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Quantum Information in Semiconductors: Noiseless Encoding in a Quantum-Dot Array
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A potential implementation of quantum-computation schemes in semiconductor-based structures is
proposed. In particular, an array of quantum dots is shown to be an ideal quantum register for a
noiseless information encoding. In addition to the suppression of phase-breaking processes in quantum
dots due to the well-known phonon bottleneck, we show that a proper quantum encoding allows one to
realize a decoherence-free evolution on a time scale long compared to the femtosecond scale of modern
ultrafast laser technology. This result might open the way to the realization of semiconductor-based
quantum processors. [S0031-9007(98)07746-1]

PACS numbers: 03.67.Lx, 03.65.Fd, 73.20.Dx, 89.70.+c

The physical implementation of any computing device
taking actual advantage from the additional power pro-
vided by quantum theory [1] is extremely demanding. In
principle one should be able to perform, on a system with
a well-defined state space, long coherent quantum ma-
nipulations (gating), precise quantum-state synthesis, and
detection as well. Ever since the very beginning it has
been recognized that the major obstacle arises from the
unavoidable open character of any realistic quantum sys-
tem. The coupling with external (i.e., noncomputational)
degrees of freedom spoils the unitary structure of quan-
tum evolution, which is the crucial ingredient in quantum
computation (QC). This is the well-known decoherence
problem [2]. The possibility to partly overcome such a
difficulty by means of theactive stabilizationpursued by
quantum error correction is a definite success of theoreti-
cal QC [3]. Nevertheless, mostly due to the necessity of
low decoherence rates, the up-to-date proposals for ex-
perimental realizations of quantum processors are based
on quantum optics as well as atomic and molecular sys-
tems [1]. Indeed, the extremely advanced technology
in these fields allows for the manipulations required in
simple QC’s. It is, however, generally believed that fu-
ture applications, if any, of quantum information may
hardly be realized in terms of such systems, which do
not permit the large-scale integration of existing micro-
electronics technology. In contrast, in spite of the serious
difficulties related to the “fast” decoherence times, a solid-
state implementation of QC seems to be the only way to
benefit synergetically from the recent progress in ultrafast
optoelectronics [4] as well as in nanostructure fabrication
and characterization [5]. To this end, the primary goal
is to design quantum structures and encoding strategies
characterized by “long” decoherence times, compared to
the typical time scale of gating. The first well-defined
semiconductor-based proposal of QC [6] relies on spin dy-
namics in quantum dots (QD); it exploits the low decoher-
ence of spin degrees of freedom in comparison to the one
of charge excitations. However, the proposed manipu-

lation schemes are based on spin dynamics control that
would allow a number of gate operations within the deco-
herence time smaller than the one desired by theoretical
QC. On the other hand gating of charge excitations could
be envisioned by resorting topresentultrafast laser tech-
nology, which is now able to generate electron-hole quan-
tum states on a subpicosecond time scale and to perform
on such states a variety of coherent-carrier-control opera-
tions [4]. More specifically, this suggests the idea of de-
signing fully optical gating schemes based on interqubit
coupling mechanisms as, e.g., optical nonlinearities and
dipole-dipole coupling. In this respect decoherence times
on nano/microsecond scales can be regarded as long ones.

Following this spirit, in this Letter we investigate
a semiconductor-based implementation of the noiseless
quantum encoding proposed in [7]. The idea is that, in
the presence of a sort of “coherent” environmental noise,
one can identify states that are hardly corrupted rather
than states that can be easily corrected. More specifi-
cally, we show that by choosing as quantum register
an array of quantum dots [5] and by preparing the QD
system in proper multidot quantum states, it is possible
to strongly suppress electron-phonon scattering, which is
known to be the primary source of decoherence in semi-
conductors [8]. The physical system under investigation
consists of an array ofN identical quantum dots, whose
Hamiltonian can be schematically written asH ­ Hc 1

Hp 1 Hcp. The termHc ­
P

i Hi
c ­

P
ia eaa

y
iaaia de-

scribes the noninteracting carrier system,i and a being,
respectively, the QD index and energy level, whileHp ­P

lq h̄vlqb
y
lqblq is the free-phonon Hamiltonian,l and

q denoting, respectively, the phonon mode and wave vec-
tor. The last term accounts for the coupling of the car-
riers in the QD array with the different phonon modes
of the crystal:Hcp ­

P
ia,i0a0;lqfgia,i0a0;lqa

y
iablqai0a0 1

H.c.g. Here,gia,i0a0;lq ­ g̃lq
R

f
p
iasrdeiq?rfi0a0srd dr are

the matrix elements of the phonon potential between the
quasi-0D statesia and i0a0. The explicit form of the
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coupling constant̃glq depends on the particular phonon
model, e.g., acoustic, optical, etc. We will assume that
only the two lowest energy levels in each dot (a ­ 0, 1)
will play a role in the quantum-computation dynamics [9].
The dynamics of this low-energy sector coupled with the
phonon modes of the crystal is therefore mapped onto the
one ofN two-level systems (qubits) linearly coupled with
the bosonic degrees of freedomlq, the latter represent-
ing the decoherence-inducing environment of the com-
putational (i.e., carrier) subsystem. To describe the so
obtainedN-qubit register it is then convenient to adopt the
spin formalism [10]:hsh

i jN
i­1 sh ­ 6, zd will denote the

Pauli matrices spanningN local sls2d algebras. It is also
convenient to introduce theglobal sls2d algebra generated
by the collective spin operatorSh ­

P
i s

h
i , sh ­ 6, zd.

We will assume no direct phonon coupling between dif-
ferent qubits, i.e.,gia,i0a0;lq ­ 0 for i fi i0; in order to
obtain a closed-form equation for the reduced density ma-
trix r describing our qubit array, one can trace out the
phonon degrees of freedom by means of the standard
Born-Markov approximation [11]. The resulting “master
equation” is of the formr ­ L srd. Here, the Liouvil-
lian superoperatorL is given by the sum of two con-
tributions: a unitary partLu, which preserves quantum
coherence, plus a dissipative oneLd , describing irre-
versible decoherence-dissipation processes. To better un-
derstand such separation, it is useful to introduce the
Hermitian matrixD

s6d
ii0 (G

s6d
ii0 d as the real (imaginary) part

of the matrix

L
s6d
ii0 ­

X
lq

gi,lqḡi0,lq

E 2 h̄vlq 2 i01
fnlq 1 us7dg , (1)

wheregi,lq ; gi1,i0,lq andE ­ e1 2 e0. Here,nlq and
u are, respectively, the Bose thermal distribution and the
step function. As we will see, this matrix encodes
the spatial correlations of the quantum register defining
the effective topologythat can be probed by the phononic
environment. In particular, the spectral data ofLs6d con-
tain information about the existence ofsubdecoherent
subspaces [11]. More specifically, one findsLusrd ­
iyh̄fr, Hc 1 dHcg, where the phonon-induced renormal-
ization dHc to our free-qubit HamiltonianHc (which in
our spin formalism readsHc ­ ESz) is given bydHc ­P

h­6

PN
ii0­1 D

shd
ii0 s

2h
i s

h
i0 . These contributions are usu-

ally referred to as the Lamb-shift term. In contrast, the
dissipative (nonunitary) component of the Liouvillian is
given by Ldsrd ­

P
h­6 L

h
d srd. where the emission

(h ­ 2) and the absorption (h ­ 1) terms can be cast
into the compact form

L
h

d srd ­
1
h̄

X
ii0,h­6

G
shd
ii0 sfsh

i r, s
2h
i0 g 1 fsh

i , rs
2h
i0 gd .

(2)

The diagonal (i ­ i0) terms describe the usual carrier-
phonon scattering processes in a single quantum dot, as

obtained from Fermi’s golden rule; in contrast, the off-
diagonal elements are not positive-definite and describe
collective coupling effects, which play a crucial role in
the realization of a decoherence-free evolution [7].

In order to study the corruption of the information en-
coded in the initialpure preparationr ­ jcl kcj, it is
useful to introduce the following quantity: Thefidelity
Fstd ; kcjrstd jcl. We define the first order decoherence
time (rate)t1 (t21

1 ) in terms of the short-time expansion
Fstd ­ 1 2 tyst1d 1 ost2d. If jcl is a total spin eigen-
state, it is easy to check that̄ht

21
1 fjclg ­ kcjHeffjcl,

where the effective HamiltonianHeff has the same struc-
ture of the Lamb-shift termdHc with G replacingD [see
Eq. (1)]. Notice that (i)t1 $ 0 (i.e.,Heff is a positive op-
erator); (ii) in this (first-order) decoherence time the Lamb-
shift terms donot play any role.

To exemplify the collective nature of the decoherence
process let us consider the decoherence rate for the
states jcD l ; ≠si,i0d[D sj01l 2 j10ldii0 (here, D is a
dimer partition of the qubit array) that aresinglets of
the global sls2d algebra [12]. In this case one gets
t

21
1 ­

P
h­6s2thd21fD sGshdd, whereh̄t21

h ­ NG
shd
11 is

the (maximal) decoherence rate forN uncorrelated qubits
and

fD sGd ­ 1 2
2
N

Re
X

si,i0d[D

Gii0yG11 . (3)

The quantityfD contains the information about the de-
gree of multiqubit correlation in the decay process. Sup-
pose now that one is able to design our qubit array in
such a way thatfD sGd ­ 0 then 1yt1 ­ 0 that means
that our coding statejcl is on a short time scale unaf-
fected by decoherence; moreover ifjcl is annihilated by
Lu as well it turns out to benoiseless:it does not suf-
fer any evolution at all. Generally speaking there are two
extreme cases in whichHeff is easily diagonalized. (i) If
Gshd ~ I, thenHeff has a trivial kernel and the qubits de-
cohere independently: no subdecoherent encoding exists.
In this limit the environment “sees” a register endowed
with a discrete topology. The same is true for an initial
unentangledpreparation (i.e., simple tensor product). (ii)
G

s6d
ii0 ­ const the register gets “pointlike.” In this case,

the effective Hamiltonian is bilinear in theSh ’s and the
subdecoherent subspace coincides with singlet sector of
the global sls2d algebra [7].

The above theoretical analysis has been applied to
state-of-the-art quasi-0D semiconductor heterostructures.
In particular, a linear array of vertically stacked quan-
tum dots—along the growth (z) direction—has been
considered; more specifically, the array is formed by
GaAsyAlGaAs structures similar to that of [13] alligned
on the samez axis. The three-dimensional confine-
ment potential giving rise to the quasi-0D single-particle
statesfa is properly described in terms of a quantum-
well (QW) profile along the growth direction times a
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two-dimensional (2D) parabolic potential in the normal
plane. Since the widthd of the GaAs QW region is typi-
cally of the order of few nanometers, the energy splitting
due to the quantization along the growth direction is much
larger than the confinement energyE induced by the 2D
parabolic potential (typically of a few meV). Thus, the
two single particle states—statesj0l and j1l—realizing
the qubit considered so far are given by products of the
QW ground state times the ground or first excited state of
the 2D parabolic potential [14], their energy splitting be-
ing equal toE.

As a starting point, let us discuss the role of carrier-
phonon interaction in a single QD structure withd ­
4 nm . Figure 1 shows the total (emission plus absorp-
tion) carrier-phonon scattering rate (G

1
ii 1 G

2
ii ) at low

temperature (T ­ 10 K) as a function of the energy spac-
ing E. Since the energy range considered is smaller
than the optical-phonon energy (36 meV in GaAs), due
to energy conservation scattering with LO phonons is not
allowed. Therefore, the only phonon model which con-
tributes to the rate of Fig. 1 is that of acoustic phonons.
The latter has been evaluated starting from the explicit
form of the carrier-phonon matrix elementsG which, in
turn, involve the 3D wave functions as well as the ex-
plicit form of the deformation-potential coupling̃g. To
this end, a bulk phonon model in the long-wavelength
limit has been employed [15]. Again, due to energy con-
servation, the only phonon wave vectors involved must
satisfy jqj ­ Eyh̄cs ; q, cs being the GaAs sound ve-
locity. It follows that by increasing the energy spacingE
the wave vectorq is increased, which reduces the carrier-
phonon couplingg entering in the electron-phonon inter-
action and then the scattering rate. This well-established
behavior is typical of a quasi-0D structure. As shown in
Fig. 1, forE ­ 5 meV—a standard value for many state-
of-the-art QD structures—the carrier-phonon scattering
rate is significantly suppressed compared to typical bulk
values [8].
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FIG. 1. Carrier-phonon scattering rate for a single QD struc-
ture as a function of the energy splittingE at low temperature
(see text).

We will now show that by means of a proper information
encoding, i.e., a proper choice of the initial multisystem
quantum state, and a proper design of our QD array,
we can strongly suppress phonon-induced decoherence
processes, thus further improving the single-dot scenario
discussed so far. Let us now consider a four-QD array
(i.e., the simplest noiseless qubit register). From the short-
time expansion discussed above, we have numerically
evaluated the decoherence rate for such QD array choosing
as energy splittingE ­ 5 meV (see Fig. 1). As initial
state we have chosen the singlet defined by the dimer
partitionD1 ­ hs1, 2d, s3, 4dj. The resulting decoherence
rate is shown as a solid line in Fig. 2 as a function of
the interdot distancea. The uncorrelated-dot decoherence
rate is also reported as a dashed line for comparison.
Rather surprisingly, in spite of the 3D nature of the
sum overq entering the calculation of the functionG

s6d
ii0

[see Eq. (1)], the decoherence rate exhibits a periodic
behavior over a range comparable to the typical QD
length scale. This effect—which would be the natural
for a 1D phonon system—stems from the exponential
suppression, in the overlap integral, of the contributions of
phononic modes with nonvanishing in-plane component.
The 1D behavior is extremely important since it allows
one, by suitable choice of the interdot distancea, to
realize the symmetric regime (ii) in which all the dots
experience thesamephonon field and therefore decohere
collectively. Indeed, by takinḡa ­ n2pyq sn [ Nd one
finds, for example, thatfD1 sād ø 1. Figure 2 shows
that for the particular QD structure considered, caseC
should correspond to a decoherence-free evolution of a
singlet state, which is not the case forA and B (see
symbols in the figure). In order to extend the above short-
time analysis, we have performed a full time-dependent
solution by direct integration of the master equation for
the density matrixr, taking also into account the Lamb-
shift terms. Starting from the same GaAs QD structure
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FIG. 2. Phonon-induced decoherence rate for a four-QD array
(solid line) as a function of the interdot distancea compared
with the corresponding uncorrelated-dot case (see text).
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FIG. 3. Fidelity F as a function of time as obtained from a
direct numerical solution of the master equation for the relevant
case of a four-QD array (see text).

considered so far, we have simulated the above noiseless
encoding for a four-QD array. Figure 3 shows the fidelity
as a function of time as obtained from our numerical
solution of the master equation. In particular, we have
performed three different simulations corresponding to the
different values ofa depicted in Fig. 2. Consistently
with our short-time analysis, for caseC we find a strong
suppression of the decoherence rate which extends the
subnanosecond time scale of theB case (corresponding to
twice the single-dot rate) to the microsecond time scale.
This confirms that by means of the proposed encoding
strategy one can realize a decoherence-free evolution over
a time scale comparable with typical recombination times
in semiconductor materials [8].

At this point a few comments are in order. The ac-
tual implementation of the suggested encoding relies, of
course, on precise quantum state synthesis and manipula-
tions. This crucial point—that was not the focus of this
paper—might be addressed, by resorting, for example, to
the ideas of the early QD proposal in [16]. Moreover, it is
well known that carrier-phonon scattering is not the only
source of decoherence in semiconductors. In conventional
bulk materials also carrier-carrier interaction is found to
play a crucial role. However, state-of-the-art QD struc-
tures—often referred to as semiconductor macroatoms
[5]—can be regarded as few-electron systems basically
decoupled from the electronic degrees of freedom of the
environment. For the semiconductor QD array consid-
ered, the main source of Coulomb-induced “noise” may
arise from the interdot coupling. However, since such
Coulomb coupling vanishes for large values of the QD
separation and since the proposed encoding scheme can
be realized for values ofa much larger than the typical
Coulomb-correlation length (see Fig. 2), a proper design
of our quantum register may rule out such additional de-
coherence channels.

In summary, we have investigated a semiconductor-
based implementation of a quite general quantum-

encoding strategy, which allows one to suppress
phonon-induced decoherence on the carrier subsystem.
More specifically, we have shown that an array of
state-of-the-art QD structures is a suitable qubit regi-
ster since it allows one to realize a decoherence-free
evolution on a time scale long compared with those
of modern ultrafast laser-pulse generation and manipu-
lation. Since the latter is the natural candidate for
quantum gating of charge excitations in semiconductor
nanostructures, this result might constitute an important
first step toward a solid-state implementation of quantum
computers.
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