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Addition energies in semiconductor quantum dots: Role
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Istituto Nazionale per la Fisica della Materia (INFM), and Dipartimento di Fisica, Universita` di Modena,
via Campi 213/A, I-41100 Modena, Italy
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We show that the addition spectra of semiconductor quantum dots in the presence of magnetic field
can be studied through a theoretical scheme that allows an accurate and practical treatment of the
single-particle states and electron–electron interaction up to large numbers of electrons. The
calculated addition spectra exhibit the typical structures of Hund-like shell filling, and account for
recent experimental findings. A full three-dimensional description of Coulomb interaction is found
to be essential for predicting the conductance characteristics of few-electron semiconductor
structures. ©1998 American Institute of Physics.@S0003-6951~98!03608-0#

In semiconductor quantum dots~QDs! Coulomb-
correlation effects are expected to become more and more
pronounced as their spatial confinement is increased. This
has been so far one of the reasons of interest for such sys-
tems: they display the rich shell structure typical of atomic
physics, but in addition they offer the possibility to tailor the
confining potential and to vary the electron occupation by
adjusting external parameters,1 thus allowing direct investi-
gation of fundamental properties of charge correlation.

At the same time, however, these results imply that
many-body effects cannot be neglected in the theoretical de-
scription of QDs, and may be very relevant for predictions
on their possible applications, for example, in
semiconductor-based few-electron devices. While capaci-
tance and tunneling spectroscopy experiments are becoming
available for different dot structures,2–6 it is still an open and
difficult problem to devise theoretical approaches allowing to
include many-body effects in calculations for realistic sys-
tems. Exact calculations7 are necessarily limited to very few
electrons; state-of-the-art QD structures instead involve sev-
eral electrons~of the order of ten or hundred!, therefore in
general out of reach for these methods.

In this letter we propose an accurate and effective theo-
retical scheme that includes electron–electron interaction
and can be applied to systems up to a large number of elec-
trons. This approach can treat arbitrary three-dimensional
~3D! confinement potentials, and hence deal with realistic
QD structures also in the presence of external magnetic field.
We apply this scheme to structures that were investigated in
a recent experiment. The results are in good quantitative
agreement with the observed spectra,5 and provide a trans-
parent interpretation of their physical origin.

A key quantity that characterizes transport into a QD is
the addition energy, i.e., the energyA(N) required in order
to place an extra electron into a dot that is initially occupied
by N21 particles. Such quantity, analogous to electron af-
finity in atomic physics, can be measured experimentally as a
function ofN. A systematic experiment on disk-shaped dots5

has shown that the voltage incrementDA between successive

single-electron tunneling processes—i.e., between two suc-
cessive maxima in the conductance—peaks at ‘‘magic’’ val-
ues ofN (N52,6,12), consistent with the filling of complete
shells calculated8 for a dot of the same symmetry. Moreover,
the experimental analysis showed that unusually large values
of DA also occur for values ofN corresponding to half-shell
filling ( N54,9). The origin of these features, reminiscent of
Hund’s rule in atomic physics,5,9,10 is intimately related to
electron–electron interaction; therefore their quantitative
evaluation is a challenge for any theoretical analysis of ad-
dition spectra in QDs.

Our description is based on an accurate treatment of the
single-particle Hamiltonian and on the inclusion of Coulomb
correlation according to first-order perturbation theory: as-
suming the many-particle ground state to be described by a
single Slater determinant, the total energy of the full inter-
acting Hamiltonian is

E~N!5(
as

ea^n̂as&1
1

2 (
abs

@Uab^n̂b2s&

1~Uab2Jab!^n̂bs&#^n̂as&, ~1!

where^n̂as& is the orbital occupation number,a denoting the
set of radial and angular quantum numbers (n,m), ands the
spin value. According to Eq.~1!, the evaluation of the ener-
gies for the various many-electron states in the dot requires
only the knowledge of the Coulomb and exchange matrix
elements

Uab5e2E E ufa~r !u2ufb~r 8!u2

kur2r 8u
drdr 8, ~2!

Jab5e2E E fa* ~r !fb* ~r 8!fa~r 8!fb~r !

kur2r 8u
drdr 8. ~3!

Here k is the dielectric constant andfa are single-particle
real-space eigenstates of the dot in the presence of the ap-
plied magnetic field.

The important feature of the present scheme is thatUab ,
Jab are calculated directly, contrary to other common ap-
proaches where Coulomb and exchange integrals are taken as
input parameters.11 Thus, many-body effects are taken intoa!Electronic mail: rossi@unimo.it
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account through ~1!, and quantum-confinement effects
through the single-particle ingredients, energiesea and wave
functionsfa ; the latter enter only in the calculation of Cou-
lomb and exchange matrix elements. This has the advantage
that realistic confining potentials~e.g., extracted from high-
resolution transmission electron microscope~TEM! micro-
graphs! and an external magnetic field can be included quite
easily by chosing the appropriate single-particle Hamil-
tonian, as is now commonly done for the calculation of op-
tical properties.12

Note that previous approaches have modeled the QD
confinement in terms of a purely two-dimensional~2D! co-
ordinate space.7,9,10As a matter of fact, in most state-of-the-
art QD structures the confinement is far from being 2D: for
example, in the gated dots of Ref. 5 the typical confinement
width in the growth directionz ~of the order of 10 nm! is
comparable with the typical extension of the carrier ground
state in the lateral-confinement (xy) plane. Therefore, in our
calculations we fully retain the 3D nature of the problem and
mimic the dots of Ref. 5 by assuming a finite-barrier
quantum-well potential alongz and a parabolic potential in
(xy). Note that the assumption of parabolic potentials re-
flects the experimental indications due to the specific sample
structure and is not required by our model. Within the usual
envelope-function approximation, the only input parameters
are the electron effective masses~m!50.065m0 in the dot
and m!50.079m0 in the barrier!, the dielectric constant in
the dot (k512.98), and the quantum-well height and width
~V05200 meV andL512 nm!.

Our results for the addition-energy variations,DA(N)
5A(N11)2A(N), are displayed in Fig. 1 as a function of
the electron numberN for different dots, characterized by
different in-plane confinement energies\v0 . Here,A(N) is
obtained asE(N)2E(N21), whereE(N) is the ground-
state energy in Eq.~1!. As we can see,DA(N) exhibits peaks
corresponding both to complete and half-shell filling, and is
in excellent agreement with experiments in Ref. 5.

The origin of this result is in the delicate interplay be-
tween single-particle contributions and electron–electron re-
pulsion, which according to Eq.~1! defines the ground-state

configuration: the single-particle term favors complete shell
filling, while the repulsion among parallel-spin electrons,
smaller than the repulsion among opposite-spin ones, makes
the configurations with maximum total spin energetically fa-
vored. Hund’s rule is therefore already contained in Eq.~1!
and clearly explains the physical origin of the half-shell-
filling structures. In fact, adding an electron to a half-filled
shell forces the double occupancy of a level: consequently,
DA is raised by the dominant Coulomb repulsionUaa be-
tween opposite-spin electrons on the same level.

Ground-state configurations and filling rules change
when a magnetic field is applied. It affects both single-
particle energies andU and J integrals through the induced
changes in the wave function localization. For sufficiently
large values, the magnetic field energetically favors configu-
rations with higher total angular quantum numberm. This is
the physical origin of the wiggles in theA(N) vs B plot
shown in Fig. 2 and observed in the experiments of Ref. 5.

Figure 3 shows the Coulomb and exchange integrals vs
B for the first states, obtained for\v057.5 meV. For com-
parison, we also show the corresponding quantities calcu-
lated within the simplified 2D model. We clearly see thatU
integrals describing the interaction between opposite-spin
electrons are smaller by a few meV in the case of 3D con-
finement, while the differences in the interaction between
parallel-spin electrons are much smaller. This affects dra-
matically the energy balance which determines ground-state
configurations, thus clearly showing the inadequacy of a pure
2D description of state-of-the-art QD structures.

The proposed approach shares with the Hartree–Fock
~HF! method theansatzfor total energy, expressed as the
average of the exact Hamiltonian over a single Slater deter-
minant; the variational prescription—allowing the construc-
tion of optimal single-particle orbitals through self-
consistency—is not contained in our approach. We notice,
however, that in the present case the results of perturbation
theory are already much closer to theexact results than in
previous 2D calculations:13 this is due to the fact that Cou-

FIG. 1. Calculated addition-energy incrementDA(N) vs electron numberN
for different QD structures characterized by a parabolic potential in thexy
plane~confining energy\v0! and by a finite-barrier quantum-well potential
along thez direction. FIG. 2. Addition energyA(N) vs magnetic field calculated for a realistic

~3D! QD structure with confinement energy\v057.5 meV and for different
electron numbers. Ground-state configurations, varying withB, are also
shown.
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lomb integrals are artificially enhanced in 2D with respect to
the realistic 3D description. Hence the role of self-
consistency and the approximations of HF theory are much
less relevant in 3D. Finally, we point out that the present
formalism can be reduced to a Hubbard model description:
expression~1! is in fact formally equivalent to the exact so-
lution of a single-site Hubbard Hamiltonian. This is impor-
tant in view of a direct extension of this approach to coupled
dots.

In summary, we have proposed an effective theoretical
approach for the analysis of addition spectra of quantum dots
by combining a careful 3D description of electron–electron
interaction with the realistic treatment of single-particle
properties. By construction, the proposed scheme is ideally

suited for applications to dots with confinement potentials of
arbitrary shapes and symmetries. A full 3D description of
Coulomb interaction is found to be crucial in determining
single-electron conductance properties of realistic nanostruc-
tures.
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FIG. 3. Comparison between Coulomb and exchange integralsUab andJab

calculated assuming a simple two-dimensional parabolic model~2D! and the
corresponding three-dimensional model~3D!. a and b denote the sets of
radial and angular quantum numbers (n,m) for the two single-particle states
involved in the interaction.
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