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Quantum interference in nanometric devices: Ballistic transport across
arrays of T-shaped quantum wires

Guido Goldoni,a) Fausto Rossi, and Elisa Molinari
Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica, Universita` di Modena,
I-41100 Modena, Italy

~Received 20 May 1997; accepted for publication 16 July 1997!

We propose that recently realized T-shaped semiconductor quantum wires~T wires! could be
exploited as three-terminal quantum interference devices. T wires are formed by intersecting two
quantum wells~QWs!. By use of a scattering matrix approach and Landauer–Bu¨ttiker theory, we
calculate the conductance for ballistic transport in the parent QWs and across the wire region as a
function of the injection energy. We show that different conductance profiles can be selected by
tailoring the widths of the QWs and/or by combining more wires on the scale of the Fermi
wavelength. Finally, we discuss the possibility of obtaining spin-dependent conductance of ballistic
holes in the same structures. ©1997 American Institute of Physics.@S0003-6951~97!04237-X#

T-shaped quantum wires~T wires! are semiconductor
structures where quasi-one-dimensional~q1D! confinement
is achieved at the intersection of two quantum wells~QWs!.1

T wires are obtained by first growing a GaAs/AlxGa12xAs
superlattice~labeled QW1! on a~001! substrate; after cleav-
age, a GaAs QW~labeled QW2! is grown over the exposed
~110! surface, resulting in an array of T-shaped regions
where electron and hole wave functions can be confined on a
scale of a few~5–10! nm. Up to now, intensive investigation
of these structures has focused on optical properties, and it
has demonstrated strong one-dimensional quantum confine-
ment of the lowest excitonic transitions2 as well as evidence
of laser emission.3 Transport experiments along the wires
were first obtained only very recently.4

Different from wires obtained by other techniques, such
as V-shaped or deep-etched wires,5 the section of a T wire
has an open geometry. Therefore, in addition to transport
along the quantum wire in q1D bound states, parallel trans-
port in the constituent QWs and across the wire region be-
comes possible if the two-dimensional~2D! continuum is
contacted~for example through the overgrown layer!. In ad-
dition to q1D bound states, which fall below the 2D con-
tinuum edge of the parent QWs, q1D resonant states exist
within the 2D continuum.6 The injected carriers that travel
ballistically over the wire region~nm scale! will show a
strong energy dependent transmission as a consequence of
quantum interference effects induced either by resonant q1D
states or by the interplay between the propagating modes of
the parent QWs.

In semiconductors, quantum interference effects are nor-
mally achieved in channels defined by gating an underlying
2D high mobility electron gas with electrostatic potentials.
Structures of this type with T-shaped geometries have been
proposed to achieve device functions;7 in this case, the con-
ductance along a channel can be controlled by modulating
the length of a lateral, closed arm~stub!.8,9 Instead, in the
present T wires the lateral arm~QW1! is open, and the con-
ductance is controlled by modulating the chemical potential
~i.e., the injection energy!. As we will show, different shapes

of the conductance as a function of energy can be selected by
tailoring the widths of the QWs and/or by combining more
wires. In the proposed experiment with T wires, the interfer-
ence patterns should be stable in a much larger temperature
range than in previously proposed structures, due to the nm
size confinement and the large intersubband splittings in the
parent QWs~of the order of 0.1 eV!; furthermore, the con-
finement is provided by high-quality interfaces, as demon-
strated by the small excitonic linedwidths.2

In the following we calculate the ballistic conductance
for parallel transport in the QWs through the T-wire inter-
section. Assuming perfect barrier confinement in the parent
QWs, the calculation of the scattering matrix10 presents no
conceptual difficulty. We divide the sample into four regions
~see inset of Fig. 1!; in each region the wave function of
energyE is written as a linear combination of the propagat-
ing and evanescent modes of the corresponding QW. Indi-
cating withE1,n and f 1,n(x) the subband energies and enve-
lope functions of QW1, and withE2,n and f 2,n(y) those of
QW2, we have, for zero in-wire momentum,

a!Electronic mail: goldoni@unimo.it

FIG. 1. Two-terminal conductance vs injection energy for selected values of
a, according to the labels. The relevant geometric parameters are defined in
the inset.
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where the wave vectorsjn , hn are given byjn
25(e2n2)

3(p/L2)2 andhn
25(e2n2/a2)(p/L2)2. Here,e5E/E2,1 is

the energy in units of the lowest mode of QW2,E2,1

5\2p2/2mL2
2, anda5L1 /L2 . The two equations obtained

at each interface by matching bothc and its normal deriva-
tive are projected over thenth mode~i.e., multiplied by the
appropriate sine or cosine function and integrated over the
interface! and finally summed and subtracted to obtain two
new equations, relating either to the incoming or the outgo-
ing wave coefficient through that interface to the coefficients
of the inside regionD. Including N modes11 in the sums in
~1a!–~1d!, and defining the vectora.5(a1

. ,a2
. ,...) and

analogously for the other coefficients, we obtain a set of
linear equations of the form

a:5d61P6
•e, ~2a!

b"5V6
•d11W6

•d21e, ~2b!

c"5d61Q6
•e, ~2c!

where the eightN3N matricesP6, Q6, V6, andW6 ensue
from the matching conditions and depend on the geometrical
parameters and on the energy. By defining the incoming and
outgoing statesu in&5(a.,b.,c.) and uout&5(a,,b,,c,),
and appropriate 3N33N matricesF, G in terms of the eight
matrices above, Eqs.~2a!–~2c! can be rewritten as

uout&5F~e,d1,d2!T, u in&5G~e,d1,d2!T. ~3!

Combining Eqs.~3! we finally get

uout&5F•G21u in&5Su in&. ~4!

Equation ~4! defines the scattering matrixS, which at the
same time gives the bound state (e,1),12 satisfying the
equation det(S21)50, and the scattering states (e.1).

Since the scattering matrix is a property of the potential
at a given energye, it allows one to calculate all the trans-
mission coefficients, say, from moden in arm A to modem
in arm C, by the same matrix, choosing the appropriate state
uin&; to keep on with the example of A→C transmission, the
transmission coefficient istn,m

AC 5ucn
,/am

.u2jn /jm . In the fol-
lowing we shall concentrate on straight~i.e., A→C! trans-
mission along QW2. We consider a configuration in which
arm B is kept at the same potential of arm C (VB5VC).
Therefore, no carrier is injected into the structure through

arm B, andb.50.13 Using Eq.~2b!, we can eliminate thee
coefficients from the equations and we can rewrite Eqs.~2a!
and ~2c! as

S c,

c. D5TS a.

a, D , ~5!

whereT is the 2N32N A→C transfer matrix. Note that, if
VB.VC, a case which we shall not investigate here, a cer-
tain amount of charge would be incoherently injected into
the system through arm B, and the transfer matrix would
then contain an incoherent part which, in a three-terminal
device, was discussed by Bu¨ttiker.14 In Ref. 14 the ratio be-
tween the coherent and incoherent parts of a two-terminal
conductance is modulated through the tunneling probability
into a third, randomizing terminal. The present T-shaped
wires with VB.VC might in fact be a system to implement
such an experiment, with the tunneling probability into arm
B being adjusted through the injection energy.

Going back to theVB5VC case, the two-terminal
Landauer–Bu¨ttiker ~LB! conductance15 is

g5
2e2

h (
i , j

t i , j
AC . ~6!

In Fig. 1 we show the dimensionless conductanceg/2e2/h as
a function of the energye and also for selected values of the
parametera. We recognize two types of behavior: for
samples in which the width of side arm, QW1, matches an
integer number of semiperiods of the incoming wave~a
50.5, 1, 1.5, left panels! there are strong reflection
resonances16 at the energies of resonant q1D states localized
at the intersection; when these states appear, their energy is
at or slightly below the onset of a new propagating state
along QW2 which, in the present units, is atn251,4,9,... .
When the matching condition is not fulfilled~a50.75, 1.25,
1.75, right panels!, the conductance shows, on top of a regu-
lar increase, square-wave behavior, with sudden drops and
rises when new propagating channels open in QW1 or QW2,
i.e., the current coming from arm A flows into the side arm B
or into the straight arm C, depending on the energy.

If successive wires in an array are at a distance larger
than the coherence length, incoherent scattering will redis-
tribute carriers homogeneously among the propagating
modes; therefore, the conductance ofN incoherently coupled
wires isGN, apart from possible broadening due to fluctua-
tions in the QW widths on the monolayer scale. This would
not wash out the interference patterns completely, however,
as long as the intersubband splittings are large. Conversely,
the LB conductance of a single wire can be changed by cou-
pling more wires on the scale of the Fermi wavelength; this
possibility is a distinct advantage of structures grown by ep-
itaxy. As an example, we consider two coupled T wires with
a barrier of widthLd between two QW1s~see inset in Fig. 2!.
The transmission coefficient of the whole structure can be
calculated easily since the totalT matrix is the product of the
T matrices of the isolated wires. In Fig. 2~a! we compare, for
the casea50.5, the conductance of a single wire with the
conductance of two coupled wires forLb5L1 and Lb

52L1 . In the first case, the conductance shows a double
resonance, which is a fingerprint of the bonding and anti-
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bonding combinations of the resonant q1D state of the iso-
lated wires. But in the second case, the resonance is com-
pletely suppressed. In Fig. 2~b! we compare, for the casea
51.2, the single and coupled wire conductance withLb

5L1/2 andLb52L1/3. The coupled wire case shows sharper
modulations in comparison to the isolated wire case.

Finally we consider the possibility of transmitting holes,
instead of conduction electrons, through a T wire. The va-
lence subbands of a T wire are strongly spin split at finite
in-wire wave vectors.6 This can be understood in the follow-
ing way. If the parent QWs of a T wire were isolated, the
spin-degenerate valence subbands would cross at some finite
in-wire wave vector because of the different effective masses
for ~001!- and~110!-grown wells. In each QW valence states
can be characterized by the component of the total angular
momentumJ53/2, theJ quantization axis being along the
growth direction.17 Therefore, a state with a well defined
componentJz , say,Jz53/2 in one QW, is a mixture ofJz

563/2,61/2 states in the other QW; as a consequence, the
strong spin-orbit coupling of valence states, by coupling
heavy hole (Jz563/2! and light hole (Jz561/2! states, re-
moves the degeneracy and results in a large spin splitting.6

Therefore, if holes cross the wire region having a finite com-
ponent of the wave vector along the wire axis, the transmit-
ted current at selected energies could be strongly spin polar-
ized.

In summary, we have proposed a nanostructure interfer-
ence device based on cleaved-edge-overgrown T-shaped
quantum wires, and have shown that its conductance profile
can be tailored by chosing appropriate widths of the constitu-
ent QWs and of the barriers between adjacent structures.
Possible applications as spin-selective devices for holes were
also proposed, but they will require further theoretical and
experimental investigation.
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FIG. 2. Two-terminal conductance vs injection energy for a single wire and
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of Lb . The relevant geometric parameters are defined in the inset.
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