
EXFI: a low cost Fault Injection
System for embedded
Microprocessor-based Boards
Authors: Benso A., Prinetto P., Rebaudengo M., Sonza Rreorda M.,

© ACM, 1998. This is the author's version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The definitive version was published in ACM
TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS Vol.5 No. 4, 1998, pp.
626-634 and is available at:

URL: http://dl.acm.org/ft_gateway.cfm?
id=296351&type=pdf&CFID=177591385&CFTOKEN=75507033

DOI: 10.1145/296333.296351

!Politecnico di Torino

EXFI: a low cost Fault Injection System for
embedded Microprocessor-based Boards

A. Benso
Politecnico di Torino
Dip. Automatica e Informatica
corso Duca degli Abruzzi 24
I-10129 Torino, Italy
Tel. +39 11 564 7055
Fax +39 11 564 7099
E-mail sonza@polito.it
Alfredo BENSO was born in Torino, Italy, in 1970. He received the M.S. degree in
computer science engineering from the Politecnico di Torino, Italy, in 1995 and he is
currently a Ph.D. student at the Politecnico di Torino. His research interests include
Design for Testability Techniques and Dependability analysis of computer-based
systems.
P. Prinetto
Paolo Prinetto was born in Gassino Torinese, Italy on March 17, 1953.
He received his M.S. in Electronic Engineering in 1976 from the Politecnico di
Torino, Italy.
Since 1990 he is full professor of Computer Science at the Dipartimento di
Automatica e Informatica of the same university.
His research interests cover systems and tools for CAD for VLSI, with particular
emphasis on testing, automated testable synthesis, hardware description languages,
formal verification of correctness of digital designs, system level description and
validation.
Since 1994, he is the chairman of ETTTC: the European Group of the IEEE-
Computer Society Test Technology Technical Committee (TTTC). In 1996 he became
IEEE Computer Society Golden Core Member.
Politecnico di Torino
Dip. Automatica e Informatica
corso Duca degli Abruzzi 24
I-10129 Torino, Italy
Tel. +39 11 564 7055
Fax +39 11 564 7099
E-mail sonza@polito.it
M. Rebaudengo
Politecnico di Torino
Dip. Automatica e Informatica
corso Duca degli Abruzzi 24
I-10129 Torino, Italy
Tel. +39 11 564 7055
Fax +39 11 564 7099
E-mail sonza@polito.it
Maurizio REBAUDENGO received the M.S. degree in Electronics in 1991, and the
Ph.D. degree in Computer Science in 1995, both from the Politecnico di Torino,
Torino, Italy. In 1997 he became a researcher at the Department of Computer Science
and Automation of the same Institution. His research interests include Automatic Test

 2

Pattern Generation, parallel and distributed algorithms for Electronic CAD, and
dependability analysis of computer-based systems.
M. Sonza Reorda
Politecnico di Torino
Dip. Automatica e Informatica
corso Duca degli Abruzzi 24
I-10129 Torino, Italy
Tel. +39 11 564 7055
Fax +39 11 564 7099
E-mail sonza@polito.it
Matteo SONZA REORDA received the M.S. degree in Electronics in 1986, and the
Ph.D. Degree in Computer Science in 1990, both from the Politecnico di Torino,
Torino, Italy. He currently is an Assistant Professor at the Dept. of Computer Science
and Automation of the same Institution. His research interests include testing of
digital systems, design verification methodologies, and fault injection techniques.

Evaluating the faulty behavior of low-cost embedded microprocessor-based boards
is an increasingly important issue, due to their adoption in many safety critical
systems. The architecture of a complete Fault Injection environment is proposed,
integrating a module for generating a collapsed list of faults, and another for
performing their injection and gathering the results. To address this issue, the paper
describes a software-implemented Fault Injection approach based on the Trace
Exception Mode available in most microprocessors. The authors describe EXFI, a
prototypical system implementing the approach, and provide data about some sample
benchmark applications. The main advantages of EXFI are the low cost, the good
portability, and the high efficiency.

1 INTRODUCTION

Our society is facing with an increasing dependence on computing systems, even in
areas (e.g., air and railway traffic control, nuclear plant control, aircraft and car
control) where a failure can be critical for the safety of human beings. As a
consequence, the past years have seen a growing interest in methods for studying the
behavior of computer-based systems when faults occur, and several approaches have
been proposed to evaluate the dependability properties of a computer-based system.

In many cases, Fault Injection [1] emerged as a viable solution, and has been deeply
investigated by both academia and industry. Different techniques have been proposed
and some of them practically experimented. One of the current challenges in the area
is how to adapt these techniques to assess the hardware and software fault detection
capabilities of high-volume, low-price microprocessor- (and microcontroller-) based
safety critical products (e.g., those used in the automotive sector).

The goal of this paper is to present a software-implemented Fault Injection system,
named EXFI (Exception-based Fault Injector), suited to be used in embedded
microprocessor-based boards.

 3

The kernel of the EXFI system is based on the Trace Exception Mode available in
most microprocessors. During the Fault Injection experiment, the trace exception
handler routine is in charge of computing the Fault Injection time, executing the
injection of the fault, and triggering a possible time-out condition. The tool is able to
inject single bit-flip transient faults both in the memory image of the process (data and
code) and in the user registers of the processor. The approach can be easily extended
to support different fault models, such as permanent stuck-at, coupling, temporal and
spatial multiple bit-flip, etc.

A Fault List Manager is also included in the system to generate a collapsed list of
faults to be injected. This module exploit the collapsing rules defined in [2],
practically demonstrating how they can be implemented and how effective they really
are.

A case study is presented in which a Motorola M68KIDP board [3] based on a
M68040 microprocessor is considered; a prototypical version of EXFI has been
implemented, and some sample application programs are considered.

The main characteristics of EXFI are the low cost (it does not require any hardware
device), the high speed (which allows a higher number of faults to be considered), the
low requirements in terms of features provided by the Operating System, the
flexibility (it supports different fault types), and the high portability (it can be easily
migrated to address different target systems).

The paper is organized as follows: after discussing some related research in Section 2,
Section 3 states the adopted assumptions. Section 4 describes the Fault Injection
environment, and Section 5 reports some experimental results. Some conclusions are
eventually drawn in Section 6.

2 RELATED RESEARCH

The many different approaches proposed to implement Fault Injection (a detailed
discussion can be found in [1]) can be categorized in three main groups:
• Hardware-implemented Fault Injection: errors are emulated by changing the state

of the system, either forcing faulty values on the pins of the chips [4], or injecting
faults inside the chips through heavy-ion radiation [5]. These techniques require
special and often expensive hardware, and do not allow injecting faults in every
possible location.

• Software-implemented Fault Injection: faults are injected under software control.
The main advantages of software approach are the low complexity, the high speed
of the experiment, and the higher flexibility in the set of injectable faults. The
main disadvantage is the high degree of intrusiveness in the target system.

• Simulation-based Fault Injection: faults are injected into a model of the system
and its behavior is analyzed through simulation [6], [7]. This approach allows the

 4

maximum flexibility in the type of faults that can be injected. Unfortunately, it
usually involves a high effort for developing the system descriptions, and the
experiments are mostly very time consuming.

To have a fast and low cost solution to dependability evaluation problems, the
software-implemented approach can be the most effective one. In fact, when simple
boards have to be analyzed, hardware fault injectors are too cumbersome and too
expensive. On the other hand, simulation-based fault injectors require the
development of highly complex descriptions and are too time consuming and
ineffective.

Several different solutions for software-implemented Fault Injection have been
proposed:
• FERRARI [8] uses software traps and trap handling routines to inject faults in

CPU, memory and bus. Experiments are conducted on a Sun SparcStation, and the
target system adopts Operating system calls, such as the UNIX ptrace, to corrupt
the process memory image.

• Xception [9] uses a processor’s built-in hardware exception mechanism to trigger
Fault Injection. Faults are triggered based on access to specific addresses.
Xception has been implemented on a system based on a PowerPC 601 processor.

By exploiting the microprocessor trace mode, EXFI does not require any change in
the source code of the target software: with respect to FERRARI, our approach is
oriented to simple embedded microprocessor systems, rather than to complex
workstation-based ones. As a consequence, EXFI exploits the basic target
microprocessor facilities, and the system is not supposed to provide any Operating
system calls, such as the ones used in FERRARI. Moreover, EXFI does not insert
software traps or Fault Injection routines in the target software, thus greatly limiting
its intrusiveness. When compared with Xception, EXFI does not need any specific
debugging features, as the ones exploited by the Xception tool for the PowerPC
processor.

Moreover, it is worth noting that the paper describes a Fault Injection environment,
providing the user with a full range of well-integrated features, ranging from Fault
List Generation and Collapsing, to an effective Fault Injection technique, and to a
simple way for analyzing the faulty system behavior. The reported experience on
some sample benchmark applications provides information about the usability of the
environment.

As a result, the EXFI approach is well suited for simple and low-cost systems, where
the operating system support is not available, and the effort for setting up the Fault
Injection experiments has to be very small.
3 ASSUMPTIONS

The adopted fault model is the transient fault. This model is frequently used in Fault
Injection tools [8] [7] since it is very similar to the faults occurring in real systems
[10]. The fault type adopted in the preliminary version of the tool is the single bit-flip,
also known as Single Upset Event (SEU), but the approach can be extended to other

 5

kinds of fault models. The Fault Injection time is expressed in terms of number of
instructions executed since the beginning of the application execution. Faults can be
injected in any memory location or register accessible through an Assembly
instruction.

Our technique is ideally suited to systems whose behavior, when a sequence of input
stimuli is applied, can be deterministically computed and easily reproduced. To detect
a target system faulty behavior we rely on the built-in Error Detection Mechanisms
(EDMs), as system exceptions or software checks.

In the present version we do not address the issue of checking the system behavior
from the time point of view: the extension to real-time systems composed of several
interacting modules is currently under study.

4 FAULT INJECTION SYSTEM

As illustrated in Figure 1, the EXFI Fault Injection system can be divided in three
modules. The Fault List Manager (FLM) generates the fault list to be injected into the
system, the Fault Injection Manager (FIM) injects the faults into the system, and the
Result Analyzer collects the results and produces a report concerning the whole Fault
Injection experiment.

Fault List
Manager

Result
Analyzer

Fault Injection
ManagerFault List

Target
Program

Fault-free
system

behavior

Fault Injection
Report

Target system

Figure 1: The EXFI Fault Injection System.

4.1 FAULT LIST MANAGER

The Fault List Manager (FLM) generates the list of faults which are then injected in
the target system by the Fault Injection Manager. Since the fault list size is a crucial
parameter that directly affects the time required to perform the Fault Injection
experiment, special care has been devoted to devise techniques, able to reduce the size
of the Fault List, without reducing the meaningfulness of the Fault Injection results.

 6

The architecture of the EXFI FLM is based on two modules: the Fault List Generator
and the Fault List Collapser.

The Fault List Generator generates a Fault List according to some input constraints
(e.g., number of faults, boundaries of the used memory area, statistical distribution of
faults, etc.). The Fault List Collapser implements the rules introduced in [2] to
process and possibly collapse the Fault List generated by the previous module. These
rules aim at avoiding the injection of those faults whose behavior can be foreseen a
priori, without affecting the accuracy of the results gathered through the Fault
Injection experiments. The validity of the collapsing rules is bounded to the
considered Fault Injection environment, and to the set of input data stimuli the target
system is going to receive.
A fault can be removed from the fault list when it fits in one of the following classes:
• the fault is guaranteed to trigger an Error Detection Mechanism, e.g., because it

affects the operative code of an instruction and changes it into an illegal operative
code;

• it is guaranteed not to have any effect, e.g., because it affects the code of an
instruction after the very last time the instruction is executed;

• it is equivalent to another fault already existing in the fault list, e.g., the two faults
flip the same bit in the code of the same instruction during the period between two
subsequent executions of the same instruction; the two faults are equivalent since
they behave in the same way, and can thus be collapsed to a single fault.

To collapse the fault list, the Fault List Collapser exploits the information collected
during a preliminary golden-run experiment, in which the behavior of the Fault-Free
System is observed and recorded. During this experiment, a modified trace procedure
is used to record the sequence of executed instructions, and a post-processing phase
elaborates the recorded information to assess the sequence of accesses performed to
registers and memory variables.

The Fault List Collapser also generates a report containing the information about the
collapsed faults. This report is then used by the Result Analyzer to provide statistical
results concerning the original Fault List.

4.2 FAULT INJECTION MANAGER

The Fault Injection Manager (FIM) is the most crucial part in the whole Fault
Injection System. It is up to the FIM to activate the execution of the target application
once for each fault in the list generated by the Fault List Manager, to inject the fault at
the required time and location, and to observe the system behavior after the Fault
Injection. The sequence of operations executed by the Fault Injection Manager is
outlined in Figure 2 and explained in the following section.

 7

enable code
tracing

execute the
target

program

disable code
tracing

observe fault
behavior

consider a
new fault

Trace
procedure

Instr 1
Instr 2
...
Instr i-1
Instr i
Instr i+1
...
Instr n

update fault
statistics

EDM
routines

after any instruction

exceptiontriggering
event

Fault
Injection
procedure

time-out

fault injection time

Figure 2: Fault Injection Manager operation flow.

The main issues to be faced when devising and implementing an effective Fault
Injection Manager are:
• Identification of the fault injection time and Fault Injection; the target application

execution must be continuously monitored and, when the fault injection time is
reached, the fault injection according to the fault type (e.g., single bit-flip) and
location specified in the Fault List must be performed.

• Fault Effects Observation: the system behavior after fault injection must be
observed, and differences with respect to the fault-free system behavior identified.
This requires the implementation of some time-out mechanism for the
identification of faults forcing the system in endless loops.

• Recovery from fault effects: the FIM should be able to recover from the effects
generated by the injection of any fault; this requires that the FIM maintains the
system control even in the likely event of a hardware exception being triggered.
Moreover, the FIM should ensure that, for all the faults, the target application be
run in the same fault-free initial environment, therefore avoiding that the effects of
any fault (e.g., corrupted bit in data and code memory sections) be still present in
the environment where the following experiment is run.

The above tasks have to be accomplished while the target application is running and
with a minimum intrusiveness with respect to its behavior.

4.2.1 PROPOSED SOLUTION

The following paragraphs describe the different modules that compose the overall
FIM module.

Experiment Initialization

 8

This module initializes the system and prepares the environment for the Fault
Injection into the target application program.

It first makes a golden copy of the target and FIM program code and input data into a
safe part of the system memory (i.e., one that can not be modified by fault effects).
This can often be obtained by exploiting the memory protection mechanism provided
by the Memory Management Unit integrated in most microprocessors. In this way, the
FIM can start each new Fault Injection experiment using a known fault-free copy of
data and code.

The second task of this module is to create a new Exception Vector Table in order to
replace the original exception processing routines with the new ones, which provide
the Fault Injection and system monitoring capabilities, as described in the following.

Initialization of the environment for the injection of the single fault

The first task of this module is to restore the golden copy of the target application
program to the memory area, where the program is going to be executed during the
experiment. This operation is necessary to start a new experiment with a fault-free
version of the target code and data.

The second task of this module is to initialize some variables (e.g., the ones storing
the information about the fault to be injected).

Finally, the module enables the code tracing and jump to the first instruction of the
target application code.

Trace Procedure

The Trace Procedure performs two main tasks:
• It injects a fault into the system: each time the procedure is executed, a variable

that stores the number of executed instructions is incremented. As soon as this
value matches the injection time of the fault that has to be injected, the procedure
performs its injection.

• It monitors the instruction counter; if its value exceeds a user-defined limit the
experiment is terminated and the fault is classified among those producing a time-
out.

Exception Routines

 9

In most microprocessors, an exception (or internal interrupt) is activated when some
incorrect operation is performed or simply attempted. In such a case, a procedure is
automatically activated. This mechanism can be exploited to implement an Error
Detection Mechanism able to detect all faults triggering an exception during the
system activity. The exception routines is suitably modified and performs two tasks:
• It updates the data structure containing the information about the faults behavior
• It returns the program execution to the main FIM loop. To perform this task, the

procedure modifies the return address stored in the stack so that the execution of
the return assembly instruction returns the execution control to the Experiment
Control Loop instead of to the instruction that triggered the exception. In this way,
no matter the type of exception triggered by the fault, it is possible to ‘recover’ the
error and start the injection of a new fault.

Target Application Result Check Routine

A computer-based system is said to be Fail-Silent if it outputs only correct results,
i.e., if the system does not output incorrect results even if they are possibly generated
internally as a consequence of a fault [11]. Many researchers [12] have shown that, in
computer-based systems, a high percentage of faults cause a Fail-Silent Violation
behavior, e.g., the system produces incorrect results while neither the EDMs nor the
time-out checks are activated. Therefore, it is necessary that the application
programmer provides a procedure (in Figure 2 called Observe_Fault_Behavior) able
to verify the correctness of the results produced by the target application execution
when it terminates without triggering any exception or time-out condition.
Faults are classified according to four main categories:
• Fail-Silent: the fault has no effect on the system behavior.
• Detected by an EDM: the faulty system behavior triggers the activation of either a

software or hardware EDM.
• Fail-Silent Violation: the faulty system behavior does not trigger any EDM, and

the output results are different from the fault-free ones.
• Time-out: this category includes faults triggering the time-out condition. These

faults alter the system behavior from a temporal point of view without triggering
any EDM.

4.3 RESULT ANALYZER

The Result Analyzer processes the system output behavior obtained through Fault
Injection experiments and the report on collapsed faults generated by the Fault List
Manager. The Result Analyzer produces a report concerning fault coverage
information referred to the whole Fault List.
5 EXPERIMENTAL RESULTS

To evaluate the effectiveness of our Fault Injection approach, a case study is
described below.
The EXFI environment has been implemented on a commercial M68KIDP Motorola
board [3]. This board hosts a M68040 microprocessor with a 25Mhz frequency clock,

 10

2 Mbytes of RAM memory, 2 RS-232 Serial I/O Channels, a Parallel Printer Port, and
a bus-compatible Ethernet card.

Some simple programs have been adopted as benchmark target applications:
• Bubble Sort: an implementation of the bubble sort algorithm, run on a vector of 10

integer elements;
• Parser: a syntactical analyzer for arithmetic expressions written in ASCII format.

The program also implements a simple software Error Detection Mechanism,
which consists in verifying the correctness of each part of the expression;

• Matrix: multiplication of two matrices composed of 10x10 integer values.
For each target program, the original Fault List is composed of 30,000 randomly
selected faults located in the code (10,000 faults) and data (10,000 faults) memory
area, as well as in the microprocessor registers (10,000 faults). The original Lists of
faults located in the code area and in the registers are then collapsed with respect to
the given sequence of Input Stimuli. Due to the complexity of the post-processing
phase, collapsing of faults in the data memory area is not implemented in the current
version of EXFI.

The results of the collapsing phase are reported in Table 1. They show very different
collapsing figures depending on the benchmark program and fault location.

In general, the percentage of collapsed faults among those to be injected in the code is
quite stable. The amounts of faults activating an EDM mainly depends on the ratio
between legal and illegal codes resulting from the microprocessor instruction set
definition. On the other side, the collapsing figures for faults in data and registers
mainly depend on the kind of application we are considering: in particular, one crucial
parameter is the size of the data structures. This parameter strongly affects the
percentage of no-effect faults, since larger data structures often imply a higher number
of faults injected in a variable or register outside the period in which it is used. This is
demonstrated by the high percent of faults removed by the Fault Collapser because
they do not produce any effect in the Matrix benchmark, which has the largest data
structures among the three considered programs. Moreover, the percentage of
collapsed faults among those to be injected in the registers also depends on the
complexity of the considered application and in the compiler capabilities in exploiting
the available registers: in general, an intensive register usage reduces the effectiveness
of the fault collapsing rules identifying equivalent and no-effect faults.

 Bubble Sort Parser Matrix
Location Code Reg. Code Reg. Code Reg.
initial fault list size 10,000 10,000 10,000 10,000 10,000 10,000
Total removed
faults

1,575 5,361 1,488 6,386 1,323 7,487

 Detected by an
EDM

792 127 671 154 788 139

 No effect 510 4,595 525 4,125 323 6,317
 Fault Equivalence 273 639 292 2,107 212 1,031

Table 1: Fault collapsing figures for faults injected in the code and in the registers.

 11

Based on the Fault Lists generated by the Fault List Manager, the Fault Injection
Manager performed the Fault Injection experiments, whose results are reported in
Tables 2, and 3.

 Bubble Sort Parser Matrix
 Code Data Code Data Code Data
Fault Category % % % % % %

Fail-Silent 58.10 66.11 63.96 64.34 50.25 16.35
Fail-Silent Violation 24.18 31.20 13.42 10.34 25.15 81.55
Detected by an EDM 15.75 2.20 20.24 24.30 22.62 1.50
Time-out 1.97 0.49 2.38 1.02 1.98 0.60

Table 2: Faults injection report for the faults injected in the code and data area.

 Bubble Sort Parser Matrix
Fault Category % % %

Fail-Silent 70.81 82.73 71.23
Fail-Silent
Violation

2.97 2.99 3.18

Detected by an
EDM

17.09 13.48 15.24

Time-out 9.12 0.80 10.35

Table 3: Faults injection report for the faults injected in the registers.

The results of Tables 2 to 3 confirm that the behavior of faults injected in the code
area is more regular than that of the faults injected in the data area, which highly
depends on the characteristics of the considered application. As a further example, the
reader should observe the very different percentages of Fail-Silent and Fail-Silent
Violation Faults reported for the three benchmarks among those injected in the data
area. Bubble and Parser are control-dominated programs: many variables (e.g., those
associated with flags and loop indexes) are used for the execution flow control, and
faults injected in them are likely to either trigger an EDM, or be fail-silent. On the
other side, Matrix is data-dominated, and most variables contain data rather than
control information. Faults injected in them are therefore more likely to generate Fail-
Silent Violations.

The Result Analyzer collects the results produced by the Fault Injection Manager and
takes into account the collapsing information provided by the Fault List Manager. The
complete Fault Coverage figures with respect to the initial Fault Lists are reported in
Table 4.

 12

 Bubble Sort Parser Matrix
 % % %

Fail-Silent 60.62 62.86 32.09
Fail-Silent
Violation

26.35 11.18 52.19

Detected by an
EDM

11.98 24.40 14.54

Time-out 1.06 1.56 1.19

Table 4: Summary of Faults injection results.

To quantitatively evaluate the time required to perform a Fault Injection experiment,
we compared the total time required to perform the Fault Injection of 30,000 faults
with the one required to execute 30,000 time the same program with the same input
data in normal mode and without injecting any fault. The resulting ratio ranges
between 20 and 22 for the considered benchmarks; the differences are mainly due to
the different collapsing ratios obtained through the FLM.
6 CONCLUSIONS

In this paper we presented a Software-based Fault Injection environment suitable to
be used for fault coverage evaluation on embedded microprocessor-based boards.

Our environment is composed of three main parts: the Fault List Manager to generate
and collapse the Fault List, the Fault Injection Manager to perform Fault Injection,
and the Result Analyzer to produce output reports.

During the Fault Injection experiments, the target application program is executed in
trace mode and faults are injected by a suitably modified exception handler routine. In
this way, faults can be injected into any location accessible through an Assembly
instruction. Faults are injected without any change in the target application code and
with very limited intrusiveness in the system behavior, the only overhead being in
terms of an increase in the execution time with respect to a fault-free system.

The approach is quite general and flexible, as it is based on common features
supported by most microprocessors. Moreover, it does require neither dedicated
hardware, nor any Operating system being present on the board, thus matching well
the constraints of many low-cost embedded microprocessor-based systems.

To practically evaluate the feasibility of the approach, a software Fault Injection
environment has been set up for a Motorola M68KIDP board. The preliminary results
gathered on some simple benchmark programs have been reported to demonstrate the
advantages of the approach.

Work is currently done to overcome the current limitations of the approach. In
particular, we are working towards making it more efficient, by reducing the average
time required to perform the analysis of each fault, and we are extending the described
approach to a wider range of systems, e.g., those with real-time requirements, which

 13

can not be dealt with by the current version of the environment. The goal is to provide
the user with a flexible environment, allowing him to select the most suitable Fault
Injection technique, depending on the characteristics of the system and on the design
requirements.

References

[1] M.C. Hsueh, T. Tsai, R.K. Iyer, Fault Injection Techniques and Tools,

IEEE Computer, April 1997, pp. 75-82
[2] A. Benso, M. Rebaudengo, L. Impagliazzo, P. Marmo, Fault List

Collapsing for Fault Injection Experiments, Proc. Annual Reliability and
Maintainability Symposium, January 1998, pp. 383-388

[3] Motorola Inc., M68000 Family Integrated Development Platform (IDP),
1992,
http://www.mot.com/SPS/HPESD/prod/68K_periph/68000IDP.html

[4] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.C. Fabre, J.-C. Laprie, E.
Martins, D. Powell, Fault Injection for Dependability Validation: A
Methodology and some Applications, IEEE Transactions on Software
Engineering, Vol. 16, No. 2, February 1990, pp. 166-182

[5] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, U. Gunneflo, Using
Heavy-Ion Radiation to Validate Fault-Handling Mechanisms, IEEE
Micro, Vol. 14, No. 1, pp. 8-32, 1994

[6] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, J. Karlsson, Fault Injection into
VHDL Models: the MEFISTO Tool, Proc. FTCS-24, 1994, pp. 66-75

[7] T.A. Delong, B.W. Johnson, J.A. Profeta III, A Fault Injection
Technique for VHDL Behavioral-Level Models, IEEE Design & Test of
Computers, Winter 1996, pp. 24-33

[8] G.A. Kanawati, N.A. Kanawati, J.A. Abraham, FERRARI: A Flexible
Software-Based Fault and Error Injection System, IEEE Trans. on
Computers, Vol 44, N. 2, February 1995, pp. 248-260

[9] J. Carreira, H. Madeira, J. Silva, Xception: Software Fault Injection and
Monitoring in Processor Functional Units, DCCA-5, Conference on
Dependable Computing for Critical Applications, September 1995, pp.
135-149

[10] P.K. Lala, Fault Tolerant and Fault Testable Hardware Design, Prentice
Hall Int., New York, 1985

[11] D. Powell, P. Verissimo, G. Bonn, F. Waeselynck, D. Seaton, The Delta-
4 Approach to Dependability in Open Distributed Computing Systems,
Proc. FTCS-18, 1988, pp. 246-251

[12] J. G. Silva, J. Carreira, H. Madeira, D. Costa, F. Moreira, Experimental
Assessment of Parallel Systems, Proc. FTCS-26, 1996, pp. 415-424

