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Nonlinear canonical quantum system of collectively interacting particles
via an exclusion-inclusion principle
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Recently@G. Kaniadakis, Phys. Rev. A55, 941~1997!#, we introduced a Schro¨dinger equation containing a
complex nonlinearityW(r,j )1 i W(r,j ) which describes the collective interaction introduced by an exclusion-
inclusion principle~EIP!. The EIP does not affectW(r,j ) and determinesW(r,j ) univocally. In the above
referenceW(r,j ) was deduced by means of a stochastic quantization approach, in this way obtaining a
noncanonical quantum system. In this work we introduce a family of nonlinearitiesW(r,j ) generating a family
of nonlinear canonical quantum systems, and derive their Lagrangian and the Hamiltonian functions and the
evolution equations of the fields. We derive also the Ehrenfest relations and study the soliton properties. The
shape of the soliton, propagating in the system obeying the EIP, can be obtained by solving a first-order
ordinary differential equation. We show that, in the case of soliton solutions, by means of a unitary transfor-
mation, the EIP potential is equivalent to a real algebraic nonlinear potential proportional tok r2/(11k r).
@S1063-651X~98!11511-8#

PACS number~s!: 05.30.2d, 03.65.2w, 05.20.2y

I. INTRODUCTION

It is widely known that the effects of collective interac-
tions in a particle system, commonly studied in the frame-
work of quantum many-body theories, can be linked to non-
linearities in the one-particle Schro¨dinger equation. Several
nonlinear Schro¨dinger equations~NLSE’s! have been studied
in the past, and recently, they have been commonly used in
many different fields of research in physics. The cubic equa-
tion, for instance, with the nonlinear term proportional to
6 ucu2, has been used to study the dynamical evolution of a
boson gas with ad-function pairwise repulsion or attraction,
responsible for its anyonlike behavior@1#. Recently, this
equation has been used to describe the Bose-Einstein con-
densation@2–6# and the dynamics of two-dimensional radi-
ating vortices@7#. The nonlinear termucu2 appears in the
Ginzburg-Landau model of the superconductivity@8#, a phe-
nomenon also investigated by means of the Eckhaus equa-
tion, which is a NLSE with a nonlinearity of the typeucu2

1a ucu4 @9#. The same equation appears in superfluidity,
where the properties of a gas of bosons interacting via a
two-body attractive and three-body repulsived function in-
terparticle potential are investigated@10,11#. The Eckhaus
equation can describe nonlinear waves in optical fibers with
a ‘‘normal’’ dependence of the refractive index on the light
intensity@7#. NLSE’s with nonlinearities involving the quan-
tity j have been also introduced to study planar systems of
particles with anyonlike unconventional statistics@12#. In the
literature we can find NLSE’s with complex- or derivative-
type nonlinearities involving the quantities (“r)2, Dr, j

•“r, “ j @13–16# as, for instance, in the Doebner-Goldin
equation associated with a certain unitary group representa-
tion and describing irreversible and dissipative quantum sys-
tems.

In a one-dimensional particle system, a firm relation ex-
ists between statistics and collective interactions. For in-
stance, the potential U(xi)5m21 a (a21) ( j , i(xi
2xj )

22, describing the collective interaction of the
Calogero-Sutherland model, implies that the particle system
is ruled by the Haldane-Wu statistics@17–19#.

Also a two-dimensional system, where collective excita-
tions can describe superconductive features, the particles
composing the system obey the so called anyonic statistics,
actually an important advanced field of research. Collective
excitations, usually studied by means of a many body quan-
tum theory, can also be analyzed with the one-particle NLSE
approach. Due to this fact, we can argue that an eventually
nonunivocal relation holds between statistics and interaction
introduced by the nonlinearities contained in NLSE’s. For
instance, in the case of the anyons, many authors adopt the
NLSE approach to study the superconductivity.

Since the beginning of quantum mechanics~1932! @20#, it
was understood that effects due to the statistics and imposed
by the Pauli exclusion principle to a system of free fermions
can be simulated by a repulsive potential in the coordinate
space; under its action the particles evolve in time. Analo-
gously, free bosons can be submitted to an attractive poten-
tial.

When we deal with many-body fermion systems, due to
the presence and effectiveness of the Pauli exclusion prin-
ciple, we may encounter serious difficulties in calculating the
dynamics and the stationary states. After the introduction of
particles obeying intermediate statistics and of a generalized
Pauli principle, the difficulties can be increased. A semiclas-
sical approach to describe systems of particles of different
intermediate statistics, from Fermi-Dirac to Bose-Einstein, is
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very useful in deriving evolution and equilibrium statistical
distributions. The exclusion-inclusion principle~EIP! ~as we
call a generalized Pauli principle acting in the coordinate
space! can be accounted for, within a semiclassical approach,
to describe systems of particles with different statistics by
using Fokker-Planck and/or Boltzmann equations.

Recently@21#, by using an appropriate stochastic quanti-
zation method, we have quantized a Markoffian process
which obeys a generalized Pauli exclusion-inclusion prin-
ciple in the coordinate space, and have obtained the follow-
ing NLSE:

i \
] c

] t
52

\2

2 m
D c1L ~r, j ! c1V c, ~1!

where

L~r, j !5W~r, j !1 i W~r, j !, ~2!

is the complex nonlinearity introduced by the EIP, and the
expression of the imaginary part is

W~r, j !52k
\

2 r
“•S j r

11k r D . ~3!

The expression of the quantum current is

j52
i \

2 m
~11k r! ~c* “ c2c “ c* !. ~4!

The EIP enters the expression ofj through the multiplicative
factor 11k r, which behaves as an enhancement factor
whenk.0, and as an inhibition factor whenk,0, while the
EIP is absent whenk50. Since the above factor depends on
r5ucu2, the EIP introduces a collective interaction. In Ref.
@21# it was shown that the parameterk is the lower bound,
and the allowed range of its values isk>21/rmax. The
currentj in Eq. ~4! satisfies the continuity equation

] r

] t
1“• j50. ~5!

The real part of the complex term is not determined by the
EIP. There are infinite choices of the real part of the nonlin-
earity L(r,j ); any choice does not violate the EIP.

We recall that in Ref.@21#, in order to obtain intermediate
statistics, we used a stochastic quantization approach@22#
and derived the following expression of the real part of the
nonlinear term:

W~r!5k
\2

4 mF D r

11k r
1

22k r

2 r ~11k r!2
~“r!2G . ~6!

It can be shown that the system described by Eqs.~1!, ~2!,
~3!, and ~6! is noncanonical. Its noncanonicity is due to the
particular choice of the nonlinearity given by Eq.~6!.

The classical motion of canonical coordinates and mo-
menta has a simple quantum analog. For this reason quantum
mechanics has been built up in analogy with the classical
Hamiltonian theory. The Lagrangian allows one to collect all
the equations of motion and express them as stationary prop-
erties of a given action function.

Because the approach of stochastic quantization is nonca-
nonical, we think that it is of great importance for its appli-
cations to verify if it can be also canonically formulated and
to derive a canonical formulation.

The introduction of the EIP is equivalent to the insertion
into the Hamiltonian function of a potential which sets a
collective behavior to the particles of the system and can be
added to other potentials that take into account the interac-
tions of particles among themselves. Let us discuss two ex-
amples where EIP can be usefully applied. In nuclear physics
the correlation effects between pairs of nucleons, viewed as
fermions, are quite relevant in the interpretation of experi-
mental results. Similarly, the interactions among bosons are
relevant in various nuclear modes~superfluid model, inter-
acting boson model, mean field boson approximation! and
allow the explanation of many collective nuclear properties.
The interaction among the fermionic valence nucleons out-
side the core produces pairs of correlated nucleons that can
be approximated as particles with a behavior intermediate
between fermionic and bosonic ones. This nuclear state
~quasideuteron state! can be viewed as a particle system
which obeys to EIP. Recently, we studied a semiclassical
model of photofission in the quasideuteron energy region
@23#. We described the quasideuteron state as a mixture of
fermion and boson states, with a good agreement of our cal-
culated photofission cross sections of several heavy nuclei
and experimental results.

The second example is the Bose-Einstein condensation
~BEC!: The condensation originates from an attraction of
statistical nature~Bose-Einstein statistics! among the par-
ticles. In several papers BEC is studied by means of a cubic
NLSE @2#. In place of the cubic~and simplest! nonlinearity,
other nonlinearities can be considered as, for instance, the
one introduced by EIP with a positivek parameter to simu-
late the particle attraction.

We consider the present work as a natural continuation of
Ref. @21#. We examine canonical systems that obey the EIP,
and analyze aspects of the Lagrangian and Hamiltonian for-
malism, the Ehrenfest relations, and the solitonic properties
of the canonical systems.

In Sec. II, we recall the main relations of the canonical
formulation that will be used in this work. In Sec. III, after
the introduction of the Lagrangian density, we derive a non-
linear equation which contains, within the canonical formu-
lation, all the effects introduced by the exclusion-inclusion
principle. The Hamiltonian formulation is also developed. In
Sec. IV, we fix our attention to the hydrodynamic formula-
tion of the canonical system obeying the EIP, and derive the
evolution equations of the fieldsr and S. In Sec. V we
discuss the Eherenfest relations and write the mean con-
served quantities of the EIP system; successively, in Sec. VI,
we study the solitonlike solutions of our system. In Sec. VII
we derive an effective potential simulating the effects intro-
duced by the EIP in the case of solitons, and we rewrite the
equations describing the shape of the solitons in a form
which allows us to use the soliton techniques available in the
literature. In Sec. VIII, as an application, we consider a sys-
tem where the collective effects, are described by a particular
nonlinearity, and derive explicitly the shape and the phase of
the soliton profile. Conclusions are reported in Sec. IX.
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II. CANONICAL FORMALISM OUTLOOK

Let us recall the main quantities, definitions, and relations
of the canonical formulation that we will use in this work.
We consider a quantumN-field nonrelativistic canonical sys-
tem described by the Lagrangian densityL@f j #
[L(f j , ] tf j , ] if j ) function of the scalar fieldsf j (x,t) and
of their first derivatives] tf j and ] if j with f jPL2, j
51, . . . ,N; ] t5]/] t; and] i5]/] xi , wherei 51, 2, and 3.
The Lagrangian functionL of the system is the functional

L5E L d3x, ~7!

and the evolution equations of the fieldsf j can be obtained
by the variational principle

d L

d f j
50, j 51, . . . ,N, ~8!

where the functional derivative is defined as

d L

d f j
5

] L
] f j

2
d

dt

] L
]~] t f j !

2(
i 51

3
d

dxi

] L
]~] i f j !

. ~9!

If we introduce the fieldsp j , canonically conjugate mo-
menta of the fieldsf j defined as

p j5
] L

]~] t f j !
, ~10!

we can write the Hamiltonian densityH@f j #
[H(f j , p j , ] if j , ] ip j ), related to the Lagrangian density,
by a Legendre transformation

H5(
j 51

N

p j

] f j

] t
2L. ~11!

The HamiltonianH of the system is

H5E H d3x. ~12!

The system admits a canonical formulation if the evolution
with time of the fieldsf j and of the canonically conjugate
momentap j can be described by the Hamilton equations
~see, for example, Ref.@24#!

] f j

] t
5

d H

d p j
, ~13!

] p j

] t
52

dH

d f j
, ~14!

that can be written in a fully equivalent way, by means of the
Poisson formalism:

] f j

] t
5$f j , H%, ~15!

] p j

] t
5$p j , H%, ~16!

where the Poisson brackets of the fields~or functions! A(x)
5A@f j (x), p j (x)# and B(y)5B@f j (y), p j (y)# are defined
by the relation

$A~x!, B~y!%5(
j 51

N E F d A~x!

d f j~z!

d B~y!

d p j~z!

2
d B~y!

d f j~z!

d A~x!

d p j~z!G d3z. ~17!

III. CANONICAL EIP SYSTEM

In this section, we will assume a particular expression of
the Lagrangian density, and showa posteriorithat the equa-
tion of motion admits the continuity equation~5! with the
currentj given by Eq.~4!. Let us consider the complex func-
tion c, corresponding to the field used to describe the quan-
tum system, and derive the differential equations that the
function c and its complex conjugatec* must satisfy. The
Lagrangian densityL can be expressed in terms of the fields
c andc* :

L5 i \ c*
] c

] t
2

\2

2 m
“c* “c2V c* c2U~c* c!

1k
\2

8 m
~c* “c2c “c* !2. ~18!

The first three terms in the Lagrangian density are the same
encountered in the standard linear quantum description. The
fourth term is a nonlinear real potential that, for the sake of
simplicity, we assume to be an arbitrary analytic nonderiva-
tive function only ofr5c* c. This potential is used to de-
scribe other interactions in the system. By appropriately
choosing its form, Lagrangian~18! can be used to describe
different physical systems containing nonlinear interactions
and admitting the EIP~see below, Sec. VIII!. Finally, the last
term is the EIP potential

U
EIP

~c, c* !52k
\2

8 m
~c* “c2c “c* !2; ~19!

using Eq.~4!, we can write

U
EIP

~r, j !5k
m

2 S j

11k r D 2

. ~20!

The LagrangianL5L@c* , c# is given by the Eqs.~7! and
~18!. The Schro¨dinger equation for the fieldc can be ob-
tained by requiring that the functional derivative ofL with
respect toc* should be zero:

d L

dc*
50, ~21!

and can be written, in an explicit form, as
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i \
] c

] t
52

\2

2 m
D c1V c1F~r! c

2k
\2

2 m
~c* “c2c “c* ! “c

2k
\2

4 m
“~c* “c2c “c* ! c, ~22!

whereF(r) is given by

F~r!5
] U~r!

] r
. ~23!

It is easy to see that this nonlinear evolution equation is
consistent with the continuity equation~5! with the current
given by Eq.~4!. This equation can also be written, using the
current~4! and the particle densityr, in the form

i \
] c

] t
52

\2

2 m
D c1V c1F~r! c1k

m

r S j

11k r D 2

c

2 i k
\

2 r
“S j r

11k r D c. ~24!

Equation~24! is the NLSE of Eq.~1!, with the same imagi-
nary partW(r,j ) and with the real partW(r,j ) of the non-
linear quantityL(r,j ) given by

W~r, j !5k
m

r S j

11k r D 2

. ~25!

Analogously, the Schro¨dinger equation for the fieldc* can
be explicitly derived from the relationd L/d c50.

Note that the imaginary part of Eq.~24! is fixed by the
requirement that the system described by Lagrangian~18!
satisfies the continuity equation~5! with the current~4!,
which we write as

j5~11k r! j
0
, ~26!

where

j
0
52

i \

2 m
~c* “c2c “c* ! ~27!

is the quantum current without the EIP. The real part of the
nonlinearityL(r,j ), given by Eq.~25!, is obtained from the
requirement that the system must be canonical. This expres-
sion is different from that obtained in Ref.@21#, where the
system is considered noncanonical and the form ofW(r,j ) is
derived by using the stochastic quantization method.

The quantum system described by the Lagrangian density
~18! is canonical. This can be verified defining the fieldpc ,
canonically conjugate to the fieldc, by means of relation
~10!:

p
c
5 i \ c* . ~28!

It is well known thatpc is proportional to the fieldc* and,
while in the Lagrangian formalismc and c* are indepen-
dent fields, in the Hamiltonian formalism they are canoni-

cally conjugate. Let us also note thatpc* 50 and the degrees
of freedom are the same in both the Lagrangian and Hamil-
tonian formalisms.

Performing the Legendre transformation~11!, it is easy to
see that the Hamiltonian density can be written as

H5
\2

2 m
“c* “c1V c* c1U~c* c!

2k
\2

8 m
~c* “c2c “c* !2. ~29!

From Eq.~29!, it appears that the system may be unstable if
k,21/rmax. This is because if we ignore the potentials in-
volving V and U, modes with wave numberk @c
5Armaxexp$i(k–x2v t)%# have an energy E
5(\2 k2/2m) (11k rmax) which must be positive. This im-
poses the conditionk>21/rmax, that is the same as that
obtained in Ref.@21#.

The Hamilton equations take the forms

i \
] c

] t
5

d H

d c*
, ~30!

2 i \
] c*

] t
5

d H

d c
, ~31!

that are the Schro¨dinger equations for the fieldsc and c* ,
respectively. Within the Poisson formalism, Eqs.~30! and
~31! assume the form

] c

] t
5$c, H%, ~32!

] c*

] t
5$c* , H%, ~33!

as can be easily verified.
The physical system of particles obeying to the EIP intro-

duced semiclassically can be described by a canonical for-
mulation. This fact is of fundamental importance to the the-
oretical ground and to the possible applications.

IV. HYDRODYNAMIC FORMULATION

The wave functionc can be expressed in terms of the
particle densityr and the phaseS:

c~x,t !5r~x,t !1/2expF i

\
S~x,t !G . ~34!

We describe the physical EIP system in terms of these two
real independent fields@25# ~see also Ref.@26#, where a non-
linear Schro¨dinger equation is derived from a variational
principle in ther-S representation!.

Taking into account Eqs.~24! and ~34!, we obtain the
evolution equations of the phaseSand of the particle density
r:
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] S

] t
1

~“S!2

2 m
2

\2

2 m

Dr1/2

r1/2
1V1k r

~“S!2

m
1F~r!50,

~35!

] r

] t
1“F“S

m
r ~11k r!G50. ~36!

Equation~35! is aHamilton-Jacobi-type equation, where the
third term is the quantum potential@25#. The fifth term is
exactly the real partW(r,j ) of the term introduced by the
EIP potential~19!, as can be easily verified keeping in mind
the expression of the currentj given by Eq.~4!, or by

j5
“S

m
r ~11k r!. ~37!

Finally, the last term in Eq.~35! is the extra nonlinearity
discussed in Sec. III. We can see that the imaginary part
W(r,j ) of the term induced by the EIP potential does not
appear in the Hamilton-Jacobi equation~35!. The expression
of the current~37! is immediately obtained if we take into
account Eq.~36!, that is the continuity equation in ther-S
representation~the integral*r d3x is conserved!.

The Hamilton-Jacobi equation~35! and the continuity
equation~36! can be derived from a variational principle,
removing the two functional derivatives of the Lagrangian
L̃@r,S#:

d L̃

d r
50,

d L̃

d S
50. ~38!

The LagrangianL̃ is defined in Eq.~7! starting from the
Lagrangian densityL̃, which is given by

L̃5 i
\

2

] r

] t
2

] S

] t
r2

~“S!2

2 m
r2

\2

8 m

~“r!2

r

2V r2U~r!2k
~“S!2

2 m
r2, ~39!

as can be easily verified taking into account Eqs.~18! and
~34!. In the Lagrangian density~39! the first five terms are
the same terms occurring in the linear Schro¨dinger equation,
while the nonlinear contribution is given by the other terms,
the last of this is the potential introduced by the EIP.

Let us now introduce the Hamiltonian procedure. The mo-
mentump

S
, canonically conjugate toS, is given by Eq.~10!,

that now becomes

p
S
52r. ~40!

Moreover, we havepr5 i \/2. Therefore, as in Sec. III,pS is
proportional tor, while pr is a constant; the number of
degrees of freedom is the same in both the Lagrangian and
Hamiltonian formalisms.

The Hamiltonian density, a function of the canonically
conjugate fieldsS and 2r, can be deduced taking into ac-
count Eqs.~11! and ~39!:

H̃5
~“S!2

2 m
r1

\2

8 m

~“r!2

r
1V r1U~r!1k

~“S!2

2 m
r2.

~41!

The Hamilton-Jacobi and continuity equations take the forms

] S

] t
52

d H̃

d r
, ~42!

] r

] t
5

d H̃

d S
. ~43!

The same equations, in the Poisson formalism, can be rewrit-
ten as

] S

] t
5$S, H̃%, ~44!

] r

] t
5$r, H̃%. ~45!

The evolution equations~30! and ~31! or ~32! and ~33!, de-
duced fromH@c, c* #, have the same forms as the Eq.~42!

and ~43! or ~44! and ~45! deduced fromH̃@r, S#. Then, ac-
cording to a well-established procedure, we can relate the
fields c-c* to the fieldsS-r by means of a canonical trans-
formation@27#. The equations of motion in theS-r represen-
tation will be used in Sec. VI to study particular soliton
solutions of Eq.~24! that preserve their shapes in the time.
As we will show, we are able to decouple the system of
equations~42! and ~43! or equivalently Eqs.~44! and ~45!,
obtaining a differential equation in the variabler only,
whose solutions define the solitons of the systems with the
EIP.

V. EHRENFEST RELATIONS

We discuss the effect of the EIP on the time evolution of
the average of the most important physical observable that
describe the system. Let us assume that the nonlinear poten-
tial U(r) and the fieldc vanish at infinity, so that the surface
terms can be disregarded. Moreover, we assume that the po-
tential U(r) depends on the space and on the time only,
through the fieldr.

To obtain the Ehrenfest relations of the system obeying to
Eq. ~24! we verify, first that for a Hermitian operatorÂ
5Â† the following relation holds:

d

d t
^Â&5

i

\E FdH

dc
Â c2c* Â

dH

dc*
G d3x1K ] Â

] t L .

~46!

Let us callÔ the operator on the right hand side of the NLSE
~24!, that can be rewritten in the form

i \
] c

] t
5Ô c, ~47!

with
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Ô5Ĥ01F~r!1W~r, j !1 i W~r, j !, ~48!

whereĤ05(2\2/2m) D1V(x) is the Hamiltonian operator
of the linear theory. We can write relation~46! in the form

d

d t
^Â&5

i

\
^@ReÔ, Â#&1

1

\
^$Im Ô, Â%&1K ] Â

] t L ,

~49!

where the symbols@•,•# and$•,•% indicate the commutator
and anticommutator, respectively~also see Ref.@14#, where
an example of the Ehrenfest relations in a nonlinear Schro¨-
dinger equation with complex potential is discussed!.

After posing Â5x in Eq. ~49!, we obtain the following
Ehrenfest relation:

d

d t
^x&5

1

m
^~11k r! p̂&. ~50!

It is worth remarking that the EIP introduces the additional
momentum ^k r p̂&5k m j /(11k r). Note also that the
right hand side of Eq.~50! can be written as* j d3x, as in the
standard linear quantum mechanics.

A second relation is obtained settingÂ5p̂:

d

d t
^p̂&52^“ V&2^“F&. ~51!

Equation~51! can be seen as the second law of the dynamics
@28,29#. The dynamics of the mean value of the momentum
is governed by aneffective potentialgiven by the sum of the
external potentialV and of the nonlinearityF(r). The EIP
potential does not affect, on the average, the dynamics of the
system because, due to their particular form, the termsW and
W satisfy the relation̂ @W,“#2 i $W,“%&50. For the most
frequent nonlinearityF(r), generally appearing in the non-
linear Schro¨dinger equations, the last term can be dropped
and the Newtonian behavior is restored@28#. Conversely,
other dynamical equations, like the sine-Gordon equation, do
seem to show a different behavior from the Newtonian one.

Next, settingÂ5L̂ , where L̂ is the angular momentum
operator with componentsL̂ i5« i jk xj p̂k , we obtain

d

d t
^L̂ &5^M &1^M 8&, ~52!

with M , the momentum of the external force (Mi5
2« i jk xj ]kV), andM 8, the momentum of the internal force
(Mi852« i jk xj ]kF), introduced by the potentialU(r). As
in the previous relation, the EIP potential does not contribute
to the average of the angular momentum. Again if the non-
linear potential has a well behavior at infinity, the last term is
unremarkable on the dynamics of the system.

We discuss now the Ehrenfest relation concerning the en-
ergy. Let us note that the energy of a nonlinear, noncanonical
system is defined, analogously to the linear theories, asE

5^Ô&, whereÔ is the operator of the right hand side of the
NLSE ~24!. The energy of a canonical system, as we are
considering here, is given byE5H whereH is the Hamil-

tonian given by Eqs.~12! and ~29!. We can define a Hamil-
tonian operatorĤ whose average value is^Ĥ&5H. It is eas-
ily verified that

Ĥ52
\2

2 m
D1V~x, t !1

1

r
U~r!1

1

r
U

EIP
~r, j !. ~53!

If we compare this expression ofĤ with the expression of
the operatorÔ given by Eq.~48!, we find

Ĥ5” Ô, ~54!

meaning that the Hamiltonian operator of a nonlinear canoni-
cal system does not coincide with the operatorÔ of the right
hand side of the NLSE. Of course, in the case of the linear
theories we haveÔ5Ĥ5Ĥ0 .

Within the definitionE5^Ĥ&, in Appendix A we show
the following relation:

d E

d t
5 K ] V

] t L , ~55!

meaning that when time dependent external potentials are
absent, the system is conservative, beingd E/d t50. We
may conclude that the EIP does not introduce dissipative
effects. Of course we havêIm Ô&5^W&50 and then
d^Ô&/d t5d^ReÔ&/d t5” 0; the quantity ^Ô& is not con-
served.

Several models with nonlinearities on the right hand side
of the Schro¨dinger equation, characterized by time indepen-
dent average values, have been developed. For instance, in
the Kostin NLSE @30,31#, the operatorÔ is defined as
Ô5Ĥ01(\ g/2 i ) @ log(c/c* )2^log(c/c* )&# being a real
quantity; the energy of the system is defined asE5^Ô&. In
this case the nonconservation of^Ô& implies energy dissipa-
tion of the system.

In conclusion, we have shown that the EIP potential~19!
describes a conservative system. For a free system (V50)
and when the nonlinear potentialU(r) has a good behavior
at infinity, we are able to identify four constants of motion:

E5E H d3x, ~56!

^p̂&52 i \ E c* “c d3x, ~57!

^L̂ &52 i \ E c* x3“c d3x, ~58!

N5E r d3x, ~59!

representing, respectively, the energy, momentum, angular
momentum, and number of particles, conserved in virtue of
the continuity equation~5!.
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VI. SOLITONS

In this section we study a particular class of solutions of
Eq. ~24!. In the free case, i.e., whenV50, we can consider
the motion of the mass center on a straight line with uniform
velocity ~for a discussion of solitons in an external potential
see, for example, Ref.@32#!. In addition to the conditionV
50, we limit our attention to the one-dimensional case when
the EIP holds. To obtain solitonic solutions we use the
method described in Ref.@33#, valid for the NLSE’s that are
most frequently encountered in physical problems. Assuming
that the fieldc depends only on the timet and on the coor-
dinate of the soliton mass centerj5x7u t ~as usual, the
minus sign stands for a soliton moving from the left to the
right side of thex axis, while the plus sign stands for an
antisoliton moving in the opposite way! the wave function
becomesc(x,t)[c(j,t) and the particle densityr(x,t)
[r(j). We assume that, forj→6`, the particle density
r(j)→0 so that*2`

1`r(j) dj5N, where N represents the
particle number of the system. Moreover, the phaseScan be
written as

S5s~j!2e t, ~60!

and the fieldc assumes the form

c5r~j!1/2expH i

\
@s~j!2e t#J . ~61!

The parametere is related to the parameter« of Ref. @34#
through the relatione52«2m u2/2. It is now easy to verify
that the Hamilton-Jacobi equations~35! and the continuity
equation~36! describing the solitonic state can be reduced to
the following system of coupling equations

6u
]s

]j
5

112 k r

2 m S ]s

]j D 2

1Vq~r!1F~r!2e, ~62!

6u
]r

]j
5

1

m

]

]j F ]s

]j
r ~11k r!G , ~63!

where we have indicated withVq(r) the one-dimensional
quantum potential in thej coordinate:

Vq~r!52
\2

2 m

1

r1/2

]2r1/2

]j2
. ~64!

The quantum velocityvq(j)5m21]s(j)/]j must be finite
when j→6`; with this condition, Eq.~63! can be inte-
grated a first time, obtaining

] s

] j
56

m u

11k r
, ~65!

and after second integration with the conditionj(0)50, we
have

s~j!56m uE
0

j d j8

11k r~j8!
. ~66!

Equations~60! and~66! allow us to calculate the phaseS(j),
provided that the quantityr(j) is known.

To evaluate the densityr(j) we note that, if we take into
account Eq.~65!, Eq. ~62! reduces to the following second-
order differential equation:

2

r

d2 r

d j2
2S 1

r

d r

d j D 2

1
~2 m u/\!2

~11k r!2 2
8 m

\2
F~r!1

8 m e

\2
50.

~67!

Before solving this equation, we observe thate can be writ-
ten in the form

e5Vq1F~r!2
1

2
m u2

1

~11k r!2 . ~68!

Equation~68! has an immediate physical interpretation: the
quantum potential causes the spreading of the ordinary
Schrödinger wave packet; this spreading is compensated for
by the nonlinearity F(r) and by the EIP contribution
2(m u2/2) (11k r)22. Therefore it is possible to build up a
nonspreading solitary wave.

After the introduction of the function

y~r!5S 1

r

d r

d j D 2

, ~69!

Eq. ~67! reduces to a first-order linear differential equation

d y

d r
1

y

r
1

~2 m u/\!2

r ~11k r!2 2
8 m

\2

F~r!

r
1

8 m e

\2

1

r
50,

~70!

that can be easily integrated, giving

y~r!5
A

r
2

8 m e

\2
1

~2 m u/\!2

k r ~11k r!
1

8 m

\2

U~r!

r
, ~71!

whereA is the integration constant.
By comparing Eq.~69! to Eq. ~71!, we obtain

S d r

d j D 2

5A r2
8 m e

\2
r21

1

kS 2 m u

\ D 2 r

11k r
1

8 m

\2
r U~r!.

~72!

The determination of the soliton shape is thus reduced to the
solution of the first-order ordinary differential equation~72!.
By introducing the dimensionless variables

n5uku r ~73!

and

x5
2 m u

\
~x7u t!, ~74!

the Eq.~72! takes the form

S d n

d x D 2

5
n

s1n
1a n2

2 e

m u2 n21
2 uku
m u2 n Ũ~n!, ~75!

where a5A uku (\/2m u)2 is an integration constant and
Ũ(n)[U(r). The parameters5k/uku assumes the value
11 when the inclusion principle holds (k.0,n>0). Ac-
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cordingly, for the exclusion principle (k,0, 0<n<1), we
haves521. We note, finally, that while solving Eq.~75!,
we have to take into account the two arbitrary constantsa
ande that define a family of solutions.

From Eq.~57!, we have, in the soliton case,

^ p̂&56M u, ~76!

whereM is defined by

M5m E
2`

1` r

11k r
dx. ~77!

By using Eqs.~56!, ~26!, ~27!, and ~29!, we can write the
soliton energy

E5
^ p̂2&
2 m

1
k

2
m u2 E

2`

1`F S r

11k r D 2

1U~r!G dx. ~78!

To evaluate^ p̂2&/2m, we take into account Eq.~61!, and
obtain

^ p̂2&
2 m

5m u2 E
2`

1` r

~11k r!2
dx2E

2`

1`

r
d U~r!

dr
dx1e N.

~79!

Considering thatu5^ p̂&/2 M and Eq.~79!, the energy~78!
satisfies the following soliton energy-momentum dispersion
relation:

E5
^ p̂&2

2 M F11E
2`

1` r

~11k r!2
dxY E

2`

1` r

11k r
dxG

1E
2`

1`FU~r!2r
d U~r!

dr G dx1e N. ~80!

If we chose the constante, appearing in the phase ofc, as

e N5E
2`

1`Fr d U~r!

dr
2U~r!G dx

2
1

2
m u2E

2`

1` r

~11k r!2
dx, ~81!

the energy-momentum dispersion relation assumes the ex-
pression

E5
^ p̂&2

2 M
, ~82!

which is related to a free particle of massM , traveling with
momentum^ p̂&56M u.

VII. EFFECTIVE POTENTIAL

In this section we prove that a unitary nonlinear transfor-
mation of the solitonic statesc(j,t) of Eq. ~24! @c(j,t)
→f(j,t)# exists, and that the new statesf(j,t) are solu-
tions of a Schro¨dinger equation with an algebraic real non-
linearity. In other words, we introduce a unitary transforma-

tion for the solitonic statec(j,t) that reduces the derivative
complex nonlinearityL(r, j ), introduced by the EIP, to an
algebraic real one.

Let us consider the unitary transformations

c~j, t !→f~j, t !5U~j! c~j, t !, ~83!

U1~j!5U21~j!, ~84!

whereU(j) is given by

U~j!5expH i

\
@6m uj2s~j!#J . ~85!

We note that the transformationU actually is not well de-
fined by Eq. ~85! since it is only defined modulo integer
multiples of 2p. The new wave functionf(j,t) has the
same amplitude of the wave functionc(j,t) but a different
phase:

f~j, t !5r~j!1/2expH i

\
~6m uj2e t !J . ~86!

In Appendix B we show that the transformation defined by
Eqs.~83! and~85!, implies that the fieldf(j,t) satisfies the
following equation of motion:

i \
] f

] t
52

\2

2 m

]2 f

] x2
1Feff~r! f, ~87!

whereFeff is given by

Feff~r!5F~r!1
1

2
m u2 k r

21k r

~11k r!2
. ~88!

By means ofFeff(r)5d Ueff(r)/dr, we can introduce the po-
tential Ueff(r), which is given by

Ueff~r!5U~r!1
1

2
m u2 k

r2

11k r
. ~89!

We remark that the term (k m u2/2) r2/(11k r) originates
from UEIP(r, j ), and represent the EIP effect on the shape of
the soliton.

Let us consider the transformation recently introduced by
Doebner and Goldin@16,34#:

c~ t, x!→f~ t, x!5Ar~ t, x!expF i S g~ t !

2
logr~ t, x!

1
l~ t !

\
S~ t, x!1u~ t, x! D G . ~90!

Transformation~90! defines a class of nonlinear gauge trans-
formations, varying the parametersg(t), l(t), andu(t,x),
and has the important property of making linear a particular
subfamily of equations belonging to the Doebner-Goldin
equation family. By comparing Eq.~90! to Eq. ~85!, we can
note that the transformation introduced in this work is a par-
ticular case of the more general transformation introduced by
Doebner and Goldin. Transformation~85! is limited to the
soliton states without linearizing the Schro¨dinger equation
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describing these states. It reduces the complex nonlinearity
of the Schro¨dinger equation to another real one.

By following the same procedure of Sec. VI, we can de-
termine the shape of the solitonic solutions of Eq.~87!, that
are the same states of Eq.~24! modulo the phaseS(j,t). We
may obtain an equation analog to Eq.~75!:

S d n

d x D 2

5a8 n2
2 e8

m u2
n21

2 uku
m u2 n Ũeff~n!, ~91!

whereŨeff(n)5Ueff(r). The parametersa8 ande8 are related
to that of Eq.~75! by e5e82m u2/2,a5a82s. The prob-
lem of searching the solitonic solutions of Eq.~24!, with
derivative complex nonlinearities due to the EIP, is now re-
duced to a search of the solitonic solutions of a Schro¨dinger
equation with analytic real nonlinearity.

We consider now the nonlinear potential

U~r!5U0~r!2
1

2
m u2 k

r2

11k r
, ~92!

whereU0(r) is again an analytic real arbitrary potential in
r, and the second term is selected with the scope of elimi-
nating the effect of the EIP. Equation~75! now takes the
form

S d n

d x D 2

5a8 n2
2 e8

m u2 n21
2 uku
m u2 n Ũ0~n!. ~93!

Equation ~93! is identical to the equation of the solitonic
shape that we may find in the literature if we take a NLSE
with the analytic nonlinear potentialU0(r) @33#. Then Eq.
~93! allows us to use the soliton solutions of NLSE’s avail-
able in literature.

VIII. APPLICATIONS

As a first application of the results obtained in Sec. VII,
we consider the case where the potentialU(r)50. The par-
ticles of the system are submitted to the interaction intro-
duced only by the EIP. Equation~91! has the same form as
Eq. ~75!, with U(r)50, and can be written as

S d n

d x D 2

5
n

s1n
1a n1b n2, ~94!

with b522 e/m u2. This is a first-order differential equa-
tion of the typed n/d x5 f (n) with f (n) an analytic func-
tion, and can be integrated numerically. Alternatively, we
can search analytic solutions of Eq.~94! by suitably choos-
ing the values of the parametersa, b, ands. Analytic one-
soliton solutions of this equation were found in Ref.@35# in
the particular casess51, a521, andb51.

As a second application we now derive the nonlinear po-
tential U(r) which, when present simultaneously with the
EIP potentialU

EIP
(r, j ), permits the formulation of a soliton

with shape given byr(j)}@cosh(bj)#22. We start by con-
sidering the nonlinearity@36#

U0~r!52
m

2
r2. ~95!

The Schro¨dinger equation with this nonlinearity was recently
used to study the Bose-Einstein condensation@2–6#. In the
Gross-Pitayevski equation the parameterm is given by

m5
4 p \2 N a

m
, ~96!

whereN is the number of atoms in the condensate,m their
mass, anda is thes-wave triplet scattering length. Its value is
assumed to range in the interval 85a0 , a , 140a0 , a0 be-
ing the Bohr radius@37#.

Settinga850 andm.0, Eq. ~93!, with potential~95!, is
easily integrable, obtaining

r~j!5
N b

2
@cosh~b j!#22, ~97!

whereb is a dimensionless constant defined as

b5
m m N

2 \2
, ~98!

and the condition of normalizationN5* ucu2 dj, that fixes
the parametere52m2 m N2/8\2, has been taken into ac-
count.

The phaseS(j, t) of the soliton takes the form

S~j, t !52e t6m uj7m u
c

b
tanh21 @c tanh~b j!#,

~99!

with

c5S 11
2

k b ND 21/2

~100!

a dimensionless constant.
The EIP effect modifies the phase of the soliton. In the

limit k→0, i.e., when the EIP is switched off, the phase of
the soliton becomes equal to the phase of the soliton of the
cubic Schro¨dinger equation.

Finally, we remark that in the case of a pure exclusion
principle (k,0), the soliton exists, as we can see from Eq.
~99!, only if

4 \2.uku m m N2. ~101!

If we take into account the maximum value of the quantity
r(j), that isr(0)5m m N2/4\2 and the maximum number
of particles that can be put in a site@21#,

rmax5
1

uku
, ~102!

Eq. ~101! can be written in the form

r~0!,rmax. ~103!

This imposes no violation of the exclusion principle in the
central site, where the maximal occupation exists, and, con-
sequently, no violation of the exclusion principle on all the
other points of the space. Taking into account Eqs.~92! and
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~95!, we can write the potentialU(r), which generates the
soliton given by Eqs.~97! and ~99!, as

U~r!52
m

2
r22k

1

2
m u2

r2

11k r
. ~104!

IX. CONCLUSIONS

Let us recall the main results obtained in this work. Equa-
tions ~18! and ~29! define the Lagrangian and the Hamil-
tonian density and, by varying the analytic potentialU(r),
define a family of nonlinear quantum canonical systems
obeying the EIP. We have also derived the Ehrenfest rela-
tions of these systems.

We have deduced Eq.~75! which is an ordinary differen-
tial equation of first order. It can be solved to determine the
soliton shapes arised inside the system.

To make the system described by the Lagrangian~18!
more realistic, in view of possible applications in condensed
physics like superfluidity and superconductivity, it could be
interesting to couple it with an Abelian or non-Abelian gauge
field, like in the Chern-Simons model. This development is
the argument of our future research.

APPENDIX A

In this appendix we show the validity of Eq.~55! for those
systems described by the nonlinear real potentialU(r)
1U

EIP
(r, “ S) whereU

EIP
(r, “ S) is the EIP potential writ-

ten as a function of the densityr5c* c and of the gradient
of the phaseS5( i \/2) log(c* /c). This potential can be ob-
tained from Eqs.~20! and ~37!:

U
EIP

~r, “ S!5
k

2 m
r2 ~“ S!2. ~A1!

Equation~46!, by posingÂ[Ĥ, where Ĥ is given by Eq.
~53!, becomes

d E

d t
5E F2

\2

2 m

] c*

] t
D c2

\2

2 m
c* D

] c

] t
1V

] r

] t
1r

] V

] t

1
]

] t
~U1U

EIP
!G d3x. ~A2!

By using the equations of motion of the fieldsc andc* ,

i \
] c

] t
5F2

\2

2 m
D1V1F1W1 i WG c, ~A3!

2 i \
] c*

] t
5F2

\2

2 m
D1V1F1W2 i WG c* , ~A4!

with W, F, andW given by Eqs.~3!, ~23!, and~25!, respec-
tively, Eq. ~A2! becomes

d E

d t
5E F i

\3

4 m2
D c* D c

2 i
\

2 m
c* ~V1F1W2 i W! D cG d3x

2E F i
\3

4 m2
c* D2 c

1 i
\

2 m
c* D @~V1F1W1 i W! c#G d3x

1E F S V1
] U

] r
1

] U
EIP

] r
D ] r

] t
1

] U
EIP

]~“ S!

] ~“ S!

] t
G d3x

1 K ] V

] t L , ~A5!

where we have used the relation

]

] t
~U1U

EIP
!5

] U

] r

] r

] t
1

] U
EIP

] r

] r

] t
1

] U
EIP

]~“ S!

] ~“ S!

] t
.

~A6!

In Eq. ~A5!, integrating by parts and neglecting the surface
terms, we obtain

d E

d t
5

2 i \

2 m E ~V1F1W! ~c* D c2c D c* ! d3x

2
\

2 mE W ~c* D c1c D c* ! d3x

1E H S V1
] U

] r
1

] U
EIP

] r
D ] r

] t

2“F ] U
EIP

]~“ S!
G ] S

] t J d3x1 K ] V

] t L . ~A7!

Using Eqs.~35! and ~36!, that we can rewrite in the forms

] r

] t
52“S“ S

m
r D1

2

\
rW, ~A8!

] S

] t
5

\2

2 m

D Ar

Ar
2

~“ S!2

2 m
2V2F2W, ~A9!

and taking into account the relations

] U

] r
1

] U
EIP

] r
5F1W, ~A10!

“F ] U
EIP

]~“ S!
G52

2

\
rW, ~A11!

2
i \

2 m
~c* D c2c D c* !5“ S“ S

m
r D , ~A12!
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~c* D c1c D c* !52 r FD Ar

Ar
2S“ S

\ D 2G ~A13!

derived from Eqs.~A1! and ~34!, Eq. ~A7! becomes

d E

d t
5E ~V1F1W! “ S“ S

m
r D d3x

2
\

mE rW FD Ar

Ar
2S“ S

\ D 2G d3x

1E ~V1F1W!F2“S“ S

m
r D1

2

\
rWG d3x

1
2

\ E rW F \2

2 m

D Ar

Ar
2

~“ S!2

2 m
2V2F2WG d3x

1 K ] V

] t L . ~A14!

We can immediately obtain

d E

d t
5 K ] V

] t L , ~A15!

which coincides with Eq.~55!.

APPENDIX B

In this appendix we show that the unitary transformation
introduced by Eqs.~83! and~85!, in the case of soliton states,
transform Eq.~24!, containing a complex nonlinearity, into
Eq. ~87!, containing a real nonlinearity. Let us consider defi-
nitions ~83! and ~85! and Eq.~66!. The unitary transforma-
tion can be rewritten as

c~j, t !5expF2
i

\
G~j!G f~j, t !, ~B1!

where

G~j!56m uS j2E
0

j d j8

11k r~j8!
D , ~B2!

and j5x7u t. After deriving Eq.~B1!, we obtain the rela-
tions

] c

] t
5F] f

] t
2

i

\

] G

] t
fG e2 i G/\, ~B3!

]2 c

] j2
5F2

i

\

]2 G

] j2
f2

1

\2 S ] G

] j D 2

f

2 i
2

\

] G

] j

] f

] j
1

]2 f

] j2 G e2 i G/\. ~B4!

By considering Eqs.~60!, ~65!, and~B2!, we obtain

] S

] j
5

1

k r

] G

] j
, ~B5!

and then the currentj , given by Eq.~37!, becomes

j5
1

k m
~11k r!

] G

] j
. ~B6!

In the case of soliton states the Schro¨dinger equation~24!
becomes

i \
] c

] t
52

\2

2 m

]2 c

] j2
1F~r! c1k

m

r S j

11k r D 2

c

2 i k
\

2 r

]

] j S j r

11k r D c. ~B7!

By using Eqs.~B3!, ~B4!, and~B6!, we may write Eq.~B7!
in the form

] G

] t
f1 i \

] f

] t
52

\2

2 m

]2 f

] j2
1

i \

2 m

]2 G

] j2
f1F~r! f

1
21k r

2 m k r S ] G

] j D 2

f1
i \

m

] G

] j

] f

] j

2
i \

2 m r

]

] jS ] G

] j
r D f. ~B8!

We use now the relation] G/] t57u ] G/] j with

] G

] j
56m u

k r

11k r
, ~B9!

@easily derivable from Eqs.~65! and ~B6!#, Eq. ~B8!, and

2
i \

2 m r

] G

] j

] r

] j
f1

i \

m

] G

] j

] f

] j

5
i \

2 m S f*
] f

] j
2f

] f*

] j D ] G

] j

f

r
. ~B10!

If we take into account thatjf56u r, we arrive at the fol-
lowing NLSE:

i \
] f

] t
52

\2

2 m

]2 f

] j2
1F~r! f1

1

2
m u2 k r

21k r

~11k r!2
f.

~B11!

Let us now introduce the variablex and defineFeff(r):

Feff~r!5F~r!1
1

2
m u2 k r

21k r

~11k r!2
; ~B12!

then Eq.~B11! can be rewritten as

i \
] f

] t
52

\2

2 m

]2 f

] x2
1Feff~r! f. ~B13!

Equation~B13! coincides with Eq.~87!.
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