natural number temperature vector (W/K)
s wall thickness (m)

Greek symbols

α heat transfer coefficient (W/m2K) σ border surface of
δx step of fin discretization (m) three-dimensional discretized domain
Φ thermal flux (W ) Σ border surface of
ω three-dimensional discretized domain three-dimensional domain
Ω three-dimensional domain θ temperature difference (K)
ρ density (kg/m3)

Subscripts and superscripts

c calculation k heat conduction
C thermal capacity e EBS elementary surface index
D downstream h HBS elementary surface index
E FEM l EBS cell index
EBS heterogeneous m HBS cell index

boundary sub-domain N,S,W,E north, sud, west, east
EN environment t top
f fluid U upstream
fp fluid path V FVM
HBS homogeneous w wall

boundary sub-domain XBS intersected
i fluid index boundary sub-domain
j fluid cell index

Operators and convention

∇2(X) two-dimensional ∆ differential portion
gradient of X X vector

∇3(X) three-dimensional [X] matrix
gradient of X X̄ set

∇ • (X) divergence of vector X
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1 Introduction

Heat exchangers occupy a unique position among thermal engineering applications be-
cause they are widely spread in many industrial fields covering all possible physical sizes
and constitute the key elements to determine the thermal system performances.

The first theoretical efforts on the subject produced analytical treatment of ideal-
ized devices. These works produced a range of global methods, like the Logarithmic
Mean Temperature Difference (LMTD) and the Effectiveness-Number of Transfer Units
(ε-NTU) [1]. However, global methods are based on a number of assumptions (i.e. steady
flow, single-phase flow, constant thermo-physical properties, constant heat transfer co-
efficients, negligible longitudinal wall conduction and so on), which are hardly met in
practical applications. In particular, real heat exchangers often involve two-phase flow
processes, air dehumidification and variable fluid properties.

In addition, the interest for more sophisticated heat exchangers is increasing because
of the need for better overall efficiency and decrease in size and weight. In all varieties of
powered vehicles from automobiles to spacecrafts, the trend for small-size and lightweight
heat exchangers has stimulated the development of heat transfer surfaces much more
compact than in classical devices [2]. In compact devices, some effects neglected by
classical theory can influence the overall behavior. Obviously, a rationally optimised
heat exchanger design and the definition of new surfaces of better characteristics require
the development of reliable tools.

The need for detailed analysis of practical situations demands the employment of
computational techniques, which allow a close representation of reality. Nowadays, a lot
of general-purpose codes for Computational Fluid Dynamics (CFD) are available and can
be applied to heat exchangers: for instance, the FLUENT c© code [3] or the FIDAP c©
code [4], both commercial ones. Despite its versatility, a general-purpose code can be
characterized by some drawbacks if compared with an application-oriented one. In par-
ticular, a general purpose code can require large meshes and unacceptable conputational
time to describe specific details of complex applications. Furthermore, some paramet-
ric studies involve geometric characteristics, which need frequent re-meshing and heavy
post-processing. Finally, general-purpose codes are not usually suitable to produce a
stand-alone module for the analysis of interactions between a heat exchanger and the
whole system: this goal can only be achieved by modifying iteratively the boundary
conditions of the problem.

On the other hand, the application-oriented codes for heat exchangers apply dis-
cretization techniques which, although general in nature, have been fitted to the analysis
of a particular effect. Some examples can be found in literature which consider longi-
tudinal heat conduction [5, 6], nonuniformity of the inlet fluid flow [7] or the mutual
interaction between previous effects [8, 9]. Only a few studies have been devoted to dis-
cussing and developing a general numerical formulation. Recently, a general numerical
approach for heat exchangers, called semiexplicit method for wall temperature linked
equations SEWTLE, has been proposed [10]. The method decouples the calculation of
wall temperature field from that of fluid temperature field and computes the final solu-
tion by means of an iterative procedure which is controlled by continuity of heat flow
between hot-side thermal flux and cold-side one. Since this method employs the thermal
balance as convergence check, a conservative scheme for the discretization of involved
equations, as the Finite Volume Method (FVM), represents the most natural choice and
it was included in the original paper.

In compact heat exchangers, some configurations exist for which the FVM is not
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suitable with regard to wall domain discretization. In these applications, the original
formulation of SEWTLE technique based on FVM is not useful. This work aims at
showing that the SEWTLE approach is more general than original formulation suggests
because it can consider different numerical schemes, allowing more flexible descriptions.

2 Problem definition

Generally, the equations describing a heat exchanger are defined on a computational
domain composed by the fluid region and surrounding wall.

The fluid region can be divided into a set of one-dimensional streams, following the
flow field. The possibility of a mixing region, which receives some fluid streams and
produces average conditions, can be easily included. In this case, each fluid stream is
conceptually identical to each other and there is no need to give up the FVM, which
represents the easiest choice for the discretization of fluid equations.

On the other hand, the wall domain does not demonstrate the same situation. In
fact, a distinction always exists among the separating walls which constitute the heat
exchanger: some of them are in direct contact with fluids of different nature, while some
others are in contact with fluids of the same nature. Referring to convection phenomenon,
the first class of separating walls constitutes the heterogeneous boundary sub-domain
(EBS), while the last class constitutes the homogeneous boundary sub-domain (HBS): for
instance, the case of crossflow plate-fin heat exchanger is reported in Figure 1a. The EBS
is the physical substratum which makes the heat transfer possible between different fluids
(hot-side and cold-side) while the HBS is an optional extension of separating wall, which
has been introduced for enhancing heat transfer surfaces. For crossflow plate-fin heat
exchangers, the EBS is constituted by surfaces oriented in fluid directions while the HBS
couples the previous surfaces by transverse fins. Finally, the EBS is usually characterized
by convective fluxes due to strong temperature gradients while the HBS involves small
non homogenities due to adjacent fluid paths. Since the numerical discretization must be
matched on the physical behavior of the considered portion, the distinction between EBS
and HBS suggests choosing different schemes, if the above discrepancies are considerable.

The difference between the discussed sub-domains becomes evident when a low heat
transfer coefficient characterizes one of the fluids. Within this set of applications, the
cross-flow plate-fin compact heat exchangers with microchannels, used in gas cooling
applications, portray the most extreme example [11]. In this case, the fins for penalized
fluid are increased while the other ones constitute the vertical separating walls, which
identify the microchannels (Figure 1b). The fin surface is mainly responsible for whole
device behavior. When one of the fin roots is characterized by inverse thermal flux
directed towards heated wall, the fin efficiency is drastically reduced and a thermal bridge
exists. The importance of thermal bridges has been shown analytically in simplified
configurations [12] and by means of detailed simulations for a particular fin surface [13].
Unfortunately thermal bridges are influenced by the topology of fluid circuits because
they contribute to determine the final temperature distribution. Detailed simulations
for whole HBS are not practicable and, on the other hand, a reduction of unknown
variables must be performed by preserving the physical meaning. Thermal bridges for
compact heat exchangers with microchannels represent a good opportunity to investigate
the possibilities for optimisation of wall domain discretization within the framework of
the SEWTLE technique.
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3 Governing equations

Let us consider again the compact heat exchanger shown in Figure 1b. The following
considerations can be easily extended to different flow arrangements and geometry.

With a purpose to identify the sub-domains which constitute the calculation domain
Ωc, some definitions are introduced for volumes, as shown in Figure 1c.

Ωc =̇ Ωw ∪ Ωf (1)

Ωw =̇ ΩEBS ∪ ΩHBS

Ωf =̇
Nfp⋃
i=1

Ωi

Where Ωw is the wall domain, which can be divided in ΩEBS for EBS and ΩHBS for
HBS, while Ωf is the fluid domain, which can be divided into Nfp sub-domains Ωi for
each fluid.

Additional definitions are introduced for surfaces, as shown in Figure 1c.

Σf =̇
Nfp⋃
i=1

Σi (2)

Σw =̇ ΣEN ∪ Σf

Σi =̇ ΣEBS
i ∪ ΣHBS

i

Where ΣEN is the portion of wall surface which is in contact with the external envi-
ronment.

For steady conditions and single-phase flow, the energy conservation equations can
be written for each sub-domain.

P ∈ Ωi ;
∫
Σi

(ρihiui) • ndA =
∫
Σi

Ji • ndA +
∫
Ωi

SidV (3)

P ∈ Ωw ;
∫
Ωw

∇3 • (kw∇3Tw)dV = −
Nfp∑
i=1

∫
Σi

Ji • ndA−
∫
ΣEN

JEN • ndA = 0 (4)

where

Ji=̇− ki [∇3Ti]Σi

where Nfp is the number of fluid paths in the heat exchanger. The vector n must be
considered positive if leaving from wall domain or from calculation domain.

Since no energy generation has been supposed inside the wall, the overall thermal
balance involves only the fluid paths.

Nfp∑
i=1

[∫
Σi

(ρihiui) • ndA−
∫
Ωi

SidV
]

+
∫
ΣEN

JEN • ndA = 0 (5)

In addition to the energy conservation equation, the momentum conservation and the
continuity equations must be considered to provide the full Navier-Stokes model needed to
calculate pressure and velocity. Anyway, some simplifying hypotheses can be introduced.
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If the fluid is incompressible, the energy equation is decoupled from the system and can
be solved independently. If the fluid flow is assumed one-dimensional, it is not possible to
calculate the cross flow gradients involved in convective fluxes, which must be calculated
by means of heat transfer coefficients. Finally, if the viscous dissipation can be neglected,
the heat generation in the energy conservation equations can be removed.

P ∈ Ωi ;
∫

AU+AD

(ρihiui) • ndA =
∫
Σi

Ji • ndA (6)

where

Ji=̇αi(Tw − Ti)n

These equations are enough to show the effects of numerical discretization schemes.

4 Boundary conditions

Usually at the fluid inlet, Dirichlet-type conditions are imposed because the fluid states
depend on the behavior of the upstream devices. On the other hand, a Neumann-type
condition is imposed on the portion of the wall surface which is in contact with the
external environment, because the heat exchangers are usually well insulated.

∀i : 1 ≤ i ≤ Nfp ; TU
i = cost ;

∫
ΣEN

JEN • ndA = 0 (7)

The resulting system of equations is composed by a sub-system of ordinary differen-
tial equations (ODEs), one for each fluid path, with Dirichlet-type boundary conditions
and a partial differential equation (PDE) for the separating wall with Neumann-type
boundary condition. When the longitudinal conduction is negligible and the convective
heat transfer coefficients do not depend on the wall temperature, the last PDE becomes a
linear condition for wall temperature which can be expressed as function of the neighbor
fluid temperatures. In this way, the system can be reduced to a pure system of ODEs.
Unfortunately, in some applications [11], the last hypothesis does not hold and it is useful
to include the calculation of wall temperature in the numerical procedure [10]. Since this
calculation is time-consuming, we need to choose properly the cell discretization and the
numerical scheme for the wall.

5 Mesh definition

The mesh construction can be divided in two steps.
The first step replaces the continuos information contained in the exact solution of

differential equations with discrete values at a finite number of locations in the calculation
domain (grid points). Obviously, the best grid choice depends on the nature of the
differential equations. For this reason, in Figure 2, the grid points for wall domain
governed by PDE (square markers) have been separated from the grid points for a generic
fluid sub-domain governed by ODE (arrow markers). For the accuracy of the numerical
results, the relative displacement between wall and fluid grid must be discussed. Three
cases are considered: longitudinal configuration (Figure 2a); transverse configuration
(Figure 2b) and diagonal configuration (Figure 2c). The longitudinal configuration shows
an important drawback because the wall temperature at the intersection between the
general portion for EBS and the corresponding one for HBS is not considered directly
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and must be evaluated by interpolation. In practical applications, this means that the
longitudinal configuration is not suitable for studying the behavior of fins because it does
not consider the fin root temperatures. Between two consecutive fluid grid points (arrow
markers), the temperature profile inside the portion of heat transfer surface must be
approximated by means of wall grid points (square markers). If we compare the ratios
between wall points and fluid ones within a projection of generic fluid cell (Figure 2a,
2b and 2c), we find that the longitudinal configuration is the most penalized (1w/2f),
followed by the diagonal one (2w/2f), while the transverse configuration is the most
convenient (4w/2f). Although the decoupling between fluid and wall conditions increases
the computational time, the transverse configuration will be adopted in the following.

The second step of the mesh definition is constituted by cell discretization, i.e. the
subdivision of the calculation domain in suitable control volumes. Since each numerical
scheme is characterized by preferable distribution of the grid points within the elementary
control volume, the cell discretization arises from the choice of numerical scheme. The
discussion about this choice has been split among the different parts of the calculation
domain, as to demonstrate that the utilization of different numerical schemes is possible
within the framework of the same grid configuration.

5.1 Discretization equations for Ωf

The fluid paths are governed by ODEs characterized by first-order spatial derivative as
main term. In this case, the Finite Volume Method (FVM) is the most natural choice and
the use of a grid point at the fluid inlet and another one at the fluid outlet of the control
volume is recommended. In this way, the first derivative can be efficiently approximated
by the corresponding finite-difference expression linking the well-defined values of the
variable at both ends [14].

If the fluid grid points are located at the edges of control volume, the number of the
fluid cells Ni and their distribution are strictly tied to the grid spatial density. Inside each
control volume, a distinction can be made between the surfaces belonging to different
sub-domains (EBS or HBS).

Let us introduce the discretization definitions for surfaces.

Σi =̇
Ni⋃
j=1

∆(Σi)j (8)

Taking into account this discretization and applying an up-wind technique, the Eq. (6)
produces Nf algebraic conditions for fluid.

∀i, j : 1 ≤ i ≤ Nfp ; 1 ≤ j ≤ Ni

Gicp(T
j
i − T j−1

i ) =
∫
∆(ΣEBS

i )j

Ji,j • ndA +
∫
∆(ΣHBS

i )j

Ji,j • ndA (9)

where

∀i : 1 ≤ i ≤ Nfp ; T 0
i = TU

i = cost ; Nf =
Nfp∑
i=1

Ni

The previous integrals are expressed as the sum of a finite number of terms, which
represent the convective thermal fluxes exchanged through elementary surfaces. For
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clarifying this subdivision, two elementary surfaces are shown in Figure 2d, one for each
wall sub-domain. Within each fluid cell, the identification of an elementary surface can
be done by a local index which depends on the considered wall sub-domain (e for EBS
and h for HBS).

∆(ΣEBS
i )j =̇

8⋃
e=1

∆(ΣEBS
i )j,e (10)

∆(ΣHBS
i )j =̇

4⋃
h=1

∆(ΣHBS
i )j,h

In this way, the discretization equations for fluid reduce to final form.

∀i, j : 1 ≤ i ≤ Nfp ; 1 ≤ j ≤ Ni

Gicp(T
j
i − T j−1

i ) =
8∑

e=1

∆Φi,j,e
EBS +

4∑
h=1

∆Φi,j,h
HBS (11)

where

∆Φi,j,e
EBS =̇

∫
∆(ΣEBS

i )j,e

Ji,j • ndA (12)

∆Φi,j,h
HBS =̇

∫
∆(ΣHBS

i )j,h

Ji,j • ndA

These equations involve the calculation of thermal fluxes which must be consistent
with the profile assumptions for both fluid and wall.

5.2 Discretization equations for ΩEBS

Since the wall domain has been subdivided into two sub-domains, the splitting up of
the wall grid points between them is not trivial. Consistent with the purpose to reduce
the computational effort for HBS, all the wall grid points are supposed as belonging to
EBS. In this way, in the resulting algebraic system there will be no equation which pre-
scribes explicitly the energy conservation for HBS. The last condition will be considered
implicitly when deriving the thermal flux expressions.

Before proceeding with discretization, the governing equations for wall sub-domains
are derived, such as to express the effect of thermal coupling. The Eq. (4) can be split
into two equations, one for each sub-domain.

P ∈ ΩEBS ;
∫
ΩEBS

∇3 • (kw∇3Tw)dV = −
Nfp∑
i=1

∫
ΣEBS

Ji • ndA + ΦXBS = 0 (13)

P ∈ ΩHBS ;
∫
ΩHBS

∇3 • (kw∇3Tw)dV = −
Nfp∑
i=1

∫
ΣHBS

Ji • ndA− ΦXBS = 0 (14)

where
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ΦXBS = −
∫
ΣEBS∩ΣHBS

kw∇3Tw • nwdA

The vector nw must be considered positive if leaving from HBS and, consequently,
entering into EBS. The first equation will be employed to determine the discretization
conditions for wall grid points, while the last one will be involved in the definition of flux
ΦXBS exchanged between HBS and EBS.

Also in this case the FVM is recommended. A central control volume with a value
of temperature defined at its center is adopted because it represents the most suitable
configuration to evaluate second-order partial spatial derivatives. With the transverse
grid configuration, some care must be taken to define half-volumes at the edge of the
plates, such as to satisfy properly the boundary conditions [14]. The ambiguity due to
the definition of wall temperatures at the fluid grid locations can be easily overcome by
interpolation among the values in EBS.

If the wall grid point is located at the center of control volume, the cell discretization
is completely defined (Figure 3a). The EBS can be subdivided into Nw control volumes.

ΩEBS =
Nw∑
l=1

ωl
EBS (15)

Taking into account this discretization, the Eq. (13) produces Nw algebraic conditions
for wall.

∀l : 1 ≤ l ≤ Nw∫
σl

EBS

∇2 • (kw∇2Tw)sdA = ∆Φl
EBS −∆Φl

XBS (16)

where

∆Φl
EBS =

Nfp∑
i=1

∫
σl

EBS

Ji • ndA

∆Φl
XBS = −

∫
σl

EBS∩ΣHBS

kw
∂Tw

∂z
nz • nwdA

nz is the unit vector of z-axis. Remembering the definitions expressed by Eqs. (12)
and considering separately the contribution of each elementary surface to exchanged flux
∆Φl

XBS, the discretization equations for wall reduce to final form.

∀l : 1 ≤ l ≤ Nw∫
σl

EBS

∇2 • (kw∇2Tw)sdA =
∑

(i,j,e)∈Z̄l
EBS

[
∆Φi,j,e

EBS −∆Φi,j,e
XBS

]
(17)

where

Z̄ l
EBS =

{
∀(i, j, e) : ∆(ΣEBS

i )j,e ⊂ σl
EBS

}
The congruence between the wall-side and the fluid-side heat transfer calculations

can be easily verified, taking into account the following equivalence.

Nw∑
l=1

 ∑
(i,j,e)∈Z̄l

EBS

∆Φi,j,e
EBS

 =
Nfp∑
i=1

Ni∑
j=1

8∑
e=1

∆Φi,j,e
EBS (18)
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5.3 Discretization equations for ΩHBS

Although the governing equation is the same one considered previously for EBS, the
choice of numerical approach must guarantee a physical meaningful description by apply-
ing only fin root temperatures. Within the set of integral formulations, two possibilities
are suitable to discretize governing equations for HBS: subdomain approach, which is the
basis of FVM, and variational approach, which is the basis of Finite Element Method
(FEM) for problems which do not involve first-derivative terms [15].

The subdomain approach is a particular case of weighted residual formulation, where
each weighting function is selected as unit over a specific portion of the calculation
domain. Since the integral form of the energy conservation equation can be expressed
in terms of thermal fluxes, the FVM applied to conduction problems must ensure the
continuity of first-order partial spatial derivative at the border of adjacent volumes. A
central control volume with a value of temperature defined at its center represents the
easiest way to reach this goal.

The variational approach involves a functional which must be minimized over each dis-
cretization element according to the calculus of variations. The FEM considers trial tem-
perature profiles which are continuous piecewise smooth functions and identifies among
them the approximate solution which gives the minimum value of the functional. A
surrounded element with values of the temperature defined at the border represents the
easiest choice.

In our case, the discretization cell for generic fin should be characterized by coherent
description of thermal fluxes due to longitudinal conduction and by detailed temperature
profile in transverse direction. As it will be clearer in the following, it is suitable to locate
the temperature values at the middle of root edges, as shown in Figure 3b. The HBS can
be divided into NHBS elements.

ΩHBS =
NHBS∑
m=1

ωm
HBS (19)

Taking into account this discretization and remembering the definitions for thermal
fluxes due to convection, the Eq. (14) can be modified.

∀m : 1 ≤ m ≤ NHBS∫
σm

HBS

s∇2 • (kw∇2Tw)−
Nfp∑
i=1

αi(Tw − Ti)

 dA = 0 (20)

Assuming the thermal conductivity as temperature invariant, the resolution of the
previous equation can be considered equivalent to the minimization of the following
functional.

Π =
∫

σm
HBS

(∇2Tw) • (∇2Tw) +
Nfp∑
i=1

αi

kws
(Tw − Ti)

2

 dA (21)

Let us apply the Euler-Ostrogradskij equation [16].

P ∈ σm
HBS ;

∂2θ

∂x2
+

∂2θ

∂z2
=

Bi

z2
0

θ (22)

where
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Bi = z2
0

∑Nfp

i=1 αi

kws
; θ = Tw −

∑Nfp

i=1 αiTi∑Nfp

i=1 αi

The solution of the Euler-Ostrogradskij equation is the temperature profile which
gives the minimum value of the functional (21). Assuming constant fluid temperatures
for the considered element, an analytical solution can be found according to the classical
theory for extended surface heat transfer [17].

θ(x, z) = C1 exp
(√

Bi
x

z0

)
+ C2 exp

(
−
√

Bi
x

z0

)
+ (23)

C3 exp
(√

Bi
z

z0

)
+ C4 exp

(
−
√

Bi
z

z0

)
The most natural choice for HBS element is the surrounded quadratic element shown

in Figure (3b). This is equivalent to consider four Dirichlet conditions for determining
constants Ci. Since unfortunately these conditions are not linearly independent for func-
tion (23), they do not allow defining uniquely the set of constants. The basic idea is
to ”shift” or ”move” the element, as shown in Figure (3b). In this case, two boundary
conditions belong to Dirichlet-type while the other two to Neumann-type.

θ(0, 0) = Tw,P −
αE,2s

αE,2s + αW,2s

Tf,E,2s −
αW,2s

αE,2s + αW,2s

Tf,W,2s (24)

θ(0, z0) = Tw,P,t −
αE,2s

αE,2s + αW,2s

Tf,E,2s −
αW,2s

αE,2s + αW,2s

Tf,W,2s

∫ z0

0
kw

[
∂θ(x, z)

∂x

]
x=−0.5δx

sdz = kw
Tw,P,t − Tw,S,t + Tw,P − Tw,S

2δx
sz0 (25)

∫ z0

0
kw

[
∂θ(x, z)

∂x

]
x=+0.5δx

sdz = kw
Tw,N,t − Tw,P,t + Tw,N − Tw,P

2δx
sz0

This system of equations can be solved. The first two conditions (24) involve the fin
root temperatures while the last ones (25) ensure a coherent description of the thermal
fluxes due to longitudinal conduction.

The proposed element makes use of different profile assumptions for calculating tem-
perature and its derivative at the border. In this way, an additional advantage arises:
since the conditions (25) force both side fluxes to be equal to FVM-like expressions, the
continuity of fluxes at the border is satisfied and for whole extended surface too. As
will be clearer in the following as regards the solution procedure, this feature is essential
for SEWTLE technique because small discontinuities in thermal fluxes can prevent the
convergence. Fortunately, the finite-volume description of EBS and the finite-element de-
scription of HBS by means of intrinsically conservative elements can be adopted together
with SEWTLE.

The determined temperature profile can be used for calculating thermal fluxes through
elementary surfaces (see Appendix).
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6 Solution of system of discretization equations

The discretization equations for fluid (11) and for wall (17) have been expressed in terms
of scalar variables. In order to adopt a matrix notation, the unknown fluid temperatures
can be rearranged into vector Tf , the upstream temperatures into vector TU and the
unknown wall temperatures into vector Tw. The fluxes exchanged through elementary
surfaces can be expressed as functions of the introduced vectors (see Appendix).

∆Φi,j,h−e
H−E−XBS = [Wi,j,h−e

H−E−XBS]Tw + [Fi,j,h−e
H−E−XBS]Tf + [Ui,j,h−e

H−E−XBS]TU (26)

Introducing previous expressions into original discretization equations produces the
cell contributions.

∀i, j : 1 ≤ i ≤ Nfp ; 1 ≤ j ≤ Ni (27)

Gicp(T
j
i − T j−1

i ) = [F1i,j
f ]Tf + [U1i,j

f ]TU = [Wi,j
f ]Tw + [F2i,j

f ]Tf + [U2i,j
f ]TU

According to FVM technique, the operator of Laplace can be expressed as a linear
combination of unknown wall temperatures, arranged into vector Tw.

∀l : 1 ≤ l ≤ Nw (28)∫
σl

EBS

∇2 • (kw∇2Tw)sdA = [W1l
w]Tw = [W2l

w]Tw + [Fl
w]Tf + [Ul

w]TU

The cell contributions can be assembled into the final system of equations, which
constitutes the skeleton of SEWTLE technique.

Step 1 T̂f = {[F1f ]− [F2f ]}−1
{
[Wf ]T̃w + [U2f ]T

U − [U1f ]T
U
}

(29)

Step 2 T̂w = {[W1w]− [W2w]}−1
{
[Fw]T̂f + [Uw]TU

}
(30)

Step 3

∣∣∣∣∣ΦH(T̂f , T̃w)− ΦC(T̂f , T̃w)

ΦH(T̂f , T̃w)

∣∣∣∣∣ ≤ Tol. (31)

The notation T̃ indicates the values at the previous iteration, while T̂ the new values.
ΦH and ΦC are respectively the hot-side and cold-side approximations of exchanged
thermal power. As previously discussed, the final step requires the adopted numerical
schemes to be intrinsically conservative.

At generic step for resolution of wall field, an iterative procedure can be adopted for
large heat exchangers: the simple Gauss-Seidel procedure is suggested. Since EBS is
composed by surfaces linked together by transverse fins (Figure 1a, 1b), the Gauss-Seidel
surface-by-surface method appears as the most natural choice. In some cases, the reso-
lution system for generic EBS surface is large enough to suggest a further reduction by
adopting the Gauss-Seidel line-by-line method which divides each surface into strips. In
Figure 4 a comparison between the Gauss-Seidel methods is reported for a compact heat
exchanger with microchannels. When a fully three-dimensional description is needed,
the Gauss-Seidel line-by-line method is preferable because it drastically reduces the com-
putation time required by SEWTLE, without increasing the number of iterations which
must be properly managed if thermophysical properties depend on temperature.
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7 Applications and discussion of results

7.1 Single fin

Some applications are discussed to illustrate the advantages of the proposed methodology.
Let us consider a thin plane which transfers heat to a surrounding fluid by convection

and which is held at fixed temperature at the opposing bases. The temperature profile of
the surrounding fluid depends on specific heat capacity and mass flow rate: for simplicity,
a linear temperature profile has been assumed.

The geometric parameters and the operating conditions are reported in Table 1. This
model problem is suitable to analyze the performances of a single smooth fin, according
to classical theory of extended surface heat transfer [17]. The governing equations (22)
have been numerically solved by means of FEM with surrounded triangular elements.
The discretization has been refined in order to produce a mesh independent solution,
which can be considered a reference for following comparisons (Figure 5a). Since the
number of fins in a practical heat exchanger can be very high, a reduction of mesh
density is needed. The simplest choice is to calculate convective thermal power by a linear
temperature profile and then to subdivide it equally between fin roots (Figure 5b). The
proposed methodology employs a shape function for temperature which takes into account
the analytical solution of governing equations (Figure 5c). This strategy improves the
accuracy in the calculation of convective heat transfer and allows properly estimating
thermal fluxes at fin roots.

For the discussion of numerical results, some simplified analytical solutions can be
useful. Let us suppose that αE,2s = αW,2s = α and Tf,E,2s = Tf,W,2s = Tf (x). If the
temperature rise for surrounding fluid can be neglected, the model problem is highly
simplified and the following solution yields:

θ(z) =
θ1 − θ2a

1− a2
exp

(√
Bi

z

z0

)
+

θ2a− θ1a
2

1− a2
exp

(
−
√

Bi
z

z0

)
(32)

where

θ(z) = Tw(z)− Tf (33)

θ1 = Tw(0)− Tf

θ2 = Tw(z0)− Tf

Bi = 2
αz2

0

kws
; a = exp

√
Bi

The ratio between the convective thermal power calculated by exact temperature
profile and that by linear profile can be expressed in the following way:

(
Φ

ΦV

)
∆Tf=0

=

∫ z0
0

∫ x0
0 α(Tw − Tf )dxdz∫ z0

0

∫ x0
0 α(T V

w − Tf )dxdz
=

2√
Bi

exp
√

Bi− 1

exp
√

Bi + 1
< 1 (34)

This ratio has been labeled as ideal law in Figure 6. The linear temperature pro-
file adopted by FVM can be considered a good approximation at small Biot number.
Otherwise the convective heat transfer forces to consider more complex shape functions.
Tables 2, 3, 4 report the results of some numerical simulations performed by varying
Biot number and temperature rise for surrounding fluid. The effect of temperature rise,
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which determines the longitudinal conduction, increases the characteristic ratio if com-
pared with ideal law. (

Φ

ΦV

)
∆Tf=0

<
Φ

ΦV

< 1 (35)

Three simulations are shown in Figure 6. In all cases, the proposed conservative ele-
ment reproduces very well the reference (ΦE ≈ Φ) and reveals its superiority at high Biot
number in comparison with finite volume description which employs the same number of
nodes (ΦV > Φ).

The accuracy is not the only aspect to be considered. The thermal balance of generic
fin can be expressed in the following way:

r + r∗ = 1 (36)

where r is the partition factor and r∗ is its complement

r =

∫ x0
0 kw

[
∂θ(x,z)

∂z

]
z=z0

sdx∫ z0
0

∫ x0
0 α(Tw − Tf )dxdz

r∗ = −
∫ x0
0 kw

[
∂θ(x,z)

∂z

]
z=0

sdx∫ z0
0

∫ x0
0 α(Tw − Tf )dxdz

(37)

When r < 0 or r > 1, a thermal bridge exists, i.e. one of fin roots is characterized
by inverse thermal flux directed towards heated wall. Tables 2, 3, 4 report the partition
factor calculated by proposed conservative FEM. Since FVM subdivides equally the con-
vective thermal power between fin roots, it is characterized by a fixed value of partition
factor r = r∗ = 0.5. On the other hand, the proposed conservative element allows cal-
culating the real distribution of thermal fluxes at any Biot number. Despite of classical
FEM, the adopted boundary conditions for proposed element guarantee the continuity of
thermal power, which can be employed as convergence check into SEWTLE technique.

7.2 Microchannel heat exchanger

The description of fins constitutes an essential step for analyzing the performances of
whole heat exchanger. If a single fin is considered, there is no need to employ numerical
schemes which are intrinsically conservative because only a local convergence criterion
must be satisfied. On the other hand, the analysis of heat exchanger needs some iteration
procedure and a global convergence criterion. Since the SEWTLE technique employs the
transferred thermal power as convergence criterion, no source term for this quantity
can be accepted in the discretized equations. As previously discussed, the proposed
conservative elements satisfy this condition because they ensure exactly the thermal
balance (r + r∗ = 1), while the surrounded elements do it asymptotically (r + r∗ → 1).

A numerical code has been developed for fully-three dimensional description of cross-
flow multi stream compact heat exchangers. The fins can be described by FVM or FEM
with proposed conservative element as to investigate the most suitable technique and
the effect on computational time. Let us consider a microchannel heat exchanger which
cools a given mass flow rate of carbon dioxide by means of a water flow. The geometric
parameters and the operating conditions are reported in Table 1. The microchannels for
carbon dioxide are identified by vertical separating walls, called dividers, which represent
a special kind of extended surfaces (Figure 1b). Table 5 reports the results of some
numerical simulations performed by varying numerical scheme for extended surfaces and
number of fins. The effect of numerical scheme depends on Biot number of considered
surface. Since the Biot number for fins is quite high (Bi = 7.7) while the one for
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dividers is negligible (Bi = 0.1), the calculated thermal power is mainly affected by
numerical scheme selected to describe fins. For low numbers of fins (N = 110÷ 550), an
increase of water-side extended surface increases the relative discrepancy between FVM
and proposed FEM (4.2÷7.9 %). For high numbers of fins (N = 550÷880), an additional
increase reduces the relative discrepancy (7.9÷ 7.5 %) because the performances of heat
exchanger are less influenced by heat transfer surface. All the simulations show that the
proposed FEM requires a greater computational time than FVM because the exponential
function must be evaluated.

In Figure 7, the computational time and calculated thermal power for chosen methods
are reported. This second application shows that the proposed FEM must be considered
to describe every portion of extended surface characterized by high Biot numbers, also if
this requires additional computational effort.

8 Conclusions

1. The mesh definition for calculation of complex heat exchangers has been extensively
discussed. The grid generation and the cell discretization have been considered
distinct processes according to numerical scheme chosen to improve the description.

2. The surrounded quadratic finite element has been modified in order to employ
the analytical temperature profile for fin as shape function. The selected boundary
conditions make the proposed finite element intrinsically conservative. This feature
allows adopting the proposed element together with SEWTLE technique to describe
finned surfaces because it does not compromise the convergence check based on
exchanged thermal power.

3. At generic step for resolution of wall field, it has been demonstrated that the
Gauss-Seidel line-by-line method is faster in the global iterative procedure realised
by SEWTLE.

4. Finally, since FEM allows accurate temperature profile but increases computational
time, it has been demonstrated that FEM must be applied only to finned surfaces
characterized by high Biot numbers.
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Appendix

The algebraic equations due to discretization process have been expressed by means of
thermal fluxes exchanged through elementary surfaces.

Let us consider the generic fluid cell (i, j) shown in Figure 2d and suppose that
αE,2s = αW,2s = α and Tf,E,2s = Tf,W,2s = Tf . The temperature profile defined by
variational principle must be calculated firstly by conditions (24) and (25).

C1 + C2 + C3 + C4 = Tw,P − Tf

C1 + C2 + C3a + 1
a
C4 = Tw,P,t − Tf

C1
1√
b
− C2

√
b = z0

2δx
√

Bi
(Tw,P,t − Tw,S,t + Tw,P − Tw,S)

C1

√
b− C2

1√
b

= z0

2δx
√

Bi
(Tw,N,t − Tw,P,t + Tw,N − Tw,P )

(38)

where

a = exp
(√

Bi
)

; b = exp

(√
Bi

δx

z0

)

This system of equations allows to determine the generic constants Ci and to identify
the element temperature profile. The constants Ci are linear functions of unknown fluid
temperatures Tf , upstream temperatures TU and unknown wall temperatures Tw. The
convective thermal fluxes for HBS elementary surfaces can be expressed as:

∆Φi,j,2
HBS = ∆Φi,j,3

HBS =
∫ z0

0

∫ 0

−0.5δx
αθ(x, z)dxdz (39)

∆Φi,j,1
HBS = ∆Φi,j,4

HBS =
∫ z0

0

∫ 0.5δx

0
αθ(x, z)dxdz (40)

Introducing the element temperature profile, the previous integrals can be evaluated.

∆Φi,j,2−3
HBS = α

z2
0√
Bi

[(√
b− 1

)
C1 +

(
1− 1√

b

)
C2+ (41)

1

2

δx

z0

(a− 1) C3 +
1

2

δx

z0

(
1− 1

a

)
C4

]

∆Φi,j,1−4
HBS = α

z2
0√
Bi

[(
1− 1√

b

)
C1 +

(√
b− 1

)
C2+ (42)

1

2

δx

z0

(a− 1) C3 +
1

2

δx

z0

(
1− 1

a

)
C4

]

The conductive thermal fluxes for XBS elementary surfaces can be expressed in the
same way.

∆Φi,j,1
XBS = ∆Φi,j,4

XBS =
∫ 0.5δx

0

kws

2

[
∂θ(x, z)

∂z

]
z=0

dx (43)

∆Φi,j,2
XBS = ∆Φi,j,3

XBS =
∫ 0

−0.5δx

kws

2

[
∂θ(x, z)

∂z

]
z=0

dx (44)
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∆Φi,j,5
XBS = ∆Φi,j,8

XBS = −
∫ 0.5δx

0

kws

2

[
∂θ(x, z)

∂z

]
z=z0

dx (45)

∆Φi,j,6
XBS = ∆Φi,j,7

XBS = −
∫ 0

−0.5δx

kws

2

[
∂θ(x, z)

∂z

]
z=z0

dx (46)

Introducing the element temperature profile, the previous integral can be evaluated.

∆Φi,j,1−2−3−4
XBS =

kws

4

√
Bi

δx

z0

(C3 − C4) (47)

∆Φi,j,5−6−7−8
XBS =

kws

4

√
Bi

δx

z0

(
aC3 −

1

a
C4

)
(48)

Since previous expressions (41, 42, 47, 48) are linear functions of constants Ci which
are linear functions of grid temperatures, the thermal fluxes ∆Φi,j,h

HBS and ∆Φi,j,e
XBS can be

considered as linear functions of grid temperatures too. On the other hand, the fluxes
∆Φi,j,e

EBS exchanged through EBS elementary surfaces can be easily espressed in the same
way by means of FVM.

Therefore, the following expression yields for any elementary surface.

∆Φi,j,h−e
H−E−XBS = [Wi,j,h−e

H−E−XBS]Tw + [Fi,j,h−e
H−E−XBS]Tf + [Ui,j,h−e

H−E−XBS]TU (49)
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Table 1: Geometric parameters and operating conditions for considered applications.

Geometric parameters Operating conditions
Application 1 Fin length (mm) 16.0 Temp. top root (K) 390

Fin height (mm) 3.2-9.0 Temp. bottom root (K) 340
Fin thichness (mm) 0.1 Temp. fluid inlet (K) 300

Temp. rise (K) 0-33
Conductivity (W/mK) 200

Application 2 Plate length (mm) 250.0 Mass flow CO2 (g/s) 43.0
Plate width (mm) 16.5 Temp. inlet CO2 (K) 351.4
Plate height (mm) 1.65 Pressure CO2 (bar) 76.6
Channel number 11 Mass flow H2O (g/s) 181.1
Channel diam. (mm) 0.79 Temp. inlet H2O (K) 300.0
Fin height (mm) 8.8 Conductivity (W/mK) 200
Fin thickness (mm) 0.1
Num. of plates 12
Num. of passes 3
Plates in 1th pass 5
Plates in 2nd pass 4
Plates in 3rd pass 3
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Table 2: Results of calculations about single fin. The linear temperature profile has been
assumed for fluid and the global temperature rise is ∆Tf = 0.0 K.

Thermal Power (W )

Model (P )
(

P−Q
Q

)
x 100

h (mm) α (W/m2K) Bi Ref.(Q) FVM FEM r FVM FEM
9.0 50 0.41 0.623 0.644 0.623 2.529 +3.37 +0.00
9.0 500 4.05 4.890 6.435 4.887 0.829 +31.60 -0.06
9.0 1000 8.10 8.060 12.870 8.051 0.743 +59.68 -0.11
9.0 1500 12.15 10.433 19.305 10.418 0.717 +85.04 -0.14
9.0 2000 16.20 12.364 25.740 12.341 0.707 +108.19 -0.19
8.4 2000 14.11 12.222 24.024 12.206 0.711 +96.56 -0.13
7.1 2000 10.08 11.781 20.306 11.764 0.727 +72.36 -0.14
5.4 2000 5.83 10.696 15.444 10.692 0.775 +44.39 -0.04
3.2 2000 2.05 7.858 9.152 7.855 1.010 +16.47 -0.04
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Table 3: Results of calculations about single fin. The linear temperature profile has been
assumed for fluid and the global temperature rise is ∆Tf = 16.5 K.

Thermal Power (W )

Model (P )
(

P−Q
Q

)
x 100

h (mm) α (W/m2K) Bi Ref.(Q) FVM FEM r FVM FEM
9.0 50 0.41 0.544 0.562 0.544 2.824 +3.31 +0.00
9.0 500 4.05 4.274 5.618 4.267 0.877 +31.45 -0.16
9.0 1000 8.10 7.045 11.237 7.029 0.778 +59.50 -0.23
9.0 1500 12.15 9.121 16.855 9.096 0.749 +84.79 -0.27
9.0 2000 16.20 10.811 22.473 10.775 0.737 +107.87 -0.33
8.4 2000 14.11 10.676 20.975 10.657 0.742 +96.47 -0.18
7.1 2000 10.08 10.298 17.729 10.271 0.760 +72.16 -0.26
5.4 2000 5.83 9.359 13.484 9.335 0.815 +44.08 -0.26
3.2 2000 2.05 6.866 7.990 6.858 1.084 +16.37 -0.12
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Table 4: Results of calculations about single fin. The linear temperature profile has been
assumed for fluid and the global temperature rise is ∆Tf = 33.0 K.

Thermal Power (W )

Model (P )
(

P−Q
Q

)
x 100

h (mm) α (W/m2K) Bi Ref.(Q) FVM FEM r FVM FEM
9.0 50 0.41 0.465 0.480 0.465 3.219 +3.23 +0.00
9.0 500 4.05 3.657 4.802 3.647 0.941 +31.31 -0.27
9.0 1000 8.10 6.030 9.603 6.008 0.825 +59.25 -0.37
9.0 1500 12.15 7.809 14.405 7.774 0.791 +84.47 -0.45
9.0 2000 16.20 9.258 19.206 9.209 0.777 +107.45 -0.53
8.4 2000 14.11 9.117 17.926 9.108 0.783 +96.62 -0.10
7.1 2000 10.08 8.816 15.151 8.778 0.805 +71.86 -0.43
5.4 2000 5.83 8.011 11.524 7.978 0.869 +43.85 -0.41
3.2 2000 2.05 5.875 6.829 5.861 1.183 +16.24 -0.24
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Table 5: Results of calculations about microchannel heat exchanger.

Fin model / Divider model

N. fins V/V (P ) V/E E/V E/E(Q)
(

P−Q
Q

)
x 100

110 N. iter. 317 317 335 330 -3.94
Time (s) 30 32 34 34 -11.76

Power (W ) 2402 2402 2305 2305 +4.21
220 N. iter. 292 293 318 318 -8.18

Time (s) 54 57 62 66 -18.18
Power (W ) 2624 2624 2469 2469 +6.28

330 N. iter. 282 277 313 310 -9.03
Time (s) 76 79 90 95 -20.00

Power (W ) 2791 2790 2604 2604 +7.18
440 N. iter. 273 272 318 311 -12.22

Time (s) 96 101 119 122 -21.31
Power (W ) 2923 2923 2717 2717 +7.58

550 N. iter. 277 274 325 319 -13.17
Time (s) 119 125 151 155 -23.23

Power (W ) 3033 3033 2812 2812 +7.86
660 N. iter. 287 280 336 332 -13.55

Time (s) 149 150 185 189 -21.16
Power (W ) 3123 3123 2897 2896 +7.84

770 N. iter. 299 292 351 346 -13.58
Time (s) 175 181 223 230 -23.91

Power (W ) 3200 3200 2971 2971 +7.71
880 N. iter. 313 306 376 366 -14.48

Time (s) 208 214 270 277 -24.91
Power (W ) 3266 3266 3037 3037 +7.54
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Figure 1: Visualization of conventional terminology: difference between EBS and HBS,
between fins and dividers and between global calculation domains Ω and discretized
domains ω. (a) Crossflow plate-fin heat exchanger. (b) Crossflow plate-fin heat exchanger
with microchannels. (c) Considered discretization.
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Figure 2: Relative arrangement between wall grid (square markers) and fluid grid (arrow
markers): (a) longitudinal configuration; (b) transverse configuration and (c) diagonal
configuration. All configurations show the projection of fluid cell adopted in calculations
and the ratio between wall points and fluid ones (w/f). (d) Numeration of elementary
surfaces for fluid cell with transverse configuration.

28



Figure 3: Schematic view of the EBS cell (a) and HBS cell (b) surrounded by fluid paths
involved in the convective heat transfer. In the HBS cell, the comparison between the
proposed element and classical one is also reported.
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Figure 4: Comparison between GSSS (Gauss-Seidel surface-by-surface) and GSLL
(Gauss-Seidel line-by-line) method within a SEWTLE technique with control tolerance
of 0.1 % on thermal power for a compact heat exchanger with microchannels.
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Figure 5: Fin temperature profiles described by different models: (a) high resolution
FEM assumed as reference; (b) FVM description based on temperatures at fin roots and
(c) intrinsically conservative FEM based on temperatures at fin roots.
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Figure 6: Results of calculations about single fin. The thermal powers calculated by the
proposed methodology and the reference are reported for different temperature rises of
fluid. The ratio TOUT /TIN helps to distinguish the results of simulations.
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Figure 7: Results of calculations about microchannel heat exchanger. The FVM requires
less calculation time but underestimates the exchanged thermal power.
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