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Published in: Annali dell’Università di Ferrara Sez. VII 41 (1995), 33-44

SERGIO LANCELOTTI

Dipartimento di Matematica
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Abstract. A non-symmetric perturbation of a symmetric variational inequality

is considered. The existence of infinitely many solutions is proved.

1 Introduction

Let ψ : ]0, π[→ [0,+∞] be a lower semicontinuous function and let

K = {u ∈ H1
0 (0, π) : |u| ≤ ψ} .

If p : ]0, π[×R → R is a Carathéodory function odd in the second variable, ρ > 0 and

suitable qualitative conditions are satisfied, it is known that the problem
(λ, u) ∈ R×K∫ π

0
[DuD(v − u) + p(x, u)(v − u)] dx ≥ λ

∫ π

0
u(v − u) dx ∀v ∈ K∫ π

0
u2 dx = ρ2

admits a sequence (λh, uh) of solutions with λh → +∞ . This has been proved, under

different assumptions, in [4, 6, 13], even in the multi-dimensional case.
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In [8, 12] we have shown that, if we perturb the problem in a quite general non-

symmetric way, then the number of solutions of the perturbed problem goes to infinity,

as the perturbation tends to disappear.

Here we want to treat a case in which the perturbed problem has still infinitely

many solutions.

In the case of equations, results of this kind have been obtained in [1, 2, 3, 14, 15,

16]. The technique here is similar, from the topological point of view. To stress this

aspect, we will work with the notion of “essential value”, which is purely topological.

On the contrary, from the differential point of view, the presence of the constraint K
causes an irregularity which will be treated by the use of techniques of nonsmooth

analysis. Here we will follow the approach of [7, 9].

We have restricted our attention to the one-dimensional case, because here the

critical values of the unperturbed problem have a suitable growth. A similar result,

in a more restrictive form, could have been proved also in two dimensions, but our

argument does not work if the dimension is at least three.

The author wishes to thank Marco Degiovanni for helpful discussions.

2 Essential values of continuous functionals

In this section we recall from [8, 12] some basic facts that will be useful in the following.

Let X denote a metric space endowed with the metric d and f : X → R a continuous

function. If b ∈ R := R ∪ {−∞,+∞}, let us set

f b = {u ∈ X : f(u) ≤ b} .

(2.1) DEFINITION. Let a, b ∈ R with a ≤ b. The pair
(
f b, fa

)
is said to be trivial,

if for every neighbourhood [α′, α′′] of a and [β′, β′′] of b
(
α′, α′′, β′, β′′ ∈ R , α′ ≤ β′)

there exists a continuous map H : fβ
′ × [0, 1] → fβ

′′
such that

H(x, 0) = x ∀x ∈ fβ
′
,

H
(
fβ

′
× {1}

)
⊆ fα

′′
,

H
(
fα

′
× [0, 1]

)
⊆ fα

′′
.
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(2.2) Remark. If α is a further number with α < α′ , we can suppose, without loss of

generality, thatH(x, t) = x on fα×[0, 1]. Actually, it is sufficient to substituteH(x, t)

with H (x, tϑ(x)) , where ϑ : fβ
′ → [0, 1] is a continuous function with ϑ(x) = 0 for

f(x) ≤ α and ϑ(x) = 1 for f(x) ≥ α′.

(2.3) DEFINITION. A real number c is said to be an essential value of f , if for every

ε > 0 there exist a, b ∈]c−ε, c+ε[ with a < b such that the pair
(
f b, fa

)
is not trivial.

(2.4) THEOREM. Let a, b ∈ R with a < b. Let us assume that f has no essential value

in ]a, b[.

Then the pair
(
f b, fa

)
is trivial.

Now let us recall a notion from [7, 9].

(2.5) DEFINITION. For every u ∈ X let us denote by |df |(u) the supremum of the σ’s

in [0,+∞[ such that there exist δ > 0 and a continuous map H : Bδ(u)× [0, δ] → X

with

d(H(v, t), v) ≤ t ,

f(H(v, t)) ≤ f(v)− σt .

The extended real number |df |(u) is called the weak slope of f at u.

If X is a Finsler manifold of class C1 and f a function of class C1, it turns out

that |df |(u) = ∥df(u)∥ for every u ∈ X.

Let us point out that the above notion has been independently introduced also in

[10].

(2.6) DEFINITION. An element u ∈ X is said to be a critical point of f , if |df |(u) = 0.

A real number c is said to be a critical value of f , if there exists a critical point u ∈ X

of f such that f(u) = c. Otherwise c is said to be a regular value of f .

(2.7) DEFINITION. Let c be a real number. The function f is said to satisfy the

Palais - Smale condition at level c ((PS)c for short), if every sequence (uh) in X with

|df |(uh) → 0 and f(uh) → c admits a subsequence (uhk
) converging in X.

(2.8) THEOREM. Let c be an essential value of f . Let us assume that X is complete

and that f satisfies (PS)c.
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Then c is a critical value of f .

3 Infinitely many solutions for non-symmetric variational inequalities

Let p : ]0, π[×R → R be a Carathéodory function such that

p(x,−s) = −p(x, s) ,

s p(x, s) ≥ 0 ,

∀t > 0 : sup
|s|≤t

|p(x, s)| ∈ L1(0, π) ;

let ψ : ]0, π[→ [0,+∞] be a lower semicontinuous function and let ρ > 0 with

ρ2 <

∫ π

0

ψ2 dx .

We start from the nonlinear eigenvalue problem
(λ, u) ∈ R×K∫ π

0
[DuD(v − u) + p(x, u)(v − u)] dx ≥ λ

∫ π

0
u(v − u) dx ∀v ∈ K∫ π

0
u2 dx = ρ2

(3.1)

where

K =
{
u ∈ H1

0 (0, π) : −ψ(x) ≤ ũ(x) ≤ ψ(x) ∀x ∈]0, π[
}

and ũ is the continuous representative of u. It is readily seen that (3.1) possesses a

symmetry. In fact, if (λ, u) is a solution of (3.1), also (λ,−u) is a solution of (3.1).

We want to study a perturbation of (3.1) of the form

(λ, u) ∈ R×K∫ π

0
[DuD(v − u) + (p(x, u) + q(x, u))(v − u)] dx+

+ < µ, v − u >≥ λ
∫ π

0
u(v − u) dx ∀v ∈ K∫ π

0
u2 dx = ρ2

(3.2)
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where q : ]0, π[×R → R is a Carathéodory function and µ ∈ H−1(0, π). We assume

that

|q(x, s)| ≤ a1(x) + b|s|ϑ

with a1 ∈ L1(0, π) , b ∈ R and 0 < ϑ < 3 .

We want to show that problem (3.2) has infinitely many solutions.

Problems (3.1) and (3.2) have a variational structure. Let us set

Sρ =

{
u ∈ L2(0, π) :

∫
Ω

u2 dx = ρ2
}

and let us define f, g : K ∩ Sρ → R by

f(u) =
1

2

∫ π

0

|Du|2 dx +

∫ π

0

P (x, u) dx ,

g(u) =
1

2

∫ π

0

|Du|2 dx +

∫ π

0

P (x, u) dx +

∫ π

0

Q(x, u) dx+ < µ, u > ,

where P (x, s) =
∫ s

0
p(x, t) dt , Q(x, s) =

∫ s

0
q(x, t) dt. In the following, the set K ∩ Sρ

will be endowed with the H1
0−metric. We will denote by ∥ · ∥r the norm of Lr(0, π)

and by ∥ · ∥−1,2 the norm of H−1(0, π) .

Let us recall a definition from [5].

(3.3) DEFINITION. Let C be a convex subset of a Banach space X, let M be a

hypersurface in X of class C1, let u ∈ C ∩M and let ν(u) ∈ X ′ be a unit normal

vector to M at u. The sets C and M are said to be tangent at u, if we have either

< ν(u), v − u >≤ 0 ∀v ∈ C

or

< ν(u), v − u >≥ 0 ∀v ∈ C ,

where < ·, · > is the pairing between X ′ and X.

The sets C and M are said to be tangent, if they are tangent at some point of

C ∩M .

Let us recall a particular case of a characterization given in [8].

(3.4) THEOREM. The following facts hold:
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a) given u ∈ K ∩ Sρ, the sets K and Sρ are tangent at u, if and only if

∀x ∈]0, π[ : ũ(x) ̸= 0 =⇒ |ũ(x)| = ψ(x) ;

b) the sets K and Sρ are tangent, if and only if there exists an open subset E of ]0, π[

such that the function ψχE is continuous and belongs to H1
0 (0, π) ∩ Sρ.

(3.5) THEOREM. Let us assume that K and Sρ are not tangent. For every h ≥ 1 let

us set

ch = inf
C∈Γh

max
u∈C

f(u) ,

where Γh is the family of compact subsets of K ∩ Sρ of the form φ(Sh−1) with φ :

Sh−1 → K ∩ Sρ continuous and odd.

Then the following facts hold:

a) K ∩ Sρ is contractible in itself;

b) for every h ≥ 1 we have Γh ̸= ∅ and ch ≥ 1
2ρ

2h2.

Proof. Property a) is proved in [8]. By means of [11, Lemma VI.4.5] it is then standard

to deduce that Γh ̸= ∅ for every h ≥ 1 . Finally, let f0 : H1
0 (0, π)∩Sρ → R be defined

by

f0(u) =
1

2

∫ π

0

|Du|2 dx .

If c′h is defined as ch, with K ∩ Sρ substituted by H1
0 (0, π) ∩ Sρ and f substituted by

f0 , it is well known (see [11]) that c′h = 1
2ρ

2h2 . Since K ∩ Sρ ⊆ H1
0 (0, π) ∩ Sρ and

f(u) ≥ f0(u) , it follows that ch ≥ c′h , whence the assertion.

(3.6) LEMMA. Let (dh) be a sequence of positive numbers and let γ ∈]0, 1[ . Let us

assume that there exist h0 ∈ N and c > 0 such that

∀h ≥ h0 : 0 ≤ dh+1 − dh ≤ cdγh .

Then there exists h1 ∈ N such that

∀h ≥ h1 : dh ≤ (3c)
1

1−γ h
1

1−γ .
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Proof. Let us set δh = h−
1

1−γ dh . In [2, Lemma (5.3)] it is shown that the sequence

(δh) is bounded. Let us consider two cases. If for every h ≥ h0 we have

δh+1 − δh < −cδγhh
−1 ,

then (δh) goes to 0 and the assertion follows. Otherwise there exists h1 ≥ h0 such

that

δh1+1 − δh1 ≥ −cδγh1
h−1
1 .

Arguing as in the proof of [2, Lemma (5.3)], we deduce that

δh1 ≤ (3c)
1

1−γ .

Hence, from [2, Lemma (5.3)] it follows that for every h ≥ h1

δh ≤ max{δh1 , [c(1− γ)]
1

1−γ } ≤ (3c)
1

1−γ ,

and the assertion follows.

(3.7) LEMMA. For every σ > 0 there exists C(σ) > 0 such that∣∣∣∣∫ π

0

Q(x, u) dx+ < µ, u >

∣∣∣∣ ≤ σ∥Du∥2 + C(σ)

whenever u ∈ H1
0 (0, π) ∩ Sρ .

Proof. Let a1 = a1,1 + a1,2 and µ = µ1 + µ2 with a1,1 ∈ L1(0, π) , ∥a1,1∥1 ≤ ε ,

a1,2 ∈ L2(0, π) , µ1 ∈ H−1(0, π) , ∥µ1∥−1,2 ≤ ε , µ2 ∈ L2(0, π) .

Then we have ∣∣∣∣∫ π

0

Q(x, u) dx+ < µ, u >

∣∣∣∣ ≤

≤ ∥a1,1∥1∥u∥∞ + ∥a1,2∥2∥u∥2 +
b

ϑ+ 1
∥u∥ϑ+1

ϑ+1 + C1∥µ1∥−1,2∥Du∥2 + ∥µ2∥2∥u∥2 ≤

≤ C2ε∥Du∥2 + (∥a1,2∥2 + ∥µ2∥2)ρ+ C3∥u∥
ϑ+3
2

2 ∥Du∥
ϑ−1
2

2 ≤ C4ε∥Du∥2 + C5(ε) .

A suitable choise of ε then gives the assertion.

(3.8) THEOREM. Let us assume that K and Sρ are not tangent.

Then the functional g admits a sequence (dh) of essential values with dh → +∞ .
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Proof. First of all, let us show that for every σ > 0 there exists C(σ) > 0 such that

for every u ∈ K ∩ Sρ we have

f(u) ≤ b =⇒ g(u) ≤ b+ σ
√
b+ C(σ) , (3.9)

g(u) ≤ b =⇒ f(u) ≤ b+ σ
√
b+ C(σ) . (3.10)

According to the previous Lemma, there exists C1(σ) > 0 such that

∀u ∈ H1
0 (0, π) ∩ Sρ :

∣∣∣∣∫ π

0

Q(x, u) dx+ < µ, u >

∣∣∣∣ ≤ σ

2
∥Du∥2 + C1(σ) .

If f(u) ≤ b , it follows ∥Du∥2 ≤
√
2b , hence

g(u) ≤ b+

√
2

2
σ
√
b+ C1(σ) ≤ b+ σ

√
b+ C1(σ) .

On the other hand, if g(u) ≤ b , we have

b ≥ 1

2
∥Du∥22 −

σ

2
∥Du∥2 − C1(σ) ≥

1

4
∥Du∥22 − C2(σ) ,

hence

∥Du∥2 ≤ 2
√
b+ C2(σ) ≤ 2

√
b+ 2

√
C2(σ) .

It follows

f(u) ≤ b+ σ
√
b+ σ

√
C2(σ) + C1(σ) = b+ σ

√
b+ C3(σ) .

Therefore (3.9) and (3.10) are proved.

Let σ > 0 be such that 162σ2 < ρ2 and let ch ∈ R be defined as in Theorem (3.5) .

We claim that there exists a sequence hk → +∞ such that

∀k ∈ N : chk
+σ

√
chk

+C(σ)+σ
√
chk

+ σ
√
chk

+ C(σ)+C(σ) < chk+1 . (3.11)

Let us argue by contradiction. Then, since ch → +∞ , there exists h0 ∈ N such that

∀h ≥ h0 : ch+1 − ch ≤ 3σ
√
ch .

By Lemma (3.6) there exists h1 ∈ N such that for every h ≥ h1 we have

ch ≤ 81σ2h2 < 1
2ρ

2h2 . This inequality contradicts Theorem (3.5) , so that (3.11)

is proved.
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By Theorem (2.4), it is sufficient to show that for everyM > 0 there exists a ≥M

such that the pair (K∩Sρ, g
a) is not trivial. By contradiction, assume that there exists

M > 0 such that for every a ≥ M the pair (K ∩ Sρ, g
a) is trivial. Let h ∈ N be such

that

ch ≥M , ch + σ
√
ch + C(σ) + σ

√
ch + σ

√
ch + C(σ) + C(σ) < ch+1

and let a ∈ R be such that

ch + σ
√
ch + C(σ) < a , a+ σ

√
a+ C(σ) < ch+1 .

Let d′, α, α′, α′′, d′′ ∈ R be such that ch < d′ < α < α′ < a < α′′ < d′′ < ch+1 with

d′ + σ
√
d′ + C(σ) ≤ α , α′′ + σ

√
α′′ + C(σ) ≤ d′′ .

It follows that fd
′ ⊆ gα and gα

′′ ⊆ fd
′′
. Since ch < d′, there exists φ : Sh−1 →

K ∩ Sρ continuous and odd with φ(Sh−1) ⊆ fd
′
and there exists a homotopy H :

Sh−1 × [0, 1] → K ∩ Sρ between φ and a constant map. Let β′ ∈ [α′,+∞[ be such

that β′ ≥ max{g(H(x, t)) : x ∈ Sh−1, t ∈ [0, 1]} . Since the pair (K ∩ Sρ, g
a) is trivial,

there exists a continuous map η : gβ
′ × [0, 1] → K ∩ Sρ such that

η(x, 0) = x ∀x ∈ gβ
′
,

η
(
gβ

′
× {1}

)
⊆ gα

′′
,

η
(
gα

′
× [0, 1]

)
⊆ gα

′′

and

η(x, t) = x on gα × [0, 1] .

Let us define K : Sh−1×[0, 1] → fd
′′
by K(x, t) = η(H(x, t), 1). Then K is a homotopy

between φ : Sh−1 → fd
′′
and a constant map. By [11, Lemma VI.4.5] there exists

ψ : Sh → fd
′′
continuous and odd. This is absurd, as d′′ < ch+1.

(3.12) THEOREM. Let us assume that K and Sρ are not tangent. Then the following

facts hold:

a) the functional g is continuous;
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b) for every u ∈ K ∩ Sρ there exist λ ∈ R and η ∈ H−1(0, π) such that ∥η∥−1,2 =

|dg|(u) and∫ π

0

[DuD(v − u) + p(x, u)(v − u) + q(x, u)(v − u)] dx+ < µ, v − u >≥

≥ λ

∫ π

0

u(v − u) dx+ < η, v − u > ∀v ∈ K ;

c) the functional g satisfies (PS)c for every c ∈ R.

Proof. Up to minor modifications, the proof is the same of [8].

Now we can prove our main result.

(3.13) THEOREM. Let us assume that K and Sρ are not tangent.

Then problem (3.2) admits a sequence of solutions (λh, uh) with λh → +∞ .

Proof. By Theorem (3.8) the functional g admits a sequence (dh) of essential values

with dh → +∞. By Theorem (3.12) the functional g satisfies the (PS)c condition for

every c ∈ R. Therefore by Theorem (2.8) each essential value dh is a critical value of

g. Hence there exists a sequence (uh) of critical points of g with g(uh) → +∞ and by

Theorem (3.12) there exists a sequence (λh) such that (λh, uh) is a solution of (3.2) .

We have

lim
h

∫ π

0

|Duh|2dx = +∞

and, choosing v = 0 in (3.2) ,

λhρ
2 ≥

∫ π

0

[ |Duh|2 + uhp(x, uh) ] dx +

∫ π

0

uhq(x, uh) dx+ < µ, uh > .

Since sp(x, s) ≥ 0 and∣∣∣∣ ∫ π

0

uhq(x, uh) dx

∣∣∣∣ ≤ ∥a1∥1∥uh∥∞ + b∥uh∥ϑ+1
ϑ+1 ≤

≤ ∥a1∥1∥uh∥∞ + C∥uh∥
ϑ+3
2

2 ∥Duh∥
ϑ−1
2

2 ,

it follows that λh → +∞ .
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dell’operatore −∆− g rispetto a due ostacoli, Ann. Univ. Ferrara Sez. VII (N.S.)

35 (1989), 71–98.

[14] A. MARINO AND G. PRODI, Metodi perturbativi nella teoria di Morse, Boll. Un.

Mat. Ital. (4) 11 (1975), no. 3, suppl., 1–32.

[15] P. H. RABINOWITZ, Multiple critical points of perturbed symmetric functionals,

Trans. Amer. Math. Soc. 272 (1982), 753–769.

[16] M. STRUWE, Infinitely many critical points for functionals which are not even

and applications to superlinear boundary value problems, Manuscripta Math. 32

(1980), 335–364.


