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1 Introduction

Let us consider a nonlinear eigenvalue problem of the form
(A u) e RxK
Jo [DuD(v —u) + p(z,u)(v—u)] de > X [, u(v—u)dzx YveK (1.1)
fQ u?dr = p?

where (2 is a bounded open subset of R", K is a convex closed subset of H3 () of the

form

K= {ueH)Q): ¢1 <u <},
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p is a given nonlinearity and p > 0.

If p(z,-) is odd, 1) = —1)2 and suitable qualitative conditions are satisfied, it has
been shown that (1.1) admits a sequence (Aj, u;) of solutions with A\; — 400 (see [6,
8, 18]).

Therefore one can ask what happens, if (1.1) is subjected to a non-symmetric
perturbation. More precisely, one can expect that the number of solutions of the
perturbed problem becomes greater and greater, as the perturbed problem approaches
the original symmetric problem.

This type of result has been proved in [13], for a perturbation of (1.1) of the form
(N u) e RxK

Jo [DuD(o = u) + (p(a, w) + au(,w) (v = w)] d +
+ <pp,v—u>> A, ulv—u)de YveK
| Jq u?dz = p?

where g, and pj become smaller and smaller in a suitable sense.
The purpose of this paper is to get the same result for a perturbation of (1.1) of
the form
(M u) e Rx Ky
Jo [DuD(v —u) + p(z,u)(v—u)] de > X [ u(v—u)de YveK, . (1.2)
Jo u?dx = p?
Here (Kj) is a sequence of convex closed subsets of H}(Q) convergent to K in the
sense of Mosco [21]. Our main contribution (Theorem (3.12) ) asserts that for every
m € N there exists h € N such that for every h > h problem (1.2) admits at least m
solutions.
In the case of equations, results of this kind have been obtained in [1, 4, 17].
Moreover, in some situations, the perturbed problem has still infinitely many solutions

(see [3, 4, 5, 19, 22, 26]).



For variational inequalities, situations of this type have been considered in bifur-
cation problems (see, for instance, [11, 12, 14, 20, 23, 24]). However, in that case the
limit problem (1.1) has a very particular structure (K is a convex cone and p(z, ) is
linear). Moreover, it is K, = th]f{ with t;, — +o00 and K a fixed closed convex set.

As an example, suppose that 1 € H'(Q) and consider two sequences (1) and
(on) in HY(Q) such that

won <0< Yy, a. e.
li = li = —
imip =9, im g, = —1)
in the strong topology of H!(£2). Then the case in which

K={ueH;(Q): ¢ <u<y a e},

Kn = {uec Hy(Q): on <u < ¢y a e

can be treated by our approach, even if it has not the structure of a bifurcation
problem.

In the next section, we modify the notion of essential value, introduced in [13],
to get a tool suitable for our purposes. The most important section is the third one,
where we prove the main results.

The author wishes to thank professor Marco Degiovanni for helpful discussions.

2 Essential values of continuous functionals

In the following X will denote a metric space endowed with the metric d and f : X —

R a continuous function. If b € R := R U {—o00, 400}, let us set

fP={ueX: f(u) <b}.



For the topological notions involved in this section, the reader is referred to [25].

(2.1) Definition. Let a,b € R with a < b. The pair (fb, f“) is said to be trivial, if
for every neighbourhood [o/, '] of a and [5’, 5”] of b (0/, o, B, pB" e E) there exists

a continuous map H : ffBl x [0,1] — f*BN such that
H(x,0) =x Ve i

(7 1) € r
M (f“’ % [0, 1]) c o

(2.2) Remark. If a < o in the above definition, we can suppose, without loss of
generality, that H(x,t) = x on f*x [0, 1]. Actually, it is sufficient to substitute H(z,t)
with # (z,t0(z)), where 9 : f# — [0,1] is a continuous function with 9(x) = 0 for

f(z) <a and d(z) =1 for f(x) > .

(2.3) Theorem. Let a,c,d,b € R witha < c<d <b. Let us assume that the pairs
(fb,fc) and (fd,f“) are trivial.
Then the pair (fb, f“) is trivial.

Proof. Let [/, o'] be a neighbourhood of a and [5’, 5] a neighbourhood of b. Without
loss of generality, we can assume «” < ¢ and ' > d. Moreover, let ¢ < v < d. There
exists a continuous map Hy : f% x [0,1] — f5” such that H;(z,0) = 2 V& €
5 Hy (ffB/ X {1}) C f7, Ha <fo‘// x [0, 1]) C f7 and such that Hi(x,t) =z on
£ % [0,1]. Moreover there exists a continuous map Hs : f7 x [0,1] = f# such that
Ho(z,0) = & Yo € 7, Ho (7 x {1}) C f*, Ha (fo‘, x [0, 1]) C fo". If we define
H:f% % [0,1] — f%" by

Hi(u, 2t) 0<t<i
H(u,t) =
Ho (Ha(u,1),2t—1) 1 <t<1



it turns out that H is a continuous map with the required properties, therefore the

thesis follows. m

(2.4) Definition. A real number c is said to be an essential value of f, if for every

e > 0 there exist a,b €]c—¢, c+¢[ with a < b such that the pair (fb, f“) is not trivial.
(2.5) Remark. The set of essential values of f is closed in R.

(2.6) Theorem. Let a,b € R with a < b. Let us assume that f has no essential
value in |a, b.

Then the pair (fb, f“) 18 trivial.

Proof. For a slightly different notion of essential value, the assertion is proved in [13,
Theorem (2.5)]. Taking into account Theorem (2.3) , the same argument works in

the present context. m
Now let us recall a notion from [9, 15].

(2.7) Definition. For every u € X let us denote by |df|(u) the supremum of the o’s
in [0, +00[ such that there exist § > 0 and a continuous map H : Bs(u) x [0,6] - X
with

d(H(v,t),v) <1,

fH(v, 1)) < fv) —ot.

The extended real number |df|(u) is called the weak slope of f at w.

If X is a Finsler manifold of class C' and f a function of class C, it turns out
that |df|(u) = ||df (u)|| for every u € X.
Let us point out that the above notion has been independently introduced also in

[16].



(2.8) Definition. An element u € X is said to be a critical point of f, if |df|(u) = 0.
A real number c is said to be a critical value of f, if there exists a critical point u € X

of f such that f(u) = ¢. Otherwise c is said to be a regular value of f.

(2.9) Definition. Let ¢ be a real number. The function f is said to satisfy the
Palais - Smale condition at level ¢ ((PS). in short), if every sequence (up) in X with

|df |(up) — 0 and f(up) — ¢ admits a subsequence (up, ) converging in X.

(2.10) Theorem. Let c be an essential value of f. Let us assume that X is complete
and f satisfies (PS),.

Then c is a critical value of f.

Proof. Again the result is proved in [13, Theorem (2.10)] for a slightly different notion

of essential value, but the same argument works in our case. m

(2.11) Theorem. Let E be a normed space, D a symmetric subset of E with respect
to the origin with 0 € D and f : D — R an even continuous function. Let us assume

that D is non-empty and k—connected for every k > 0. For every h > 1 let us set

¢, = Inf su U
h cel'y uegf( )7

where Ty, is the family of compact subsets of D of the form ¢(S"=1) with ¢ : SP=! — D
continuous and odd.

Then Ty, # 0 for every h > 1 and we have
sup ¢y, < sup {c € R : ¢ is an essential value of f}
h

with the convention sup ) = —oo.

Proof. In [13, Theorem (2.12)] it is shown that I'j, # ) for every h > 1.
Let us set

v =sup{c € R : ¢ is an essential value of f}.



It is readily seen that ¢; = i%f f is an essential value of f or ¢; = —oo0. Therefore
c1 < . By contradiction let us assume that sup ¢;, > ~y. Hence there exists h > 1 such
that ¢, < v < cpy1. Let a,a,0’,0” € R be S}:lCh that vy < a <o <a < a” <cpyr.
There exists ¢ : S"~1 — D continuous and odd with ¢(S"~1) C @ and there exists
a homotopy H : S"~1 x [0,1] — D between ¢ and a constant map. Since a > v, f

has no essential value in |a, +00[. By Theorem (2.6) the pair (D, f%) is trivial. Let
B =max {f(H(z,t)):x€S" ! te[0,1]}.

Then there exists a continuous map 7 : f% x [0, 1] — D such that n(z,0) = x Va € f#,
n(f°x{1}) C o <f"‘/ x [0, 1]) C f*" and n(z,t) =z on f*x[0,1]. Let us
define K : S"1 x [0,1] = f*" by K(z,t) = n(H(z,t),1). Then K is a homotopy
between ¢ : S"~1 — f*" and a constant map. By [17, Lemma VI.4.5] there exists

Y 8" — fo” continuous and odd. This is absurd, as @’ < ¢p,1. ®

3 Multiplicity of solutions for non-symmetric variational inequalities

Let ©2 be a bounded open subset of R with n > 3, let p : @ xR — R be a Carathéodory

function such that
p(.T,—S) = —p($78),
sp(xz,s) > 0,
Ip(z,s)| < a(x)+ bls|"

with a € Lf_&(Q), beR,0<r< 22 and let p > 0. For every h € N :=NU {+o0}
let K}, be a convex closed subset of Hg(£2) with 0 € K}, such that the sequence (Kj)
is convergent to K., in the sense of Mosco [21]. This means that the following two

properties are satisfied:



a) if hy — 400, u; € K;, and u; is weakly convergent to u in H}(Q), then u € Ko;
b) for every u € K, there exists a sequence (uy,) strongly convergent to u in Hg (£2)

with up € K.

In the following || - ||, will denote the norm in LP(f2) and | - ||1,, the norm in

Wi (Q).

We are concerned with the family of nonlinear eigenvalue problems

()\,u) € R x K,
Jo [DuD(v —u) + p(z,u)(v —u)] dv > X [qu(v—u)dr YveK, . (3.1)
fQ u?dr = p?

Problems (3.1) have a variational structure. Let us set

S, = {uELQ(Q): /qu:c = p2}
Q
and let us define for every h € N the functional fj, : K, NS » — R by
1 2
fu(u) = 5 [ |Dul*drx + [ P(z,u)dxr,
2 Jo Q

where P(z,s) = [, p(z,t)dt. In the following, the set K; NS, will be endowed with

the H}-metric.
Let us recall a definition from [7].

(3.2) Definition. Let C be a convex subset of a Banach space X, let M be a
hypersurface in X of class C!, let w € C N M and let v(u) € X’ be a unit normal

vector to M at u. The sets C' and M are said to be tangent at u, if we have either
<vu),v—u><0 Yo e

or

<v(u),v—u>>0 YveC,



where < -,- > is the pairing between X’ and X.

The sets C' and M are said to be tangent, if they are tangent at some point of
CNnM.

Let us set
D={ (hu) eNxS,: ueK, and K;, and S, are not tangent at u} .
In the following, D will be endowed with the topology induced by N x L2(Q).
(3.3) Theorem. For every € > 0 there exists a continuous map
n:D — Hy ()
such that for every (h,u) € D we have

n(h,u) € Ky, ,

/u(n(h,u)—u)dm > 0,
Q
(R u) —ullz < €,
1 2 2 | =
1Dk )3 < LDul + €.

1
-2

Proof. For every (h,u) € D let us denote by ¥ (h,u) the set of ¢’s in |0, +oo[ such

that there exists u™ € K;, with

1 1
[ utut —wds > o, Ju ~ul < £, 31Du"I§ < SIDul} + £.
Q
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Because of the definition of D, for every (h,u) € D we can find u™ € K; with
Jou(ut —u)dr > 0. By substituting v with (1 — t)u + tu™ for some ¢ €]0, 1[, we
can also suppose that |lut — uls < €, and $||Dut|3 < 1| Dul3 + . Therefore
Y (h,u) is a non-empty interval in R.

Moreover, let us consider o € (0o, u) and let us choose u™ € K., according to
the definition of ¥(oco,u). Let (u;) be a sequence converging to u™ in H{(Q) with
(u;") € Kp. Then it is readily seen that o € X(h,v) for every (h,v) sufficiently close
to (oo, u) in D.

Now it is easy to see that, for every (h,u) € D and for every o € ¥(h,u), we have
o € X(k,v) whenever (k,v) is sufficiently close to (h,u) € D. Therefore there exists
a continuous function o : D —]0, +o00[ such that o(h,u) € X(h,u).

For every (h,u) € D let us denote by F(h,u) the set of u*’s in K}, such that

1 1
[ utut —wds = 0w, Ju —ulz < £, 51D < S1Dulf + £,
Q

Then F(h,u) is a non-empty closed convex subset of H} ().

Let (oo,u) € D, u™ € F(oo,u) and € > 0. Let 47 € Ko be related to o(co,u),
as in the definition of ¥ (oo,u). By substituting 4™ with (1 — ¢t)u™ + ta™ for some
t €]0,1[, we can suppose that [[a* —u™ |12 < £. Let (4;) be a sequence converging
to at in H}(Q) with 4,7 € Kp. Then it is readily seen that || — ut|l;2 < € and
;" € F(h,v) for every (h,v) sufficiently close to (oo, u) in D.

Now it is easy to see that the multifunction {(h,u) — F(h,u)} is lower semi-
continuous on D. By Michael selection theorem [2, Theorem (1.11.1)] there exists a

continuous map 7 : D — H}(Q) such that n(h,u) € F(h,u) and the thesis follows. m

(3.4) Lemma. Let us assume that Ky and S, are not tangent. Then for every

b€ R and & > 0 there exists a functionn : D — H}(Q) as in Theorem (5.3) such that

1
—/ |Dv|? dx + / P(z,v)dr < foo(u) + €
2 Ja Q
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whenever
(1 —t)u+ tn(oo,u)
[(1 = t)u + tn(oo, u)||2

V=
with u € fb , t €[0,1].
Proof. By contradiction, let us assume that there exist b € R, £ > 0, u; € fb, t; €

0, 1] and a sequence of functions n; : D — H}(Q) such that ||n;(co,u;) — ujlle < %,

LDn;(00,u;) 3 < 31Dugll3 + 4 and

1 1
—/ |Dv;|* dv + / P(x,v;)dx > —/ |Du;|® dz + / P(z,uj)dx + €
2 Jo Q 2 Jo 0

with
v; = p LT 1) FE515(00, ;)
TN = )y + tyn; (oo, uy) |2

Up to a subsequence, (u;) is weakly convergent in Hg (£2) to some u € Koo NS,. Hence
we have that 7;(co,u;) — w in Hg (). It follows that [(1 —¢;)u; + t;n;(c0,uj)] —
u in H(2), hence v; — wu in H}(Q). On the other hand, from [|(1 — ¢;)u; +

tin;(oo,u;)|l2 > p we deduce that
1 2 ~ 1 2
= [ |[Duyj|*dz + | P(z,uj)de + ¢ < = [ |Dvj|*dx + | P(z,v;)dx <
2 Ja Q 2 Ja Q

1 1
< —/ |Du;|? dz + ~ +/P(x,vj)da:.
2 Ja J Q

For j sufficiently large we get a contradiction and the thesis follows. m

For every h € N let us denote by 7, : H3(€2) — Kj, the orthogonal projection in

H}(Q) on the closed convex set Kj,.

(3.5) Lemma. Let us assume that Ky and S, are not tangent. Letb € R, € > 0

and n : D — H}(Q) be as in the previous lemma. Moreover, if u € Ky NS, and

mh(n(oo,u)) # 0, let
mh(n(00, u))
|75 (n(c0, u))ll2

Pyp(u) = p
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Then there exists h € N such that the following facts hold:

fb—l—Qé .

a) for every h > h the sets K;, and S, are not tangent at u, whenever u € f, 7" ;

b) for every h,k € N with h,k > h and u € f}; we have

[ (n(k; w)lle > p,

o (n(k, )
hGWWMwWQ

c) for every h > h,u € f° andt € [0,1] we have

)snwwwa

11 = t)n(00, Poo(u)) + tmeo(n(h, Pr(w)))lla > p,

f (p (1 —£)n(00, Poo(u)) + tmeo(n(h, Pn(u)))
AT = 8)n(00, Po(u)) + tmoe(n(h, Pr(u)))ll2

) < foolu) + 4.

Proof. Let us prove property a). By contradiction, let us assume that there exist
hr — +oo and uy € fg:% such that Kj, and S, are tangent at u,. Since 0 € K, ,

we have

/uk(v—uk)d:v <0 Vv € Ky,
Q

and, up to a subsequence, (u) is weakly convergent in H} () to some u € Ko N Sy
Let v € K. There exists v;, € K, such that v, — v in H}(Q). Therefore for every

k € N we have
/uk (vp, —uk) de <0,
Q
which implies

/Qu(v—u)dac <0

a contradiction, because Ko, and S, are not tangent.
Let us prove property b). First of all, by contradiction, let us assume that there

exist hj — +o0, k; — 400 and u; € f,i’j such that

70, (ks ui))]|, < o
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Up to a subsequence, (u;) is weakly convergent in H} () to some u € K N S,.
Consequently, (n(kj,u;)) is strongly convergent in H}(Q) to n(oco,u). Let vy be a

sequence converging to n(co, u) in Hi (Q) with v;, € K, . We have that
0

70y (ks u)) = nlkj ug)ll, , < llony, — nks,ug)le-

Therefore ; (n(kj, u;)) — n(co,u) in Hj (), which implies ||n(co,u)||2 < p. This is
absurd, as [, u(n(co,u) —u)dz > 0.
Now, by contradiction, let us assume that there exist h; — +o00, k; — +00 and

u; € f,i’j such that

fu < h; (n(kj, uj))

||7Thj(77(/€j,uj))||2> > fr,;(uj) + 2¢.

Up to a subsequence, (u;) is weakly convergent in H}(2) to some u € Koo N S,. As

in the previous argument, it follows 7, (7(k;, u;)) — n(oo,u) in Hg (). Since
foo(u) < liminf fi;(u;),
j

by Lemma (3.4) we get a contradiction.
Let us prove property c¢). First of all, by contradiction, let us assume that there

exist hj, — 400, ux, € f2 and t;, € [0,1] such that

I(1 = )n(00, Poo(ur)) + trmoo ((hk, Phy (ur)))ll2 < p-

Up to a subsequence, (uy) is weakly convergent in H{ () to some u € Koo NS,. Asin
the proof of property b), we have that 7, (n(co,uy)) — n(co,u) in H}(Q). It follows
P, (ur) = Poo(u) and n(hy, Py, (ug)) — n(0o, P (u)) in H}(Q). As in the proof of
b), we get a contradiction.

Finally, by contradiction, let us assume that there exist hy — 400, up € f2 and

tr € [0,1] such that

P (p (1 — t)n(00, Poo (uk)) + trmoo (n(h, Pry (ur)))
TN =) (00, Poo(ur)) + tioe (P, Py (uk))) 2

) > foolug) + 4€.
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Up to a subsequence, (uy) is weakly convergent in H} () to some u € Koo N S,. As
in the previous argument, we have (1 — tg)n(00, Poo(ug)) + teToo(n(hk, Pr, (uk))) —

n(00, Pso(u)) in H (). Therefore by Lemma (3.4) we get a contradiction. m

(3.6) Lemma. Let us assume that Koo and S, are not tangent and let b € R and
€>0.

Then there exists h € N and, for every h > h, two continuous maps
Py:fl -KynS,, Qun:fiff—=KonS,

such that fi(Pn(1)) < foo(W)+€, foo(Qn(v)) < fu(v)+£ for everyu € fo , v e fIre
and such that Qy o Py : fo — f212¢ is homotopic to the inclusion map f°, — for2

by a homotopy H : f° x [0,1] — fo+2¢ such that

Y(u,t) € 2 x [0,1] : foo(H(u,t)) < foolu) + 2¢.

Proof. Let us consider (b+£) and /2. Let n: D — HJ(Q) be as in Lemma (3.4) and
let h € N be as in Lemma (3.5) . According to Lemma (3.5) , for every h € N with

h > h let us set

: - ) — mh (100, u))
Ve ot Blw) = o e

v b+é . v) = ﬂ—OO(n(h,U))
Vv e f e Qn(v) Plren(h, )2

By Lemma (3.5) it is readily seen that P, and @} are well defined, continuous and
satisfy fr(Pn(u)) < foo(t) + €, foo(Qn(v)) < fu(v) +¢é for every u € f& , v e fIre.

Now let us define Ho : f2 x [0,1] — f2+¢ by

(1 —t)u+ tn(oco, u)
1(1 = t)u+ tn(co, u)l2 -

HO(U, t) =p
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Then Ho(u,0) = u and, by Lemma (3.4) , we have foo(Ho(u,t)) < foolu) + €.

Essentially in the same way, we can define H; : fé’o x [0,1] — fgo“é by

(1 = 1) Poo(u) + t1(00, Poo(u))

Hl(u, t) = p”(l _ t)Poo(u) + tn(oo,Poo(U))H2 .

Thus7 Hl(ua O) = HO(“? 1) and foo(Hl(uvt)) < foo(u) +2¢.
Finally, let us define Hy : f2 x [0,1] — f%% by

(1 —t)n(o0, Poo(u)) + tmeo(n(h, Pn(u)))
11 = )n(o0, Pos (1)) + tmoc(n(h, Pa(u)))ll2

H2(u7 t) =p

By Lemma (3.5) , Ho is well defined, continuous, with foo(Ha(u,t)) < fool(u) + 2£.
Moreover, Ha(u,0) = Hi(u,1) and Ha(u, 1) = Qn(Pr(u)). The proof is complete. m

Now we can prove a perturbation theorem concerning the essential values of f, .

Remark that, so far, K., is any convex closed subset of H{(Q) with 0 € Ko .

(3.7) Theorem. Let us assume that Ko and S, are not tangent. Let c € R be an
essential value of foo .
Then for every € > 0 there exists h € N such that for every h > h the functional

fn has an essential value in Jc —€,c + €|.

Proof. By contradiction, let us assume there exist € > 0 and hy — 400 such that fj,,
has no essential value in |¢ — e, ¢+ €.

Let a,b €]c —e,c+ e[ with a < b. Let us prove that the pair ( b fgo) is trivial.
Let [/, @] be a neighbourhood of a and [5’, 5] be a neighbourhood of b. Since f,,
has no essential value in Ja, b, the pair (f} , ff ) is trivial by Theorem (2.6) . Let
a',a”,b',b" € R be such that o/ < ad' <a<a’ <o’ and g/ <b <b<d' < p".
For every k € N there exists a continuous function Ky : f}l;; x [0,1] — f,l;: such that
Kr(u,0) = u, K <f,lz; X {1}) C f;f;l, K (f,ﬁf; x [0, 1]) C fﬁ:. Let £ > 0 be such that

o/+é§a’,a”+é§a”,ﬁ’+é§b’,b”+é§5”.
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Now let h, P, and Qj, be related to 4" and ¢ as in Lemma (3.6) and let & € N be

such that hj > h. Let us define H : f2 x [0,1] — f£ by
H(u,t) = Qny (Ki(Pry (u), 1)) -

Of course H (foﬁo/ X {1}> C o and H (fggl x [0, 1]) C 2. By Lemma (3.6)
H(-,0) : (ff’o/, fgg’) — (fégl, fg‘!) is homotopic to the inclusion map. Therefore the
pair (f2, f%) is trivial.

We conclude that ¢ is not an essential value of f., : a contradiction. m

(3.8) Theorem. Let us assume that Ko, and S, are not tangent.
Then for every b € R there exists h € N such that for every h > h the following
facts hold:
a) for every u € f? there exist A € R and n € H-*(Q) such that ||n|| = |dfn|(v) and
/[DuD(v—u)+p(a7,u)(v—u)] dx > )\/ u(v—u)der+ <nuv—u> VYovekK;
Q Q

b) the function fy, verifies (PS). for every ¢ <b.

Proof. Let b € R. By Lemma (3.5) there exists h € N such that for every h > h the
sets K, and S, are not tangent at u, for every u € f,lz. Then the argument is the same

of [13, Theorem (3.10)]. m

Now let us consider the case in which

Koo = {u€ Hj(Q) : ()

IN

i(z) < ¢¥(x) cap. q.e. in Q} , (3.9)

where ¢ : Q — [0,+00] is a quasi-lower semicontinuous function such that
fQ Y2dr > p? and @ is a quasi-continuous representative of u. For notions and

results related to capacities, the reader is referred to [10].

Let us recall a characterization from [13].
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(3.10) Theorem. The following facts hold:

a) given u € Ko NS,, the sets Ko and S, are tangent at u, if and only if
u(x) # 0 = |a(z)| = Y(z) cap. qg.e. in Q;

b) the sets Ko and S, are tangent, if and only if there exists a measurable subset E

of Q such that the function v, is quasi-continuous and belongs to H} ()N S,,.

(3.11) Theorem. Let us assume that Koo and S, are not tangent. Then the
functional fs : Koo NS, = R admits a sequence (dp,) of essential values with dj, —

+00.

Proof. Also this result is proved in [13, Theorem (3.9)] with a slightly different notion
of esssential value. Taking into account Theorem (2.11) the same argument can be

repeated in our situation. m
Now we can prove our main result.

(3.12) Theorem. Let us assume that Ko has the form (3.9) and that K and S,
are not tangent. Then for every m € N there exists h € N such that for every h > h
the problem (3.1) has at least m solutions (A1, u1), -, (Am, Um) with wy, -, upy, all

distinct.

Proof. By Theorem (3.11) we can find m distinct essential values d; < -+ < d,, of
foo- Let b = d,, + 1 and let € €]0,1] be such that 2¢ < d; — d;—1 for every i. By
Theorem (3.7) there exists h; € N such that for every h > h; the functional f;, has
an essential value in every |d; — e,d; + €[, hence it has at least m distinct essential
values in | — 00, d,,, +¢[. Let us choose hy € N according to Theorem (3.8) and let us
set h = max{hi,ha}. If h > h, fj, has m distinct critical values in | — oo, d,, + ¢[ by

Theorems (2.10) and (3.8) , hence m distinct critical points gy, - - -, %y,. By Theorem
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(3.8) there exist Ay, -+, A, € R such that (A\;,u;) is a solution of (3.1) , and the

assertion follows. m

1]

2]
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