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[1] The use of goodness of fit tests based on Cramer–von Mises and Anderson-Darling
statistics is discussed, with reference to the composite hypothesis that a sample of
observations comes from a distribution, FH, whose parameters are unspecified. When this
is the case, the critical region of the test has to be redetermined for each hypothetical
distribution FH. To avoid this difficulty, a transformation is proposed that produces a new
test statistic which is independent of FH. This transformation involves three coefficients
that are determined using the asymptotic theory of tests based on the empirical distribution
function. A single table of coefficients is thus sufficient for carrying out the test with
different hypothetical distributions; a set of probability models of common use in extreme
value analysis is considered here, including the following: extreme value 1 and 2, normal
and lognormal, generalized extreme value, three-parameter gamma, and log-Pearson
type 3, in all cases with parameters estimated using maximum likelihood. Monte Carlo
simulations are used to determine small sample corrections and to assess the power of the
tests compared to alternative approaches. INDEX TERMS: 1894 Hydrology: Instruments and

techniques; 1821 Hydrology: Floods; 1854 Hydrology: Precipitation (3354); KEYWORDS: Anderson-Darling

test, extreme value analysis, floods, tests of fit
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1. Introduction

[2] Model testing and verification are basic steps of
statistical inference, but relatively little attention has been
devoted to this crucial issue in the hydrologic literature.
This is probably due to a widespread distrust of classical
goodness of fit tests, when applied to small samples, and to
the lack of a valid alternative for the case when the
parameters of the hypothesized distribution are estimated
using the same sample that is being tested. Important
testings techniques, borrowed from applied statistics, have
been proposed in the hydrologic field by Vogel [1986] and
Vogel and McMartin [1991], with an approach based on the
probability plot correlation coefficient (PP tests), by Ahmad
et al. [1988], using empirical distribution function statistics
(EDF tests), and by Chowdhury et al. [1991], Fill and
Stedinger [1995], and Wang [1998], with techniques based
on the comparison of empirical and hypothetical L moments
ratios (LM tests).
[3] However, none of these tests has reached a broad

consensus in the hydrologic community, possibly due to
some complications that inevitably arise when the parameters
of the hypothetical distribution are unknown. This is the most
common case in hydrology; in the following, it will be
referred to as ‘‘case p,’’ in analogy to the Stephens’ [1986]
use of ‘‘case 0’’ for the case when the parameters are fully
specified a priori. In case p, the distributions of the PP, EDF,
and LM test statistics depend on the so-called null hypothesis
H0, i.e., on the probability distribution that is being tested
[e.g., Stephens, 1986]. This means that the percentage points,

i.e., the 100 (1� a) percentiles of the distributions of the test
statistics (a is the significance level of the test), have to be
recalculated for anyH0. The method of parameter estimation,
the presence of a shape parameter, and the sample size also
have an influence on percentage points, and this further
complicates the analysis. Moreover, only for the LM tests
the approximate test statistic distribution is known in analyt-
ical form, while for all other cases one should refer to tables of
percentage points. There is thus the necessity to have a
different table for each distribution, and tables of percentage
values for some distributional families are still lacking.
[4] The scope of this paper is to overcome some of the

above difficulties for tests based on quadratic EDF statistics
(Cramer–von Mises and Anderson-Darling tests, see sec-
tion 2). The main result of the paper is given by equation
(11) in section 3, a transformation which converts the test
statistic in case p to a case 0 statistic, with well known
percentage points. A single table is sufficient for carrying
out the test, containing the values of the three coefficients of
the transformation for any distribution of interest. An
application to extreme value distributions is presented in
section 4, and a power study in section 5 demonstrates the
good performances of this method in comparison to PP, LM,
chi-square and Kolmogorov-Smirnov tests. The whole pro-
cedure is summarized in section 6, where the test is applied
to the annual maxima of hourly rainfall recorded in Genoa
(Italy) from 1931 to 1988.

2. EDF Tests

[5] Suppose that x1 � . . . � xn is an ordered sample of n
independent observations from a distribution with cumula-
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tive distribution function (CDF) FR(x), and that one wishes
to test the null hypothesis H0:FR(x) = F(x, q), where F
defines the family of distributions (such as normal or
gamma) and q is a vector of parameters. EDF tests
are based on the comparison between the hypothetical
and empirical distribution function, F(x, q) and Fn(x)
respectively, where

Fn xð Þ ¼ 0; x < x1

Fn xð Þ ¼ i

n
; xi � x < xiþ1; i ¼ 1; . . . ; n� 1

Fn xð Þ ¼ 1; xn � x:

ð1Þ

The discrepancy between the two distributions can be
measured either with statistics of the form maxxjFn(x) �
F(x, q)j (Kolmogorov-Smirnov test), or using quadratic
statistics,

Q2 ¼ n

Z
allx

Fn xð Þ � F x; qð Þ½ 	2� xð ÞdF xð Þ ð2Þ

where �(x) is a weight function. When �(x) = 1, one has
the Cramer–von Mises statistic, usually called W2, that is a
measure of the mean squared difference between the
empirical and hypothetical CDF; when �(x) = [F(x, q)(1
� F(x, q))]�1, the tails of the distribution are weighted more
than the central part, and one has the Anderson-Darling
statistic, called A2. W2 and A2 are estimated in practice
as [e.g., Stephens, 1986],

W 2 ¼
Xn
i¼1

F xi; qð Þ � 2i� 1

2n

� �2
þ 1

12n
; ð3Þ

A2 ¼� n� 1

n

Xn
i¼1

2i� 1ð Þ ln F xi; qð Þ½ 	½

þ 2nþ 1� 2ið Þln 1� F xi; qð Þ½ 		: ð4Þ

When q is completely or partially unspecified (case p), the
parameters need be replaced by estimates q̂. With the
transformation z = F(x, q), the general quadratic statistic Q2

in equation (2) becomes

Q2 ¼ n

Z 1

0

Fn zð Þ � z½ 	2� zð Þdz ¼
Z 1

0

y2n zð Þdz; ð5Þ

where Fn(z) is the EDF of the variable z, calculated as in
equation (1). The asymptotic distribution of Q2 is the
same as the distribution of

R 1
0
yn
2(z)dz, where yn(z) =ffiffiffi

n
p

(Fn(z) � z)
ffiffiffiffiffiffiffiffiffiffi
� zð Þ

p
. It follows that the limiting form of

the stochastic process yn(z) is of central importance: for
large n, it has been demonstrated by Darling [1955] and
Durbin [1973] that yn(z) converges to a Gaussian process
y(z) with mean 0 and covariance

r z; sð Þ ¼ min z; sð Þ � zs� g zð ÞTS�1g sð Þ
h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� sð Þ� zð Þ
p

;

0 � s; z � 1:

ð6Þ

g(z)T in equation (6) is the transpose of the vector g(z) =
@z
@q




q¼q̂, and S�1 is the inverse of Fisher information matrix

(divided by n),

S ¼ E
@lnf x; qð Þ

@q
@lnf x; qð Þ

@qT

� �
; ð7Þ

where E(�) indicates expectation, the derivatives are
calculated at q = q̂, and f(x, q) is the probability density
function (PDF) correspondent to F(x, q). Equation (6) is
valid when the estimator q̂ is asymptotically efficient, i.e.,
unbiased and with minimum variance for n ! 1, in which
case nS�1 is the asymptotic dispersion matrix of the
estimated parameters [e.g., Kendall and Stuart, 1977, p. 59].
Maximum likelihood (ML) estimators are usually asympto-
tically efficient [Kendall and Stuart, 1977, p. 47], while
other estimators commonly used in hydrology (e.g.,
moments or L moments estimators) are not. The term
g(z)TS�1g(s) in equation (6) vanishes when the parameters
are known a priori (case 0), while it depends on the
hypothetical distribution in case p, showing that the tests are
not distribution-free in this case.
[6] Provided y(z) is Gaussian, Q2 =

R 1
0
y2(z)dz is distrib-

uted as a weighted sum of independent c1
2 random varia-

bles, where the weights are the inverse of the roots of the
Fredholm determinant associated with r(z, s) [Stephens,
1976]. The numerical evaluation of percentage points for
W2 and A2 therefore requires (1) to determine the covari-
ance function (6), (2) to calculate the eigenvalues of the
Fredholm homogeneous integral equation of the second
type with r(z, s) as a kernel, and (3) to compute the
distribution of a linear combination of independent c1

2

variables [see Johnson et al., 1994, pp. 444–450]. When
q is fully specified a priori (case 0), the results are well
known since the seminal paper by Anderson and Darling
[1952], with percentage points of W2 and A2 tabled in
textbooks. Results for case p are also available for a limited
number of cases [see Stephens, 1986], but the computa-
tional effort for distributions with more than 2 parameters is
still formidable. Moreover, in hydrological applications n is
usually small, and this diminishes the importance of having
very accurate asymptotic percentage points, since in any
case these need be corrected using Monte Carlo simula-
tions. In section 3 an alternative procedure for determining
approximate percentage points in the parametric case is
proposed.

3. A Procedure for Using Case 0 Percentage
Points in the Parametric Case

[7] It is apparent from the discussion in the previous
section that the distributions of W2 and A2 in case 0 are
different from those obtained in case p. Nevertheless, the
shape of the distributions is similar, in particular in the right
tail. In fact, in both cases the test statistics are distributed as
the integral of a squared Gaussian process (see equation
(5)), while only the covariance function (6) is different. An
example is given in Figure 1, where the case 0 and case p
percentage points for the Cramer–von Mises test applied to
a Gaussian distribution are plotted one against the other, for
significance levels between 0.01 and 0.99.
[8] The relation between corresponding percentage points

in Figure 1 is clearly monotonic and not far from being
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linear; similar results are found for distributions other than
the Gaussian. This suggests to find a mapping, w = f(Qp

2),
that transforms the test statistic in the parametric case, Qp

2,
into a variable w whose distribution is close to that of the
case 0 Cramer–von Mises statistic, W0

2. The hypothesis that
the two distributions are approximately the same poses on
empirical grounding, and appropriate verifications will be
given in the following and in section 5. As a first attempt,
the transformation f can be supposed to be linear, which
corresponds to imposing the identity of the first two
moments of w and W0

2:

w ¼ s0
sp

Q2
p � mp


 �
þ m0; ð8Þ

where m and s are the mean and the standard deviation of
Q2, calculated as by Stephens [1976]:

m ¼
R 1
0
r z; zð Þdz

s ¼ 2
R 1
0

R 1
0
r z; sð Þr s; zð Þdsdz


 �0:5
;

ð9Þ

with the appropriate case 0 or case p covariance as argument
of the integrals. However, the approximation provided by
equation (8) is rather poor, in particular in the tails of the
distribution, as shown for example by the dashed line in
Figure 1.
[9] To improve the accuracy of the approximation, one

can include also the third central moment,

M3 ¼ 8

Z 1

0

Z 1

0

Z 1

0

r z; sð Þr s; tð Þr z; tð Þdtdsdz; ð10Þ

and find a transformation which entails the identity of the
first three moments of w and W0

2. A transformation based on

the identity
w�x0
b0


 �h0
¼ Q2

p�xp
bp


 �hp
, where x, b and h are

location, scale and shape parameters, respectively, is used
here:

w ¼ b0
Q2

p � xp
bp

 !hp
h0

þx0; 1:2xp � Q2
p

w ¼ b0
0:2xp
bp

 !hp
h0

þx0

2
4

3
5Q2

p � 0:2xp
xp

; Q2
p

ð11Þ

The second equation in equation (11) is necessary for
keeping w on the real positive axis also when Qp

2 < xp, and
to improve the accuracy of the transformation in the very
low part of the distribution. This correction is seldom
required, since the probability of having Qp

2 < 1.2xp is below
0.12 even when H0 is true.
[10] The basic hypothesis behind equation (11) is that the

first three moments of the rescaled case 0 and case p

statistics, t0 =
w�x0
b0


 �h0
and tp =

Q2
p�xp
bp


 �hp
, are identical;

the problem is to find two sets of parameters S0 : [x0, b0, h0]
and Sp : [xp, bp, hp] in equation (11) such that this
hypothesis is met. A distributional form for t0 and tp need
be specified for this scope: t is supposed here to have a
standardized exponential distribution, f(t) = e�t, leading to
the following relations between moments and parameters
[e.g., Johnson et al., 1994, pp. 629–632]

m ¼ xþ bG 1þ 1

h

� �

s2 ¼ b2 G 1þ 2

h

� �
� G2 1þ 1

h

� �� �

M3 ¼ b3 G 1þ 3

h

� �
� 3G 1þ 1

h

� �
G 1þ 2

h

� �
þ 2G3 1þ 1

h

� �� �
;

ð12Þ

where G[�] is the gamma function. The hypothesis that t is
exponentially distributed is ancillary to the determination of
the relations (12) and does not pretend to be unique: the
choice of the distribution, similarly to that of the kernel of
the transformation, is inevitably subjective and empirical
and as such needs be accurately verified. A first validation is
given in Figure 1, where it is seen that the three-parameter
equation (11) provides a very good fit to the ‘‘exact’’ points
for the Gaussian distribution, even in the tails: the error in
evaluating the significance level a is almost always below
1%, and it is lower than 0.25% for a < 0.1, where the
accuracy is mostly relevant for testing purposes. More
validations are given in section 5 and Appendix B.
[11] Adopting the described methods, the case 0 coeffi-

cients are found as follows: the first 3 moments are
determined by setting r(s, t) = [min(s, t) � st] in equations
(9) and (10), obtaining m = 1/6, s2 = 1/45 and M3 = 8/945,
and the corresponding coefficients S0 from (12) are

x0 ¼ 0:0403 b0 ¼ 0:116 h0 ¼ 0:851: ð13Þ

The case p coefficients depend both on the hypothetical
distribution and on the statistics that is used (W2 or A2),
since the covariance function (6) changes from case to case.
Examples of the determination of the Sp coefficients for
extreme value distributions are given in section 4. Once the
transformation (11) is adopted, w becomes the new test

Figure 1. Relation between case 0 and case p percentage
points for the Cramer–von Mises test for normality. The
open circles represent ‘‘literature’’ data from Anderson and
Darling [1952, equation (4.35)] and Stephens [1986,
Table 4.9], the solid line is a plot of equation (11), and
the dashed line represents equation (8). The inset shows an
enlargement of the lower part of the graph.
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statistic and the critical region of the test can be taken to be
the same as that of the case 0 Cramer–von Mises statistic,
W0

2. For example, the null hypothesis is rejected if w is
greater than 0.347, 0.461, and 0.743 for significance levels
a = 0.10, 0.05, and 0.01, respectively. The probability
distribution of w when H0 is true is approximately the same
as that of W0

2, which has been obtained in analytical form by
Anderson and Darling [1952]; the first two terms of their
infinite series solution are

F* wð Þ ¼ 1

p
ffiffiffi
w

p e�
1

16wK1
4

1

16w

� �
þ 1:118e�

25
16wK1

4

25

16w

� �� �
; ð14Þ

where K1
4
[�] is the modified Bessel function of the second

kind. These two terms alone provide a very accurate
approximation of the probability distribution when w < 1.2;
when w exceeds 1.2, F*(w) can be set to 1. Equation (14)
allows a fast calculation of the probability level correspond-
ing to a given value of the test statistic, which is very
important for a clear assessment of the goodness of fit of the
hypothesized distribution and for combining the results of
the test from multiple samples.
[12] The theory heretofore developed is valid in asymp-

totic conditions, i.e for sample size n ! 1. The conver-
gence of the Q2 distribution to its asymptotic values is rather
fast, but the deviations can be relevant when the sample size
is very small. It is supposed here that also the small sample
distribution can be characterized in terms of its first 3
central moments, and that the transformation from a case
p small sample distribution to a case 0 asymptotic distribu-
tion can be carried out with equation (11) as before, but with
modified parameters Sp(n),

xp nð Þ ¼ xp 1þ k1

n
þ n1ffiffiffi

n
p

� �
bp nð Þ ¼ bp 1þ k2

n
þ n2ffiffiffi

n
p

� �

hp nð Þ ¼ hp 1þ k3

n
þ n3ffiffiffi

n
p

� �
:

ð15Þ

The coefficients ki and ni in equation (15) are estimated by
employing Monte Carlo simulations involving 100000
samples for each of many values of n (see section 4 for

details). A least squares regression of, say,
xp nð Þ
xp

� 1

 �

on

{1/n, 1/
ffiffiffi
n

p
} then provides the appropriate coefficients k1

and n1.

4. An Application to Extreme Value Distributions

[13] The procedure delineated in the previous section is
general, and can be applied to find a transformation for any
distributional family. This section is devoted to the descrip-
tion of this procedure for a group of probability distributions

of common use in the frequency analysis of extreme events,
defined in Table 1 in terms of their CDF, F(x, q), or PDF,
f(x, q). Three other distributions, namely, the Frechet or
extreme value 2 (EV2) distribution, the two-parameter
lognormal (LN) distribution, and the log-Pearson type
3 (LP3) distribution, are converted to EV1, NORM and
GAM distributions, respectively, when the data are prelim-
inarily log transformed. For all distributions in Table 1 the
test is applied with parameters q estimated using the
maximum likelihood (ML) method, except in special cases
described below. The procedure for determining the Sp(n)
coefficients for the EV1 distribution is taken as a reference
and discussed in detail in section 4.1.

4.1. An Example: The EV1 Distribution

[14] For the EV1 distribution the ML method is asymp-
totically efficient for estimating the parameter vector q = [q1,
q2]; thus equation (6) holds, with

g zð Þ ¼

@z

@q1

@z

@q2

0
BBB@

1
CCCA ¼

@F x; qð Þ
@q1

@F x; qð Þ
@q2

0
BBB@

1
CCCA ¼

� 1

q2
e
�e

�xþq1
q2 þ�xþq1

q2

�xþ q1
q22

e
�e

�xþq1
q2 þ�xþq1

q2

0
BBBB@

1
CCCCA

¼ 1

q2

zln z½ 	

�z ln z½ 	 ln � ln z½ 	½ 	

0
B@

1
CA ð16Þ

and (see equation (7))

S�1 ¼ 6q22
p2

1� gð Þ2þ p2

6
1� g

1� g 1

0
@

1
A ð17Þ

where g ’ 0.5772 is Euler’s constant. When equations (16)
and (17) are set in equation (6) one obtains a covariance
function that is independent of the parameter vector, as
expected since q1 and q2 are location and scale parameters
[see Stephens, 1986]. The first 3 central moments of the
case p distribution are thus calculated by numerically
solving the integrals in equations (9) and (10): m = 0.0587,
s2 = 1.116 � 10�3 and M3 = 6.553 � 10�5 are obtained for
the Cramer–von Mises statistic, and m = 0.387, s2 = 3.678�
10�2 and M3 = 1.158 � 10�2 for the Anderson-Darling
statistic. The coefficients xp, bp and hp are then determined
from equation (12), obtaining the results in the first row of
Tables 2 and 3. The small sample corrections (15) are found
by means of Monte Carlo simulations of size N = 100000,
with n from 10 to 100 in steps of 10. For the EV1
distribution, it is found that the convergence is very rapid

Table 1. Probability Models Considered in This Paper

Distribution Acronym CDF or PDF Range

Gumbel or extreme value type I EV1 F(x, q) = exp � exp � x�q1
q2

h ih i
�1 < x < 1

Normal or Gaussian NORM f (x, q) = 1ffiffiffiffi
2p

p
q2
exp � 1

2
x�q1
q2


 �2� �
�1 < x < 1

Generalized extreme value GEV F(x, q) = exp � 1� q3 x�q1ð Þ
q2


 �1=q3� �
q3 x�q1ð Þ

q2
< 1

Gamma or Pearson type 3 GAM f (x, q) = 1
q2j jG q3½ 	

x�q1
q2


 �q3�1

exp � x�q1
q2

h i
x�q1
q2

> 0
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[see also Stephens, 1977], and the dependence on 1/
ffiffiffi
n

p
is

negligible (Tables 4 and 5, first row).

4.2. Procedure for Three-Parameter Distributions

[15] For any probability distribution with only location
and scale parameters, the appropriate coefficients are deter-
mined in the same manner as for the EV1 distribution. This
is the case of the Gaussian distribution (see coefficients in
the second row of Tables 2–5). When instead one has a
GEV or a GAM distribution, two further problems compli-
cate the procedure: first, ML estimators are no more
necessarily asymptotically efficient, since the range of the
distribution depends on q (see Table 1); second, a shape
parameter q3 is present.
[16] Asymptotic efficiency is considered first, since it

affects the validity of equation (6), and the whole procedure
as a consequence. Smith [1985] demonstrates that the
classical regularity conditions for asymptotic efficiency
are satisfied by ML estimators when q3 > 2 for the GAM
distribution, or q3 < 0.5 for the GEV distribution. In all other
cases, one should modify ML estimators as proposed by
Smith [1985] in order to obtain asymptotically efficient
estimators (see Appendix A).
[17] The second problem with three-parameter distribu-

tions relies on the presence of a shape parameter q3: the
percentage points of EDF tests in case p depend on q3 [e.g.,
Stephens, 1986], and this should be reflected by the coef-
ficients Sp. The form of the functional dependence of Sp

upon q3 cannot in general be found analytically; this requires
that (1) the Sp coefficients are determined for a set of q3
values covering the presumed variability of the shape
coefficient in real world samples and (2) a simple function
of q3 is found that approximates the obtained points. Details
on the specific procedure followed for the GAM and GEV
distributions are given in Appendix A, while the obtained
coefficients are reported in Tables 2 and 3.
[18] A final point regards the small sample corrections:

for the GEV and GAM distributions, the size of the Monte
Carlo simulation is still N = 100000, and 35 combinations

of n and q3 values are used (n = [20, 35, 50, 75, 100]; q3 =
[�1, �0.75, �0.5, �0.25, 0, 0.25, 0.5] for the GEV
distribution; q3 = [2, 2.5, 3, 4, 6, 10, 100] for the GAM
distribution). An evident dependence of the corrections on
the shape coefficient is found for the gamma distribution,
and this is reflected by the ni coefficients in equation (15)
that are functions of q3 (fourth row in Tables 4 and 5). No
such dependence is found for the GEV: probably this is due
to occasional failures of the maximization algorithm for
finding ML estimators [see also Madsen et al., 1997, p.
751], which in turn increase the ‘‘noise’’ in the Monte Carlo
simulation and conceal the possible dependence on q3.

5. Accuracy and Power of the Test Statistics

[19] The application of EDF tests with the proposed
approach is simple, but it is important to further investigate
if the approximation of w to W0

2 is accurate, and if the
obtained tests are powerful. As for the accuracy, it is shown
in Appendix B that the distribution of w and W0

2 are very
close one to the other, with differences in percentage levels
of the order of 1% (see Figure 2). The accuracy of the
procedure is thus appropriate for goodness of fit evaluation,
at least in the hydrologic field; as a term of comparison,
consider that using the case 0 percentage points in the
parametric case can correspond to an error as large as
40% in evaluating the percentage level of the test statistic,
with a complete falsification of the test’s results.
[20] The second open point regards the power of the test,

i.e., its ability to reject the null hypothesis when it is false.
Power studies are usually carried out by means of Monte
Carlo simulations: a large number of samples is generated
from an assumed parent distribution, FR, and the power is
determined as the percentage of samples that are rejected in a
test for the distribution FH. If FH � FR, the power should
approximate the significance level of the test, while it should
be higher when FH 6¼ FR. The procedure is repeated with
different tests, that are ranked for their power in recognizing
deviations from FH. Note that the choice of FR is subjective,

Table 2. Coefficients to Be Set in Equation (11) for the Cramer–von Mises Statistic, Asymptotic Casea

Distributionb xp bp hp

EV1 and EV2 0.0223 0.0376 1.090
NORM and LN 0.0226 0.0380 1.081
GEVc 0.0200 (1 + 0.11q̂3 + 0.20 q̂32 + 0.08 q̂33) 0.0314 (1 + 0.20 q̂3 + 0.32 q̂32 + 0.13 q̂33) 1.114(1 � 0.02 q̂3 � 0.04 q̂32 � 0.01 q̂33)
GAM and LP3d 0.0197 (1 + 0.23 q̂3�1 + 0.26 q̂3�2) 0.0308 (1 + 0.35 q̂3�1 + 0.36q̂3�2) 1.119 (1 � 0.05q̂3�1 � 0.09q̂3�2)

aHere q̂3 is an asymptotic efficient estimator (usually maximum likelihood) of the shape parameter of the distribution.
bFor tests of the EV2, LN, and LP3 distributions the data must be preliminarily log transformed.
cFor the GEV distribution, if q̂3 > 0.5, q̂3 = 0.5 must be set in the regressions.
dFor the GAM and LP3 distributions, if q̂3 < 2, q̂3 = 2 must be set in the regressions.

Table 3. Coefficients to Be Set in Equation (11) for the Anderson-Darling Statistic, Asymptotic Casea

Distributionb xp bp hp

EV1 and EV2 0.169 0.229 1.141
NORM and LN 0.167 0.229 1.147
GEVc 0.147 (1 + 0.13 q̂3 + 0.21 q̂32 + 0.09 q̂33) 0.189 (1 + 0.20 q̂3 + 0.37 q̂32 + 0.17 q̂33) 1.186 (1 � 0.04 q̂3 � 0.04 q̂32 � 0.01 q̂33)
GAM and LP3d 0.145 (1 + 0.17 q̂3�1 + 0.33 q̂3�2) 0.186 (1 + 0.34 q̂3�1 + 0.30 q̂3�2) 1.194 (1 � 0.04 q̂3�1 � 0.12 q̂3�2)

aHere q̂3 is an asymptotic efficient estimator (usually maximum likelihood) of the shape parameter of the distribution.
bFor tests of the EV2, LN, and LP3 distributions the data must be preliminarily log transformed.
cFor the GEV distribution, if q̂3 > 0.5, q̂3 = 0.5 must be set in the regressions.
dFor the GAM and LP3 distributions, if q̂3 < 2, q̂3 = 2 must be set in the regressions.
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but it is crucial for the comparison, since different choices
usually lead to different rankings of the tests.
[21] To limit the degree of subjectivity, the same set of FR

distributions already utilized by Wang [1998] is used
here: this is constituted by six Wakeby distributions
(WA1, WA2, WA3, WA4, WA5, and WA6), parameterized
as by Landwehr et al. [1980]. This set of FR distributions
is appealing because, in the intentions of Landwehr et
al. [1980], the distributions should be able to mimic
‘‘floodlike’’ behaviors; moreover, using a Wakeby distribu-
tion one is in the case FH 6¼ FR for all of the seven
hypothetical distributions (EV1, NORM, GEV, GAM,
EV2, LN, and LP3) being tested, thus avoiding the case
when the power is trivially equal to the significance level of
the test. Kolmogorov-Smirnov (KS), probability plot (PP),
L moments (LM), and chi-square (c2) tests are considered
in the comparison, in addition to the Anderson-Darling and
Cramer–von Mises statistics (see Appendix C for details).
[22] The results of the power comparison for significance

level a = 0.05 and sample size n = 50 are reported in Table 6
for all of the 42 combinations of real and hypothesized
distributions. Table 6 is constructed using Monte Carlo
simulations with 10000 replicates for each of the six Wakeby
distributions. The larger value in each row, corresponding to
the test achieving best results for each couple (FR � FH), is
highlighted in bold. To facilitate the comparison, the results
for the six Wakeby distributions are averaged in Figure 3 in
order to obtain a rough indicator of the power of each test
against a generic floodlike distribution.
[23] The results of Table 6 and Figure 3 are not easy to

interpret, but some points are apparent.
[24] 1. Among EDF statistics, A2 is almost always slightly

better than W2, while the commonly used KS statistic tends
to be rather weak in power. These results are in good
agreement with other power studies, summarized by
Stephens [1986].
[25] 2. LM statistics show the greater variability in their

power results. This is expected, since the power of the test
depends on the distance between the L moments ratios of

the real and hypothetical distributions: when these are
similar, the test cannot be effective. LM statistics can thus
be very useful as directional test, e.g., for testing normal
against skewed alternatives, or EV1 against GEV [Fill and
Stedinger, 1995], while other tests should be preferred when
the real parent distribution is unknown.
[26] 3. The PP test is on average the most effective in

detecting deviations from normality, also with log trans-
formed data, in which it slightly outperforms the A2 test;
this is in good agreement with the findings of several
other power studies on tests for normality, reviewed by
D’Agostino [1986]. The situation is reversed (A2 does
slightly better than PP) when the hypothetical distribution
is EV2 or LP3, while for the EV1 and GAM distributions
the advantage of using A2 is substantial. The weakness of
the PP test for the GAM distribution was recognized also by
Vogel and McMartin [1991], and can be attributed to the
difficulty of extending to three-parameter distributions a test
statistic which arises naturally for distributions with only
location and scale parameters.
[27] 4. The c2 test is almost always the weaker among the

considered statistics, and it also bears the drawback that the
percentage points are defined with a large degree of uncer-
tainty (see Appendix C), in particular for small samples and
distributions with many parameters (note the differences
between the two overlapping white bars in Figure 3). The
use of c2 statistics should therefore be discouraged when
the sample size is small and parameters are estimated, as it
is usually the case in the hydrologic field.
[28] 5. When changing the significance level a, or the

sample size n, the power of all tests changes as a conse-
quence, but the overall picture remains rather stable in terms
of the relative performances of different tests.
[29] As a final comment, the present power study sug-

gests to use PP tests when the hypothesized distribution is
normal or lognormal, and A2 tests in all other cases.
However, it must be recalled that a much wider range of
parent distributions should be used for drawing exhaustive
conclusions from a power study. As for the simplicity of

Table 4. Coefficients to Be Set in Equation (11) for the Cramer–von Mises Statistic, Small Sample Casea

Distributionb xp(n) bp(n) hp(n)

EV1 and EV2 xp 1þ 0:2
n

� �
bp 1þ 0:2

n

� �
hp 1þ 0:7

n

� �
NORM and LN xp 1þ 0:3

n

� �
bp 1þ 0:2

n

� �
hp 1þ 0:6

n

� �
GEV xp 1þ 1:5

n
� 0:3ffiffi

n
p


 �
bp 1� 1:3

n

� �
hp 1� 0:7

n
þ 0:3ffiffi

n
p


 �
GAM and LP3c xp 1þ 2:1

n
� 0:3ffiffi

n
p � 0:5ffiffi

n
p

q̂3


 �
bp 1� 0:3

n
� 0:1ffiffi

n
p þ 0:1ffiffi

n
p

q̂3


 �
hp 1� 1:6

n
þ 0:1ffiffi

n
p þ 0:4ffiffi

n
p

q̂3


 �
aThe values of xp, bp, and hp should be taken from the corresponding rows in Table 2.
bFor tests of the EV2, LN, and LP3 distributions the data must be preliminarily log transformed.
cFor the GAM and LP3 distributions, if q̂3 < 2, q̂3 = 2 must be set in the regressions.

Table 5. Coefficients to Be Set in Equation (11) for the Anderson-Darling Statistic, Small Sample Casea

Distributionb xp(n) bp(n) hp(n)

EV1 and EV2 xp 1þ 0:1
n

� �
bp 1� 0:2

n

� �
hp 1þ 0:5

n

� �
NORM and LN xp 1þ 0:3

n

� �
bp 1� 0:2

n

� �
hp 1þ 0:5

n

� �
GEV xp 1þ 0:9

n
� 0:2ffiffi

n
p


 �
bp 1� 1:8

n

� �
hp 1� 0:7

n
þ 0:2ffiffi

n
p


 �
GAM and LP3c xp 1þ 2:0

n
� 0:3ffiffi

n
p � 0:4ffiffi

n
p

q̂3


 �
bp 1� 0:5

n
� 0:3ffiffi

n
p þ 0:3ffiffi

n
p

q̂3


 �
hp 1� 1:8

n
þ 0:1ffiffi

n
p þ 0:5ffiffi

n
p

q̂3


 �
aThe values of xp, bp, and hp should be taken from the corresponding rows in Table 3.
bFor tests of the EV2, LN, and LP3 distributions the data must be preliminarily log transformed.
cFor the GAM and LP3 distributions, if q̂3 < 2, q̂3 = 2 must be set in the regressions.
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application of the tests, an advantage of the PP test for two-
parameter distributions is that the percentage points are the
same for any estimation method that is used [Vogel, 1986],
while for A2 there can be relevant differences. On the other
hand, with PP tests a new table of percentage points is
necessary for any hypothetical distribution. Moreover, the
transformed A2 statistic, w, can be used for a direct com-
parison of the goodness of fit of different distributions,
providing an effective method for selecting the most appro-
priate distribution (the lower w, the better the fit), while this

cannot be done with PP statistics. This point is very
important [e.g., Bobée et al., 1993], and a thorough analysis
would be needed to determine if w is accurate in recognizing
the real parent distribution. For lack of space, a detailed
analysis of this point is postponed to future works.

6. An Example of Application and Final Remarks

[30] In order to summarize the testing procedure proposed
in this paper, the application to the annual maxima series of
hourly rainfall in Genoa (Italy) is described in full detail.
The same data set is used by Kottegoda and Rosso [1997,
p. 466] for the comparison of testing techniques. The

Figure 2. Distance D, in percent, between the Monte-
Carlo, FN(A

2), and theoretical, F*(w), CDFs of the
Anderson-Darling statistics, when the hypothetical distribu-
tion is EV1 or GEV with q3 = �0.2. F*(w) is calculated
either using the asymptotic coefficients from Table 3 or the
small sample corrected coefficients from Table 5, consider-
ing that the sample size is n = 20.

Table 6. Power of Goodness of Fit Tests for Extreme Value Distributions at 5% Significance Level When the True Population is Wakeby

and the Sample Size is n = 50a

FH

Real Distribution FR: WA1 Real Distribution FR: WA2 Real Distribution FR: WA3

A2 W2 KS LM PP c2 A2 W2 KS LM PP c2 A2 W2 KS LM PP c2

EV1 53 51 46 50 47 16–27 30 30 27 13 22 8–16 42 32 26 26 16 8–15
NORM 97 96 93 97 96 74–82 70 68 63 71 76 28–39 95 90 79 97 97 73–85
GEV 41 39 17 8–25 31 31 34 6–21 24 20 22 3–12
GAM 64 63 13 21–43 37 38 23 9–25 10 10 6 2–11
EV2 89 87 85 7 77 70–77 99 99 98 6 97 92–95 100 99 97 16 100 89–95
LN 67 63 57 88 74 28–40 84 83 78 78 88 45–57 75 70 60 57 80 26–40
LP3 71 68 78 27–46 89 88 89 45–65 75 72 53 31–53

FH

Real Distribution FR: WA4 Real Distribution FR: WA5 Real Distribution FR: WA6

A2 W2 KS LM PP c2 A2 W2 KS LM PP c2 A2 W2 KS LM PP c2

EV1 81 80 76 20 36 40–55 26 21 16 5 4 4–10 77 75 64 86 65 35–52
NORM 77 77 68 49 77 40–54 81 71 56 86 87 48–61 23 21 16 8 14 6–13
GEV 74 74 67 27–51 27 22 27 3–11 19 17 12 4–16
GAM 74 74 63 26–51 18 18 7 4–14 39 37 35 7–22
EV2 97 97 96 9 92 90–93 100 100 99 22 100 94–98 100 100 100 17 100 100
LN 87 85 83 91 90 58–68 86 83 71 56 89 40–56 100 99 98 57 100 89–95
LP3 90 88 93 57–74 84 81 58 43–66 99 99 87 89–97

aValues are in percents. Bold values highlight the test with higher power for each couple of real and hypothetical distributions. Two numbers appear in
the C

2 column since the power of the chi-square test cannot be obtained in an exact manner (see Appendix C for details).

Figure 3. Power comparison of goodness of fit tests for
extreme value distributions at 5% significance level for a
sample size n = 50. Each bar represents the average of the
powers obtained for the six Wakeby parent distributions in
Table 6. The two overlapping white bars correspond to the
lower and upper bounds for the power of the c2 test.
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measured data from 1931 to 1988 are reported by Kottegoda
and Rosso [1997, p. 717]. The Anderson-Darling test for the
four distributions in Table 1 can proceed as follows: (1)
Estimate the parameters from the sample data using ML
(columns 2–4 in Table 7) or Smith’s [1985] estimators when
necessary, as is the case for the GAM distribution in Table 7.
(2) Sort the data in ascending order, find zi = F(xi, q̂) for any
distribution, and calculate A2 from equation (4) (column 5 in
Table 7). (3) Determine the Sp(n) coefficients using Tables 3
and 5, with the appropriate n and q̂3 values (columns 6–8 in
Table 7). (4) Find w from equation (11), using the S0

coefficients from equation (13) (column 9 in Table 7).
(5) Compare w to the appropriate percentage points for
the selected significance level (e.g., 0.461 for a = 0.05), or
use equation (14) to find the probability level F*(w)
correspondent to each w value (Column 10 in Table 7); if
F*(w) < (1 � a), the test is passed. For the LN, EV2, and
LP3 distributions, one should preliminarily log transform
the data, and then repeat steps 1–5 above. The results in
Table 7 show that, in this particular case, four distributions
out of seven pass the 5% Anderson-Darling test, with the
GAM distribution achieving the lower probability level
(best fit). Note that if a case 0 test were erroneously applied
to the A2 results in column 5, all distributions had passed the
5% test (the limit value is 2.462).
[31] In conclusion, the Anderson-Darling test for extreme

value distributions combines good power properties and
simplicity of application, and its use in the hydrologic field
can give important indications for model verification and
selection. The method proposed here to convert a case p to a
case 0 statistic is flexible: it can be applied to other
probability distributions of interest; to the case when some
of the parameters are known, setting to zero the appropriate
elements of the asymptotic dispersion matrix nS�1 in
equation (7); or to other quadratic EDF statistics, obtained
using different weight functions in equation (2). The major
disadvantage of the method is that it requires asymptotically
efficient estimators, inhibiting the use of moments and L
moments estimators. Note that this problem is not due to the
transformation (11), but it stems from the use of equation (6),
that is the base for the determination of asymptotic percent-
age points even in the ‘‘classical’’ approach [Stephens,
1986]. A possible solution is currently under investigation,
based on a modification of equation (6), mentioned by
Darling [1955] and Durbin [1973], allowing to extend the
present method to non-asymptotically efficient estimators.

Appendix A: The Sp Coefficients for the GAM
and GEV Distributions

[32] As mentioned in section 4.2, two problems compli-
cate the determination of the coefficients Sp to be used in

equation (11) for the GAM and GEV distributions. First,
the asymptotic efficiency of ML estimators is lost when
when q3 < 2 for the GAM distribution, or q3 > 0.5 for the
GEV distribution. In these cases one should use Smith’s
[1985] estimators, defined as follows: for a positively
skewed GAM distribution, estimate the location parameter
as q̂1 = x1, drop x1 from the sample, define the modified
likelihood function ~L (q2, q3jx, q̂1) =

Pn
i¼2 ln[f(xi, qĵq1)], and

find q̂2 and q̂3 at a local maximum of ~L. These modified
estimators are asymptotically efficient and should be used
when classical ML estimators do not exist, or when they
yield q̂3 < 2.
[33] The case of a negatively skewed gamma distribution

(q2 < 0) is similar, but there is now an upper bound: the
Smith’s [1985] estimator of q1 is thus q̂1 = xn, and the scale
and shape parameters are estimated at the local maximum of
~L(q2, q3jx, q̂1) =

Pn�1
i¼1 ln[f(xi, qĵq1)]. For the GEV

distribution, ML estimators are still regular when there is
a lower bound (q3 < 0), since the distribution and its first
derivative are null at the bound [Kendall and Stuart, 1977,
p. 35]; in contrast, when q3 > 0.5 (negatively skewed
distribution with an upper bound) the asymptotic efficiency
of ML estimators is lost. An analogous of Smith’s [1985]
estimator in this case is obtained by setting q̂1 = xn � q2

q3
, and

then maximizing the modified likelihood function ~L(q2, q3jx,
q̂1) =

Pn�1
i¼1 ln[f(xi, qĵq1)] with respect to q2 and q3. In all

these nonregular cases, one should drop the smallest (or
largest) observation from the sample, and calculate A2 from
(4) on the remaining n�1 points, in order to avoid problems
with the logarithms of null quantities.
[34] The second problem with the GAM and GEV dis-

tributions is that the Sp coefficients depend on the shape
parameter q3. To account for this dependence, the case of the
GEV distribution is treated as follows: the values of xp, bp
and hp are determined for any q3 in the range [�1; 0.5], in
steps of 0.05, and a polynomial of degree 3 is fitted to the
data, obtaining the approximate equations in the third line of
Tables 2 and 3, with coefficients of determination greater
than 0.995. The minimum value of the shape parameter is
taken at q3 = �1, since for lower values the mean of the
distribution diverges; the maximum is set at 0.5 because for
q3 > 0.5 the estimation of the location parameter becomes
superefficient [Darling, 1955]: ignorance about q1 makes no
difference for the estimation of q2 and q3 [Smith, 1985], and
for any q3 > 0.5 one can use the percentage points (and the
Sp coefficients) that are found for q3 = 0.5 [see also
Choulakian and Stephens, 2001]. Similarly, for the gamma
distribution the coefficients in Tables 2 and 3 are found to
depend on the powers of 1

q3
, and the range of acceptable

values is 0 � q3 <1, with the artifice to use the coefficients
that are found for q3 = 2 in the superefficient case q3 < 2.
Note that in case p the real value of the shape parameter of

Table 7. Example of Application of the Anderson-Darling Test to the Annual Maxima of Hourly Rainfall in Genoa (Italy)

Distribution q̂1 q̂2 q̂3 A2 xp(n) bp(n) hp(n) w F*(w)

EV1 38.2 15.4 1.09 0.169 0.228 1.151 0.80 0.99
NORM 48.2 23.6 2.46 0.168 0.228 1.157 2.71 1
GEV 35.1 12.0 �0.43 0.41 0.142 0.177 1.216 0.25 0.81
GAM 22.8 21.8 1.18 0.18 0.163 0.226 1.145 0.04 0.08
EV2 3.57 0.35 0.42 0.169 0.228 1.151 0.17 0.68
LN 3.77 0.43 0.77 0.168 0.228 1.157 0.47 0.95
LP3 3.07 0.32 2.24 0.36 0.160 0.219 1.151 0.14 0.58
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the parent distribution is not known, and an estimate q̂3
should be used in Tables 2 and 3, with an unavoidable error
due to the q3 sample variability.

Appendix B: Accuracy of the Approximation
wwww === W0

2

[35] Two different approaches can be used to investigate
the accuracy of the approximation of w to W0

2: the first
requires to refer to existing tables of percentage points, the
second to use Monte Carlo simulations. As an example of
the first approach, consider the A2 test for the EV1
distribution: the ‘‘exact’’ 95% asymptotic percentage point
is 0.757 [Stephens, 1986]. Setting this value in equation (11)
with the appropriate coefficients from Table 3 (first row),
one obtains w = 0.451, corresponding to a probability in
equation (14) of 94.7%. The 0.3% error in significance level
is negligible. Analogous results are obtained for other tabled
percentage points (EV1 and NORM distributions [see
Stephens, 1986]) with maximum errors of 0.5–0.6% in
the central part of the test statistics distributions. No tabled
results exist for the GAM distribution, while for the GEV a
comparison is possible with the results of Ahmad et al.
[1988] (A2 statistic only). However, Ahmad et al.’s [1988]
results are less rigorous and general than those for the EV1
and NORM distributions: in fact, their percentage points are
obtained by small-size Monte Carlo simulations (with N =
5000), without reference to asymptotic theoretical results;
the variability of the percentage points with the shape
parameter q3 is not accounted for; the range of q3 considered
in the simulations is limited, [�0.2, 0.2]; L moments rather
then ML are used for parameters estimation.
[36] In order to have a convincing verification for the

three-parameter distributions, Monte Carlo simulations are
again employed: samples of N = 100000 EDF statistics are
generated for any distribution, sample size, and shape
parameter of interest: n = 10:10:100 for the EV1 and
NORM distributions; n = 20, 35, 50, 75, 100 and q3 =
�1:0.25:1 for the GEV distribution; n = 20, 35, 50, 75, 100
and q3 = 1, 1.5, 2, 2.5, 3, 4, 6, 10, 100 for the GAM
distribution. For each of these 110 Monte Carlo experiments
the empirical CDF of the test statistics, FN(Q

2), is calculated
using (1). The standard error of estimation of FN(Q

2) is
[FN(Q

2)(1 � FN(Q
2))/N]0.5, i.e., lower than 0.2% when N =

100000. This empirical CDF can be compared with F*(w),
obtained from equations (11) and (14), and their distance in
% can be calculated as D = (FN(Q

2) � F*(w)) 100. As an
example, Figure 2 shows the results for the Anderson-
Darling statistic when the null hypothesis is EV1 or GEV
(with q3 = �0.2), in both cases with n = 20.
[37] The modified statistic w is calculated either using in

equation (11) the asymptotic coefficients from Table 3,
or the small sample corrected coefficients from Table 5.
When the asymptotic coefficients are used, the error in
evaluating the probability level can be as large as 4.5% for
three-parameter distributions, while it is lower for two-
parameter distributions. When instead the small sample
corrections are accounted for, the error remains in a band
of ±1%, except in the very low part of the distributions,
where the distortion is stronger. Figure 2 is representative
of the typical behavior that is found when other distribu-
tions, shape parameters and sample sizes are considered.
Larger errors (maximum 2–2.5% in the central and lower

parts of the distribution) are found when the shape param-
eter falls in the range where estimation is nonregular.

Appendix C: Goodness of Fit Tests Used in
the Power Comparison

[38] The following goodness of fit statistics are consid-
ered in the power comparison of section 5.
[39] 1. First is the Kolmogorov-Smirnov (KS) test, men-

tioned in section 2. Suitable formulas for calculating the test
statistic and tables of percentage points are given by
Stephens [1986] for the EV1 and normal distributions. For
the GEV and GAM distributions with all the parameters
estimated, the appropriate percentage points are instead not
known.
[40] 2. Second are tests based on the comparison of

empirical and hypothetical L moments ratios (LM in brief);
the appropriate testing procedure and percentage points are
given by Fill and Stedinger [1995] for the EV1 distribution,
by Stedinger et al. [1993] for the normal distribution, and by
Wang [1998] for the GEV distribution. The test is not
available for the GAM distribution.
[41] 3. Third are tests using the linearity of the probability

plot for measuring the goodness of fit (PP tests). Appropri-
ate critical values for the EV1 and normal distributions are
tabled by Stedinger et al. [1993]. No such tables exist for
the GEV with the three parameters estimated from the
sample. For the GAM distribution the testing procedure is
described by Vogel and McMartin [1991].
[42] 4. Last are tests of chi-square type (c2 test). The use

of the classical Pearson test requires that the range of x is
partitioned in classes; a convenient procedure to avoid
arbitrariness and maximize the power entails the choice of k
equiprobable classes under the hypothesized distribution,
with k = 2n0.4 [Moore, 1986]. This relation should be used
even with small samples, since it is not advisable to set a
lower bound on the number of elements in each class (e.g.,
n/k � 5) when equiprobable cells are used [Moore, 1986, p.
71]. The test statistic distribution in case p is not completely
known, since there is a partial recovery of degrees of
freedom of the chi-square distribution with respect to the
commonly recommended value of k � p � 1, when efficient
estimators are used [e.g., Kendall and Stuart, 1977, p. 455;
Moore, 1986]. When using maximum likelihood, the critical
points fall between those of c2(k � p � 1) and those of c2

(k � 1), and not even this can be said when moments or L
moments estimators are employed. As a consequence, the
power of the test does not take a precise value, and only its
lower and upper bounds can be determined from the c2

(k � 1) and c2(k � p � 1) distributions.

[43] Acknowledgments. This work was carried out under CNR-
GNDCI grant 03.00022.GN42. Thanks are owed to P. Claps and L. Ridolfi
for helpful suggestions and comments during the course of this research.
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