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Nonlinear canonical quantum system of collectively interacting particles
via an exclusion-inclusion principle
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and Istituto Nazionale di Fisica della Materia, Unitdel Politecnico di Torino, COCSO Duca degli Abruzzi 24, 1-10129 Torino, Italy
2Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Casella Postale 170, 1-09042 Monserrato, Italy
(Received 28 April 1998; revised manuscript received 13 July 1998

Recently[G. Kaniadakis, Phys. Rev. B5, 941(1997], we introduced a Schdinger equation containing a
complex nonlinearityN(p,j) +i W(p,j) which describes the collective interaction introduced by an exclusion-
inclusion principle(EIP). The EIP does not affedV(p,j) and determine3\(p,j) univocally. In the above
referenceW(p,j) was deduced by means of a stochastic quantization approach, in this way obtaining a
noncanonical quantum system. In this work we introduce a family of nonlineavitfesj) generating a family
of nonlinear canonical quantum systems, and derive their Lagrangian and the Hamiltonian functions and the
evolution equations of the fields. We derive also the Ehrenfest relations and study the soliton properties. The
shape of the soliton, propagating in the system obeying the EIP, can be obtained by solving a first-order
ordinary differential equation. We show that, in the case of soliton solutions, by means of a unitary transfor-
mation, the EIP potential is equivalent to a real algebraic nonlinear potential proportior@’t¢1+ « p).
[S1063-651%98)11511-9

PACS numbds): 05.30—~d, 03.65-w, 05.20:-y

I. INTRODUCTION -Vp, Vj [13-16 as, for instance, in the Doebner-Goldin
equation associated with a certain unitary group representa-
It is widely known that the effects of collective interac- tion and describing irreversible and dissipative quantum sys-
tions in a particle system, commonly studied in the frameiems.
work of quantum many-body theories, can be linked to non- In a one-dimensional particle system, a firm relation ex-
linearities in the one-particle Schtimger equation. Several ists between statistic; and collective interactions. For in-
nonlinear Schidinger equation§NLSE’s) have been studied Stance, the  potential U(x)=m e (a—1) Zj<i(x
in the past, and recently, they have been commonly used im X)) >, describing the collective interaction of the
many different fields of research in physics. The cubic equaC@logero-Sutherland model, implies that the particle system
tion, for instance, with the nonlinear term proportional to S ruled by the Haldane-Wu statistigs7-19. _ ,
+ | 4|2, has been used to study the dynamical evolution of a. Also a two-dimensional system, where collective excita-
boson gas with &-function pairwise repulsion or attraction, tions can describe superconductive features, the particles
responsible for its anyonlike behavigl]. Recently, this composing J.[he system obey the S0 called anyonic statistics,
equation has been used to describe the Bose-Einstein Coggtgall_y an important ad_vanced field of research. Collective
densation2—6] and the dynamics of two-dimensional radi- xcitations, usually studied by means of a many b_ody guan-
ating vortices[7]. The nonlinear ternjy|? appears in the tum theory, can also be analyzed with the one-particle NLSE

X - approach. Due to this fact, we can argue that an eventually
Ginzburg-Landau model of the superconductiyy, a phe-  onunivocal relation holds between statistics and interaction

nomenon also investigated by means of the Eckhaus equatroduced by the nonlinearities contained in NLSE's. For
tion, which is a NLSE with a nonlinearity of the tyd#|”  instance, in the case of the anyons, many authors adopt the
+a|y]* [9]. The same equation appears in superfluidity,NLSE approach to study the superconductivity.

where the properties of a gas of bosons interacting via a Since the beginning of quantum mechar(it832 [20], it
two-body attractive and three-body repulsigdunction in-  was understood that effects due to the statistics and imposed
terparticle potential are investigat¢d0,11. The Eckhaus by the Pauli exclusion principle to a system of free fermions
equation can describe nonlinear waves in optical fibers witltan be simulated by a repulsive potential in the coordinate
a “normal” dependence of the refractive index on the light space; under its action the particles evolve in time. Analo-

intensity[7]. NLSE’s with nonlinearities involving the quan- gously, free bosons can be submitted to an attractive poten-
tity j have been also introduced to study planar systems afal.

particles with anyonlike unconventional statistj@®]. In the When we deal with many-body fermion systems, due to
literature we can find NLSE’s with complex- or derivative- the presence and effectiveness of the Pauli exclusion prin-
type nonlinearities involving the quantitiesVp)? Ap,j  ciple, we may encounter serious difficulties in calculating the

dynamics and the stationary states. After the introduction of
particles obeying intermediate statistics and of a generalized

*Electronic address: kaniadakis@polito.it Pauli principle, the difficulties can be increased. A semiclas-
"Electronic address: quarati@polito.it sical approach to describe systems of particles of different
*Electronic address: scarfone@polito.it intermediate statistics, from Fermi-Dirac to Bose-Einstein, is
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very useful in deriving evolution and equilibrium statistical ~Because the approach of stochastic quantization is nonca-
distributions. The exclusion-inclusion principlEIP) (as we  nonical, we think that it is of great importance for its appli-
call a generalized Pauli principle acting in the coordinatecations to verify if it can be also canonically formulated and
space can be accounted for, within a semiclassical approachy derive a canonical formulation.
to describe systems of particles with different statistics by The introduction of the EIP is equivalent to the insertion
using Fokker-Planck and/or Boltzmann equations. into the Hamiltonian function of a potential which sets a
Recently[21], by using an appropriate stochastic quanti-co|iective behavior to the particles of the system and can be
zation method, we have quantized a Markoffian procesgqged to other potentials that take into account the interac-
which obeys a generalized Pauli exclusion-inclusion prin+jns of particles among themselves. Let us discuss two ex-
ciple in the coordinate space, and have obtained the follows 165 \where EIP can be usefully applied. In nuclear physics
ing NLSE: the correlation effects between pairs of nucleons, viewed as
by 52 fermions, are quite relevant in the interpretation of experi-
i % T ﬁA U+A(p,j) y+V i, (1) mental results. Similarly, the interactions among bosons are
relevant in various nuclear modésuperfluid model, inter-
where acting boson model, mean field boson approximatiand
allow the explanation of many collective nuclear properties.
Alp, ))=W(p, ) +i W(p,]), (2)  The interaction among the fermionic valence nucleons out-
. _ o side the core produces pairs of correlated nucleons that can
I:Xt?gs(;?on;pé?);hgomgeamy mtrcid_uced by the EIP, and thebe approximated as particles with a behavior intermediate
P ginary part 1S between fermionic and bosonic ones. This nuclear state
(quasideuteron statecan be viewed as a particle system
(3)  which obeys to EIP. Recently, we studied a semiclassical
model of photofission in the quasideuteron energy region
The expression of the quantum current is [23]. We described the quasideuteron state as a mixture of
fermion and boson states, with a good agreement of our cal-
N . . culated photofission cross sections of several heavy nuclei
J=— 55 kp) (PEV =y V y7). @ and experimental results.
The second example is the Bose-Einstein condensation
The EIP enters the expressionjahrough the multiplicative  (BEC): The condensation originates from an attraction of
factor 1+« p, which behaves as an enhancement factostatistical natureBose-Einstein statistitsamong the par-
when x>0, and as an inhibition factor whea<0, while the ticles. In several papers BEC is studied by means of a cubic
EIP is absent wher=0. Since the above factor depends onNLSE [2]. In place of the cubi¢and simplestnonlinearity,
p=|y/?, the EIP introduces a collective interaction. In Ref. other nonlinearities can be considered as, for instance, the

[21] it was shown that the parameteris the lower bound, one introduced by EIP with a positive parameter to simu-
and the allowed range of its values &&= —1/pmax- The  late the particle attraction.

ip

_ h
W(p,j)=—«k Trrp)

2p

currentj in Eq. (4) satisfies the continuity equation We consider the present work as a natural continuation of
Ref.[21]. We examine canonical systems that obey the EIP,

&—p+V j=0 (5) and analyze aspects of the Lagrangian and Hamiltonian for-

at ' malism, the Ehrenfest relations, and the solitonic properties

of the canonical systems.
The real part of the complex term is not determined by the | Sec. |1, we recall the main relations of the canonical
EIP. There are infinite choices of the real part of the nonlingrmulation that will be used in this work. In Sec. I, after
earity A(p,j); any choice does not violate the EIP. the introduction of the Lagrangian density, we derive a non-
We recall that in Ref{21], in order to obtain intermediate |inear equation which contains, within the canonical formu-
statistics, we used a stochastic quantization appr$a2h |ation, all the effects introduced by the exclusion-inclusion
and derived the following expression of the real part of theprinciple. The Hamiltonian formulation is also developed. In

nonlinear term: Sec. IV, we fix our attention to the hydrodynamic formula-
) tion of the canonical system obeying the EIP, and derive the
W(p)=« h Ap 2-Kp (Vp)? ©6) evolution equations of the fields and S. In Sec. V we

discuss the Eherenfest relations and write the mean con-
served quantities of the EIP system; successively, in Sec. VI,
It can be shown that the system described by Efjs.(2),  we study the solitonlike solutions of our system. In Sec. VII
(3), and(6) is noncanonical. Its noncanonicity is due to the we derive an effective potential simulating the effects intro-
particular choice of the nonlinearity given by E®). duced by the EIP in the case of solitons, and we rewrite the
The classical motion of canonical coordinates and moequations describing the shape of the solitons in a form
menta has a simple quantum analog. For this reason quantwwhich allows us to use the soliton technigues available in the
mechanics has been built up in analogy with the classicditerature. In Sec. VIII, as an application, we consider a sys-
Hamiltonian theory. The Lagrangian allows one to collect alltem where the collective effects, are described by a particular
the equations of motion and express them as stationary proponlinearity, and derive explicitly the shape and the phase of
erties of a given action function. the soliton profile. Conclusions are reported in Sec. IX.

— +
am l+kp 2p(1+kp)?



5576 G. KANIADAKIS, P. QUARATI, AND A. M. SCARFONE PRE 58

1. CANONICAL FORMALISM OUTLOOK

where the Poisson brackets of the fie{ds functiong A(X)

Let us recall the main quantities, definitions, and relations; AL j(x), mj(x)] and B(y) =B[ #;(y), m;(y)] are defined

of the canonical formulation that we will use in this work.
We consider a quantuik-field nonrelativistic canonical sys-
tem described by the Lagrangian densitf[¢;]
=L(¢;, d1¢;, di¢;) function of the scalar fieldg;(x,t) and
of their first derivativesd,¢p; and d;¢; with ¢;elL?, j
=1,...N; &=dldt; andg;=d/dx;, wherei=1,2, and 3.
The Lagrangian functioh. of the system is the functional

L:f £ d3x, (7)

and the evolution equations of the fielgs can be obtained
by the variational principle

oL o j=1...N (8)
5¢l_ ] J_ [ICECEERELE ¥

where the functional derivative is defined as

oL oL d oL 2.4 ac
e ©

If we introduce the fieldsm;, canonically conjugate mo-
menta of the fieldsp; defined as

__9L (10)
90 ¢y

we can write the Hamiltonian density H[ ¢;]
=H(e;, 7, did;, dim;), related to the Lagrangian density,
by a Legendre transformation

N

(9 .

H=>, wjﬁ—c. (11)
=1 Jt

The HamiltonianH of the system is

Hzf H d3x. (12

The system admits a canonical formulation if the evolution

with time of the fields¢; and of the canonically conjugate

momenta; can be described by the Hamilton equations

(see, for example, Ref24])

d¢; SH
Tt om (13
am_ M i,
Jt 5¢;’

y the relation

N SA(X) 8B(Y)
{AX), B(y)}=2, [5¢j(z)5771(2)

=1
_ 5B(y) SA(X)
5¢,(2) 5m(2)

d3z. (17)

Ill. CANONICAL EIP SYSTEM

In this section, we will assume a particular expression of
the Lagrangian density, and shaposteriorithat the equa-
tion of motion admits the continuity equatigh) with the
currentj given by Eq.(4). Let us consider the complex func-
tion ¢, corresponding to the field used to describe the quan-
tum system, and derive the differential equations that the
function ¢ and its complex conjugat¢* must satisfy. The
Lagrangian density can be expressed in terms of the fields
¢ and ¢*

—i *(9lﬂ h2 * * *
L=thy— =5V VY=V " y=U" )
hZ
* _ *\2
tRgm (VY= VYT~ (18

The first three terms in the Lagrangian density are the same
encountered in the standard linear quantum description. The
fourth term is a nonlinear real potential that, for the sake of
simplicity, we assume to be an arbitrary analytic nonderiva-
tive function only ofp=#* . This potential is used to de-
scribe other interactions in the system. By appropriately
choosing its form, Lagrangiafl8) can be used to describe
different physical systems containing nonlinear interactions
and admitting the Elsee below, Sec. VIJI Finally, the last
term is the EIP potential

2

f
Upth 09)= = kg (0" V=g Vy*)% (19
using Eq.(4), we can write

_ m
Uop )=k

(20

1+kp

The LagrangiarL=L[*, ] is given by the Egs(7) and
(18). The Schrdinger equation for the fields can be ob-

that can be written in a fully equivalent way, by means of thetained by requiring that the functional derivative lofwith

Poisson formalism:

I _
(g, M1, (15
Imj _

respect to* should be zero:

SL
Sy

=0, (21)

and can be written, in an explicit form, as
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2 5
Iﬁﬂ__ﬁA lﬂ‘l‘Vl[l‘l‘F(p)lﬂ

2

h
AL AL SN

hZ
— kg VW VY=gV g (22
whereF(p) is given by
Ju
F(p)= ai}” ! (23

It is easy to see that this nonlinear evolution equation i

consistent with the continuity equatidb) with the current

given by Eq.(4). This equation can also be written, using the

current(4) and the particle density, in the form

2

'ﬁalp— ﬁZA \% F m J

h— =AYtV (P)l/f+'<; Trrp ¥
. ip
ik V| | (24)

Equation(24) is the NLSE of Eq(1), with the same imagi-
nary partWW(p,j) and with the real paftV(p,j) of the non-
linear quantityA (p,j) given by

j 2
1+kp

(25

Wip. =" |
(PvJ)—Kp

Analogously, the Schdinger equation for the fielg®* can
be explicitly derived from the relatiodL/§ #=0.

Note that the imaginary part of Eq24) is fixed by the
requirement that the system described by Lagrangizh
satisfies the continuity equatiofs) with the current(4),
which we write as

i=(1+xp)i, (26)

where

if
o= 57 (U* V= y V) @7)
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cally conjugate. Let us also note thaj+ =0 and the degrees
of freedom are the same in both the Lagrangian and Hamil-
tonian formalisms.

Performing the Legendre transformatigi), it is easy to
see that the Hamiltonian density can be written as

hZ
H= 5 Vy* VgV g gt Uy )
ﬁZ
—Kﬁ(lﬁ* V=g V)2, (29)

From Eq.(29), it appears that the system may be unstable if
k<—1lpmax- This is because if we ignore the potentials in-

Rolving V and U, modes with wave numbek [y

=VpmxeXpik-x—wt)}] have an  energy E
=(A%k?/2m) (1+ Kk pmay) Which must be positive. This im-
poses the conditionk=—1/p,.» that is the same as that
obtained in Ref[21].

The Hamilton equations take the forms

dy  oH
i E_élﬂ*, (30
ay*  SH
—1 9t —5—'70, (31)

that are the Schdinger equations for the fieldg and *,
respectively. Within the Poisson formalism, E¢80) and
(31) assume the form

Iy

Sr =t H) (32
&w*_ .

——={y* Hl, (39

as can be easily verified.

The physical system of particles obeying to the EIP intro-
duced semiclassically can be described by a canonical for-
mulation. This fact is of fundamental importance to the the-
oretical ground and to the possible applications.

is the quantum current without the EIP. The real part of the

nonlinearityA(p,j), given by Eq.(25), is obtained from the

IV. HYDRODYNAMIC FORMULATION

requirement that the system must be canonical. This expres- 1he wave functiony can be expressed in terms of the

sion is different from that obtained in Rdf21], where the
system is considered noncanonical and the for/6p,j) is
derived by using the stochastic quantization method.

The quantum system described by the Lagrangian density

(18) is canonical. This can be verified defining the fietg,
canonically conjugate to the fielgg, by means of relation
(10):

'7T(//Zi ho*. (29
It is well known that, is proportional to the fields* and,
while in the Lagrangian formalisng and ¢* are indepen-

particle densityp and the phasé&:

7 S(x,t)

P(x,t)=p(x,t)¥2exp : (34)

We describe the physical EIP system in terms of these two
real independent field25] (see also Ref.26], where a non-
linear Schrdinger equation is derived from a variational
principle in thep-S representation

Taking into account Egs(24) and (34), we obtain the
evolution equations of the phaSeand of the particle density

dent fields, in the Hamiltonian formalism they are canoni-p:
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2 2 2 2
JS (VS)?2 h? Ap' (VS)? ~_(VS* 4% (Vp) (V9 ,
H—’_ om —mﬁﬁ‘ +Kp m +F(p):O, H= 2m p+8m +VP+U(P)+K 2m p-
(35) 41
5 vs The Hamilton-Jacobi and continuity equations take the forms
P
ﬁﬂ—V[Fp(l-{-Kp) =0. (36) 3 5T
ETEai (42)
Equation(35) is aHamilton-Jacobitype equation, where the P
third term is the quantum potentig25]. The fifth term is P ST
exactly the real partW(p,j) of the term introduced by the 7P _ - (43)
EIP potential(19), as can be easily verified keeping in mind at &S

the expression of the currepgiven by Eq.(4), or by . ) ) . ]
The same equations, in the Poisson formalism, can be rewrit-

VS ten as
j=~yp(Q+«xp). (37
aS ~
E:{s, H}, (44
Finally, the last term in Eq(35) is the extra nonlinearity
discussed in Sec. Ill. We can see that the imaginary part
W(p,j) of the term induced by the EIP potential does not a_p:{p ﬁ}_ (45)
appear in the Hamilton-Jacobi equati@®5). The expression Jt

of the current(37) is immediately obtained if we take into ] .
account Eq(36), that is the continuity equation in theS  The evolution equation&30) and (31) or (32) and(33), de-
representatiorithe integralf p d®x is conservey duced fromH[ ¢, ¢ ], have the same forms as the E42)

The Hamilton-Jacobi equatiofB5) and the continuity and(43) or (44) and(45) deduced fronH[p, S]. Then, ac-
equation(36) can be derived from a variational principle, cording to a well-established procedure, we can relate the
removing the two functional derivatives of the Lagrangianfields ¢-¢* to the fieldsS-p by means of a canonical trans-
Lp,SI: formation[27]. The equations of motion in tH& p represen-

tation will be used in Sec. VI to study particular soliton
ST solutions of Eq.(24) that preserve their shapes in the time.
—=0, —=0. (38) As we will show, we are able to decouple the system of
6S equations(42) and (43) or equivalently Eqs(44) and (45),
_ obtaining a differential equation in the variable only,
The LagrangianL is defined in Eq.(7) starting from the whose solutions define the solitons of the systems with the

Lagrangian density, which is given by EIP.
~ hap 9SS (VS)? #? (Vp)? V. EHRENFEST RELATIONS
=l ST TP 5 P T a
24t ot 2m 8m p We discuss the effect of the EIP on the time evolution of
(VS)2 the average of the most important physical observable that
—Vp—U(p)—« >m P, (39 describe the system. Let us assume that the nonlinear poten-

tial U(p) and the field/ vanish at infinity, so that the surface
terms can be disregarded. Moreover, we assume that the po-

as can be easily verified taking into account E(4s®}) and tential U(p) depends on the space and on the time only,

(34). In the Lagrangian densit{89) the first five terms are X
L g e . through the fieldo.
the same terms occurring in the linear Satinger equation, ; . .
: . AT To obtain the Ehrenfest relations of the system obeying to
while the nonlinear contribution is given by the other terms, _ i = .
the last of this is the potential introduced by the EIP. Eq; (24) we verify, first that for a Hermitian operatok
Let us now introduce the Hamiltonian procedure. The mo-=A" the following relation holds:
mentumsr, canonically conjugate t8, is given by Eq(10), R
that now becomes d - _ '_j SHo a0 s [9A
dt<A>_ﬁ (MAz,b Vi A&/,* d°x+ TR
7 =—p. (40) (46)

Moreover, we haver,=i /2. Therefore, as in Sec. llirgis Let us callO the operator on the right hand side of the NLSE

proportional top, while 7, is a constant; the number of (24), that can be rewritten in the form

degrees of freedom is the same in both the Lagrangian and

Hamiltonian formalisms. | ﬁﬁ_lﬂ _oy 7)
The Hamiltonian density, a function of the canonically at '

conjugate fieldsS and —p, can be deduced taking into ac-

count Egs(11) and(39): with
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O= |:|o+ F(p)+W(p,j)+i Wp, j) (48) tonian given by Eqs(12) and(29). We can define a Hamil-
tonian operatoH whose average value {§1)=H. It is eas-
whereH = (—#2/2m) A +V(x) is the Hamiltonian operator iy verified that

of the linear theory. We can write relatidd6) in the form )

N fi 1 1 )
d A _i o 6 A +1 I é A N &A H:_ﬁA_l—V(X’t)_I—;U(p)+;UEIP(p'J)' (53)
gi(A =7 ([ReO, A+ - ({ImO, Ah+{ ——/, )
(49 If we compare this expression &f with the expression of

where the symbol§-, -] and{-,-} indicate the commutator the operatoO given by Eq.(48), we find

and anticommutator, respectivelgiso see Refl14], where A
an example of the Ehrenfest relations in a nonlinear Schro H+O, (54)
dinger equation with complex potential is discussed _ o _ _
After posingA=x in Eq. (49), we obtain the following M€aning that the Hamiltonian operator of a rjonllnear canoni-
Ehrenfest relation: cal system does not coincide with the operadoof the right
hand side of the NLSE. Of course, in the case of the linear

theories we hav®=H="H,.
Within the definitionE=(H), in Appendix A we show

the following relation:
It is worth remarking that the EIP introduces the additional

d 1 R
g% =5 {1+ xp)p). (50)

momentum (k p p)=x mj/(1+« p). Note also that the dE [0V
right hand side of Eq(50) can be written agj d3x, as in the Framteral (55)
standard linear quantum mechanics.
A second relation is obtained settidg=p: meaning that when time dependent external potentials are
absent, the system is conservative, bethg/d t=0. We
i(ﬁ)z—(VV)—(VF). (51 May conclude that the EIP doesi not introduce dissipative
dt effects. Of course we havéimO)=(W)=0 and then

Equation(51) can be seen as the second law of the dynamicgéglzg t=d(ReO)/d t+0; the quantity(O) is not con-

[28,29. The dynamics of the mean value of the momentum
is governed by aeffective potentiagjiven by the sum of the o . . o
of the Schrdinger equation, characterized by time indepen-

external potentiaV and of the nonlinearity=(p). The EIP : .
. . dent average values, have been developed. For instance, in
potential does not affect, on the average, the dynamics of the

system because, due to their particular form, the tafamd ~ the Kostin NLSE[30,31, the operatorO is defined as
W satisfy the relatio[W,V]—i {W,V})=0. For the most O=Hq+ (% y/2i) [log(¥/y*)—(log(y/4*))] being a real
frequent nonlinearity=(p), generally appearing in the non- quantity; the energy of the system is definedgas(O). In

linear Schrdinger equations, the last term can be droppedpis case the nonconservation(@) implies energy dissipa-
and the Newtonian behavior is restorg2B|. Conversely, tion of the system.

other dynamical equations, like the sine-Gordon equation, do |, conclusion. we have shown that the EIP poter(tl®)
seem to show a different behavior from the Newtonian oneyescribes a conservative system. For a free sysiémQ)

Next, settingA=L, whereL is the angular momentum and when the nonlinear potentidi(p) has a good behavior
operator with componenﬂéizgijk X] P«, We obtain at infinity, we are able to identify four constants of motion:

Several models with nonlinearities on the right hand side

d . , .
gL =(M)+(M"), (52 E=f Hd3x, (56)

with M, the momentum of the external forceM(= R
—&jjk X; &V), andM’, the momentum of the internal force (p)y=—ith f P* Vi d3x, (57
(M{=—gjj xj 9kF), introduced by the potentiall(p). As
in the previous relation, the EIP potential does not contribute
to the average of the angular momentum. Again if the non- (Ly=—i# j P XXV d3X, (58)
linear potential has a well behavior at infinity, the last term is
unremarkable on the dynamics of the system.

We discuss now the Ehrenfest relation concerning the en- B
ergy. Let us note that the energy of a nonlinear, noncanonical N= f pdx,
system is defined, analogously to the linear theoriesk: as

=<©>, whereQ is the operator of the right hand side of the representing, respectively, the energy, momentum, angular
NLSE (24). The energy of a canonical system, as we aranomentum, and number of particles, conserved in virtue of
considering here, is given bf=H whereH is the Hamil-  the continuity equation5).

(59
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VI. SOLITONS

In this section we study a particular class of solutions o

Eqg. (24). In the free case, i.e., whevi=0, we can consider

the motion of the mass center on a straight line with uniform 2 1dp\2
velocity (for a discussion of solitons in an external potential — __( p)

see, for example, Ref32]). In addition to the conditiorVV

=0, we limit our attention to the one-dimensional case when
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To evaluate the density(&¢) we note that, if we take into

faccount Eq(65), Eq. (62) reduces to the following second-

order differential equation:

(2muh)?
(1+xp?

8me
F(p)+ =0.

ﬁZ
(67)

8m
e

pdé

p d &2

the EIP holds. To obtain solitonic solutions we use the

method described in Reff33], valid for the NLSE's that are

most frequently encountered in physical problems. Assuming

that the fieldys depends only on the timeand on the coor-
dinate of the soliton mass centée=x+ut (as usual, the

minus sign stands for a soliton moving from the left to the

Before solving this equation, we observe tleatan be writ-
ten in the form

1
- TP
e=V4tF(p) 2mu —Z(lJer) . (68)

right side of thex axis, while the plus sign stands for an gquation(68) has an immediate physical interpretation: the

antisoliton moving in the opposite wagyhe wave function
becomesy(x,t)=¢(£,t1) and the particle density(x,t)
=p(£). We assume that, fof— * o, the particle density
p(£€)—0 so thatf"Zp(&) dé=N, whereN represents the
particle number of the system. Moreover, the phasan be
written as

S=s(&)— et, (60)
and the fieldy assumes the form
i
¢=P(§)llzeXD{g[S(§)—6t]]- (61)

The parametek is related to the parameter of Ref. [34]
through the relatior= — & —m U?/2. It is now easy to verify
that the Hamilton-Jacobi equatioit35) and the continuity

equation(36) describing the solitonic state can be reduced t

the following system of coupling equations

N &s_l+2Kp s\ ?

U= o | g +Vq(p)+F(p)—€, (62
L _1a[ds
_ua—g—m a—§P(1+KP) ) (63)

where we have indicated witk/y(p) the one-dimensional
guantum potential in thé coordinate:

hZ
2m pl2 ge2 '

1 (92p1/2

Vq(P): - (64)

The quantum velocity;q(f):mflas(g)/ag must be finite
when ¢— *o; with this condition, Eq.(63) can be inte-
grated a first time, obtaining
aJs
3
and after second integration with the conditi&®©)=0, we
have

mu
l+kp’

==+

(65

¢ d¢
s(§)==m uf £ (66)

01l+kp(¢)

Equationg60) and(66) allow us to calculate the phaSgé),
provided that the quantitg(¢) is known.

quantum potential causes the spreading of the ordinary
Schralinger wave packet; this spreading is compensated for
by the nonlinearity F(p) and by the EIP contribution
—(m W/2) (1+ « p) 2. Therefore it is possible to build up a
nonspreading solitary wave.

After the introduction of the function

y(p)= (69)

__P)Z
pdé)’

Eq. (67) reduces to a first-order linear differential equation

dy y (2mu#h)> 8mF(p) 8mel
dp o h@Fkp? w2 p | p2 p
(70)
dhat can be easily integrated, giving
A 8me (2muk)? 8mU(p)
y(p):;_ 12 kp(itkp) 5z p 7y

whereA is the integration constant.
By comparing Eq(69) to Eq.(71), we obtain

Z p
1+kp

pt—

dp\? 8me 1/2mu

- 2
dé %

8m
+ 2P U(p).
(72

The determination of the soliton shape is thus reduced to the
solution of the first-order ordinary differential equatitf?).
By introducing the dimensionless variables

n=|«| p (73
and
2mu
X=—7 (xFut), (74)
the Eq.(72) takes the form
dn\> n 2¢ , 2|« 5 -
dx) “orn TN T mE" T me" (n), (79

where a=A|k| (A/2m u)? is an integration constant and

U(n)=U(p). The parameter= /|| assumes the value
+1 when the inclusion principle holds«&0,n=0). Ac-
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cordingly, for the exclusion principle<0,0<n=<1), we tion for the solitonic state/(¢,t) that reduces the derivative
haveo=—1. We note, finally, that while solving Eq75), complex nonlinearityA (p, j), introduced by the EIP, to an
we have to take into account the two arbitrary constants algebraic real one.

and e that define a family of solutions. Let us consider the unitary transformations

From Eq.(57), we have, in the soliton case,
P&, )= (& )=UE) P(E,1), (83

U (H=U-*é), (84)
wherel{(¢) is given by

(p)=*Mu, (76)

whereM is defined by

J— +Oo p 1
Mem [ o 70 U<§>=exp[f'i—[rm us—s@)]}. (85)
By using Egs.(56), (26), (27), and (29), we can write the

: We note that the transformatidd actually is not well de-
soliton energy

fined by Eq.(85) since it is only defined modulo integer
multiples of 27r. The new wave functionp(¢,t) has the

2
(p > uzf + U(p)|dx. (78  same amplitude of the wave functiaf(¢,t) but a different
phase:
To evaluate(p?)/2m, we take into account Eq61), and i
To evaluate(p’) 461 ¢(§,I)ZP(§)UZEXP{%(imU§—6t)]- (86
<|52> +o0 p += dU(p) In Appendix B we show that the transformation defined by
omo f ——d —f P4 dx+eN. Egs.(83) and(85), implies that the fieldp(¢,t) satisfies the
—= (1+kp) o p (79 following equation of motion:
idering thati=(p)/ d h B
Considering thati=(p)/2M and Eq.(79), the energy(78) i ﬁW: ~ 50~ TFeilp) ¢, 87
satisfies the following soliton energy-momentum dispersion m gx
relation: o
whereF s is given by
Sl [
E= dx 1 2+ kK
2m —w<1+f<p>2 T Fer(p)=F(p)+ smPrp—— "t (89)
2 (1+kp)?
t+oo d U(p)
+ f_m U(p)—p dp dx+eN. (800 By means ofF o(p)=d Ues(p)/d p, we can introduce the po-
tential U¢(p), which is given by
If we chose the constart, appearing in the phase gf, as 1 p?
eNZJ' P —U(p)|dx
o P We remark that the termix(m u?/2) p2/(lﬂL K p) originates
1 o from Ugp(p, j), and represent the EIP effect on the shape of
- —m UZJ de, (81) the soliton.
2 —= (1+kp)? Let us consider the transformation recently introduced by

Doebner and Goldinl6,34:
the energy-momentum dispersion relation assumes the ex-

pression [ y(b)
p(t, X)— (1, x) = Vp(t, x)ex+ (Tlogp(t, X)
N\ 2
E= —<zpn>ﬂ ' ®2 A(D)
+ —S(t X)+ 0(t, x)) (90
which is related to a free particle of malk traveling with
momentuny p)=+M u. Transformation(90) defines a class of nonlinear gauge trans-
formations, varying the parametesgt), \(t), and 6(t,x),
VIl. EEEECTIVE POTENTIAL and has the important property of making linear a particular

subfamily of equations belonging to the Doebner-Goldin
In this section we prove that a unitary nonlinear transfor-equation family. By comparing E¢90) to Eq. (85), we can
mation of the solitonic stateg(&,t) of Eq. (24) [#(&,t) note that the transformation introduced in this work is a par-
— ¢(&,1)] exists, and that the new stateég£,t) are solu-  ticular case of the more general transformation introduced by
tions of a Schrdinger equation with an algebraic real non- Doebner and Goldin. TransformatidB5) is limited to the
linearity. In other words, we introduce a unitary transforma-soliton states without linearizing the Schinger equation
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describing these states. It reduces the complex nonlineariffhe Schrdinger equation with this nonlinearity was recently
of the Schrdinger equation to another real one. used to study the Bose-Einstein condensaf®n6]. In the

By following the same procedure of Sec. VI, we can de-Gross-Pitayevski equation the parameteis given by
termine the shape of the solitonic solutions of E&j7), that

are the same states of H@4) modulo the phas8(¢,t). We _4mh®Na (96
may obtain an equation analog to E@5): m= m '
dn\? ) 2¢' , 2|k - whereN is the number of atoms in the condensatetheir
dyl &N 7 "+ 2 N Yer(n), (91)  mass, ana is thes-wave triplet scattering length. Its value is

assumed to range in the interval &< a < 140a,, ay be-
ing the Bohr radiug37].

Settinga’ =0 andu>0, Eq.(93), with potential(95), is
easily integrable, obtaining

whereU o¢(n)=Ue(p). The parametera’ ande’ are related

to that of EQ.(75) by e=€'—m W?/2,a=a’' — o. The prob-
lem of searching the solitonic solutions of E@4), with
derivative complex nonlinearities due to the EIP, is now re- N b
duced to a search of the solitonic solutions of a Sdimger p(&)= T[Cosl’(b o172, (97
equation with analytic real nonlinearity.

We consider now the nonlinear potential whereb is a dimensionless constant defined as

2

U(P):UO(P)—%m W Kk (92 b:,umN

l+kp’ :
P 242

(98)
whereUy(p) is again an analytic real arbitrary potential in - o ) ]

p, and the second term is selected with the scope of elimi@nd the condition ofznorn;al|z:;t|0N:f|¢| d¢, that fixes
nating the effect of the EIP. Equatici75) now takes the the parametee=—pu“m N°/8%°, has been taken into ac-

form count.
The phases(&, t) of the soliton takes the form
<dn>2 =280 2 Ty, 09
—| =a'n- n“4+ ——=n Ugy(n). c
dx m u* mu O S(¢,t)=—etzmuéFmu—tanh [ctanib &)],

b
Equation (93) is identical to the equation of the solitonic (99
shape that we may find in the literature if we take a NLSE
with the analytic nonlinear potentialy(p) [33]. Then Eq.  With
(93) allows us to use the soliton solutions of NLSE'’s avail-

able in literature. c=|1+

2 —-1/2
) (100

kb N

Vill. APPLICATIONS a dimensionless constant.

As a first application of the results obtained in Sec. VI, The EIP effect modifies the phase of the soliton. In the
we consider the case where the poteritl§p) =0. The par- limit x—0, i.e., when the EIP is switched off, the phase of
ticles of the system are submitted to the interaction introthe soliton becomes equal to the phase of the soliton of the
duced only by the EIP. Equatiai®1) has the same form as cubic Schradinger equation.

Eqg. (75), with U(p)=0, and can be written as Finally, we remark that in the case of a pure exclusion
principle («x<<0), the soliton exists, as we can see from Eq.
dn\?2 n 5 (99), only if
— = +an+pBn4 (94
dyx o+n ) >
452> k| um N (101

with B=—2 e/m (2. This is a first-order differential equa- ) . )
tion of the typed n/d y=f(n) with f(n) an analytic func- If we take into account the maximum value of the quantity

tion, and can be integrated numerically. Alternatively, weP(§), thatisp(0)=x m N*/44% and the maximum number
can search analytic solutions of E@4) by suitably choos- ©f particles that can be put in a sit1],
ing the values of the parametaxs 8, ando. Analytic one-
soliton s_,olutions of this equation were found in Rg5] in P — (102
the particular cases=1, a=—1, andB=1. | |

As a second application we now derive the nonlinear po- . :
tential U(p) which, when present simultaneously with the Eq. (101 can be written in the form
EIP potentiall _ (p, j), permits the formulation of a soliton

EIP < .
with shape given by (&)=[coshp 8] 2 We start by con- PLO)<Pmax (103
sidering the nonlinearity36] This imposes no violation of the exclusion principle in the
central site, where the maximal occupation exists, and, con-
Ug(p)=— Mo, (95) sequently, no violation of the exclusion principle on all the
P 2P other points of the space. Taking into account E§8) and
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(95), we can write the potentidll(p), which generates the g 73
soliton given by Eqs(97) and(99), as —:f i— Ay Ay
dt 4m?
1 2
U(p)=—%p2—f<§m uzlfkp- (104 —i%,p* (V+F+W—i W) A ¢| d3x
h3
IX. CONCLUSIONS —f i—— A%y
4m?
Let us recall the main results obtained in this work. Equa-
tions (18) and (29) define the Lagrangian and the Hamil- R ) 3
tonian density and, by varying the analytic potenti(p), i ALVERFWHIW) 9] | d™X
define a family of nonlinear quantum canonical systems
obeying the EIP. We have also derived the Ehrenfest rela- U ‘?Uap) Jp aUEIP 9(VS)
tions of these systems. f V+—+ —+ d3x
We have deduced E75) which is an ordinary differen- dp  dp ot 4V Jt
tial equation of first order. It can be solved to determine the IV
soliton shapes arised inside the system. <H> (A5)

To make the system described by the Lagrandib®)
more realistic, in view of possible applications in condenseqNhere we have used the relation
physics like superfluidity and superconductivity, it could be
interesting to couple it with an Abelian or non-Abelian gauge JU g IV au__ 4 (V S
field, like in the Chern-Simons model. This development is —(U +U )=— P, _"erP EP

the argument of our future research. e’ gp gt dp ot VS It 46

APPENDIX A In Eq. (A5), integrating by parts and neglecting the surface

. . . terms, we obtain
In this appendix we show the validity of E(5) for those

systems described by the nonlinear real potentigp) dE -i%

+U_.(p, V'S) whereU_ (p, V S) is the EIP potential writ- qi-2m (V+HF+W) (% A y— iy A *) d3x

ten as a function of the densip~= ¢* ¢ and of the gradient

of the phaseS= (i #/2) log(/* /). This potential can be ob- h 3
tained from Egs(20) and (37): “om | WA YA YT d X
gy 9 UEIP d P
K -
UEIP(P,VS)Zmpz(V S)2. (A1) +f v+ ap T dp at
du__1ss oV
. T A V| o [ A3+ —). (A7)
Equation(46), by posingA=H, whereH is given by Eg. AV S)|at at
(53), becomes
Using Egs.(35) and(36), that we can rewrite in the forms
dE h? oy h? d d oV
m:”‘z— S Y A Ve v T 2w (A8)
m at mP) T RPTY
+_(U+UEIP) d3 (AZ) JS hZ A \/; (V S)Z

atam y, 2m VETW A9

By using the equations of motion of the fielgsand y*, o )
and taking into account the relations

Y { h? . } aU
ifi—o=| = A+VEFHWHIW g, (A3) U EP_
2m r7p+ 7p F+W, (A10)
'h[w* [ n A+V+F+W 'W} *, (Ad) "Ver 2
—i =|—5— =i , =——
T > m Y Viavs |~ rPW (A11)

with W, F, andW given by Egs(3), (23), and(25), respec-

h VS
tively, Eq. (A2) becomes oW AY—YAYT)=V (WP), (A12)
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AVp [VS)?
(P* Ay+yAy*)=2p ——(—) (A13)
Jp h
derived from Egs(Al) and(34), Eq. (A7) becomes
dE—fv F+W)V Vs d3
ar ) VEREWIV e dx
) A VSs\?
__pr _\/I—)_(_) d3X
m \/; h
VS 2
+J(V+F+W) —V|—p|+pW d3
m h
2 h? A V S)?
+—pr B ANp (VS% | bl
h 2m \/,—) 2m
iad Al4
77 (Al14)
We can immediately obtain
dE_[aV ALE
at o\t ) (A19)

which coincides with Eq(55).

APPENDIX B

In this appendix we show that the unitary transformation
introduced by Eqs83) and(85), in the case of soliton states,
transform Eq.(24), containing a complex nonlinearity, into
Eq. (87), containing a real nonlinearity. Let us consider defi-
nitions (83) and (85) and Eq.(66). The unitary transforma-

tion can be rewritten as

e t>=exp[—,'—ir<§>} seD, (B
where
. (¢ d¢’
F(g)_‘mu<§ folwp(g'))’ ®2

and é=x7Fut. After deriving Eq.(B1), we obtain the rela-
tions

iy d¢p i ol it
E—[E‘%H‘ﬁ}e : B3
P i i T 1 [oT)\?
22 | R 2% e ¢
dé hoo¢ #2\ ¢
20T a¢ Pl
By considering Eqgs(60), (65), and(B2), we obtain
Js 1 9T
— = (B5)
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and then the current given by Eq.(37), becomes

1 aT

iZK—m(lJer)a—g. (B6)

In the case of soliton states the Satirger equation(24)
becomes

_h(w_ h? a2y - m ] \?
et T T am e TP el Y
. hod | jp
—IKZa—g —1+Kp . (B?)

By using Eqs(B3), (B4), and(B6), we may write Eq(B7)
in the form

or . a¢  h* P ih T
H(ﬁﬁ-lhﬁ——ﬁa—gzﬁ-mﬁ—gz +F(p)¢
2+kp (al\2  ihal 9¢
+MMJE'MEGHE
i a(al‘)
T Imp o 9E” b. (B8)

We use now the relationI'/dt=FudI'/d & with

Kp
1+kp’

—=+tmu

aE

[easily derivable from Egg65) and(B6)], Eq. (B8), and

(B9)

it T ap ikl ae
“ampacae® mat ot

ik 9 a¢r\al ¢

sl ¢ e ey e

If we take into account thgt,= =u p, we arrive at the fol-
lowing NLSE:

1%
¢ +
at 2m g g2 2

Let us now introduce the variableand defineF .4(p):

Fei(p)=F( )+1 2 2¥xp (B12)
= MW kp——r,
effl P Pt 5 p(l+Kp)2
then Eq.(B11) can be rewritten as
) h? P
ifh W_ — W‘l‘ Feff(p) ¢ (813)

Equation(B13) coincides with Eq(87).
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