
Politecnico di Torino

Porto Institutional Repository

[Article] Pipeline Forwarding of Packets based on a Low Accuracy Network-
distributed Common Time Reference

Original Citation:
Mario Baldi; G. Marchetto (2009). Pipeline Forwarding of Packets based on a Low
Accuracy Network-distributed Common Time Reference. In: IEEE-ACM TRANSACTIONS ON
NETWORKING, vol. 17, pp. 1936-1949. - ISSN 1063-6692

Availability:
This version is available at : http://porto.polito.it/1911649/ since: January 2010

Publisher:
IEEE

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11371849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://porto.polito.it/view/publication/IEEE-ACM_TRANSACTIONS_ON_NETWORKING.html
http://porto.polito.it/view/publication/IEEE-ACM_TRANSACTIONS_ON_NETWORKING.html
http://porto.polito.it/1911649/
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=1911649

	

This is an author’s version of the paper

Baldi M., Marchetto G.
“Pipeline Forwarding of Packets based on a Low Accuracy Network-distributed Common Time

Reference”

Published in

IEEE Transactions on Networking, vol. 17, no. 6, pp. 1936-1949

The final published version is accessible from here:

http://dx.doi.org/10.1109/TNET.2009.2015759

©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

 1

Abstract—Pipeline forwarding is a technology with the

capability of providing both guaranteed quality of service and
scalability, two fundamental properties for the future Internet.
Implementing pipeline forwarding requires network nodes to
operate with a common time reference that in existing literature
is considered to have relatively good accuracy and usually be
derived from an external source, such as the GPS or Galileo. This
is a major requirement possibly hindering the widespread
deployment of this technology notwithstanding its potential to
enable a host of new applications. This paper describes and
analyzes a solution for realizing pipeline forwarding based on a
low accuracy common time reference distributed through the
network and presents experimental results obtained with a
prototypal implementation of the proposed solution.

Index Terms—pipeline forwarding, packet scheduling,

distribution of a common time reference, network
synchronization, experiments on a network testbed

I. INTRODUCTION

RAFFIC over the Internet continues to grow steadily. In

particular, the percentage of traffic requiring quality of

service (QoS) in terms of end-to-end delay and jitter has been

increasing during the last few years. For example, some

applications, such as multimedia ones, need a minimum level

of service quality in order to operate properly.

Current approaches to offer controlled quality based on the

Differentiated Services (DiffServ) model [1] combined with

over-provisioning of resources cannot withstand a significant

increase in the fraction of traffic with QoS requirements due to

a combination of the following factors:

 Current approaches rely on the fundamental assumption

that differentiated traffic must use only a small fraction of

the network capacity. Consequently, the additional

network capacity needed when traffic with QoS

requirements grows is larger than the increase in (revenue

generating) traffic.

 Given that there are many indicators of technology having

reached a point where it does not follow any more Moore’s

Law of a tenfold increase every 18 months, the additional

processing and switching capacity required to follow the

steep growth curve of Internet traffic with QoS

requirements has a high cost.

 In a possible future scenario in which traffic with QoS

requirements might dominate the Internet, the excess

Authors are with Dipartimento di Automatica e Informatica, Politecnico di

Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy; e-mail:
{mario.baldi, guido.marchetto}@polito.it.

network capacity stemming from over-provisioning is

likely to remain unused — i.e., not to yield any revenue.

In essence, the upgrade that a network infrastructure relying

on the above approaches should undergo in order to support

such traffic increase is most likely to result in costs larger than

the economic benefits, i.e., additional revenue brought by such

services. Hence, a solution that relies on a more efficient

utilization of network resources, i.e., allowing for traffic with

QoS requirements to use a large percentage of network

capacity, is needed.

On the other hand, approaches based on the Integrated

Services (IntServ) model [2], although somewhat more

efficient in the utilization of network resources, have proven

not to scale due to the high complexity and processing

requirements associated with packet scheduling algorithms,

such as packet-by-packet generalized processor sharing

(PGPS) [3], a.k.a. weighted fair queuing (WFQ), combined

with the need for their per-flow deployment. Moreover, PGPS

and other similar well known scheduling algorithms [4][5],

such as, class based queuing, weighted round robin and others,

cannot combine optimal delay and resource utilization

efficiently (see detailed discussion in [6]).

In summary, existing asynchronous packet scheduling

approaches either require (very) large amounts of network

resources or cannot scale to high performance (multi-terabit)

routers and switches. Pipeline Forwarding (PF) is a packet

scheduling technique that can satisfy such requirements thanks

to its unique combination of simplicity and effectiveness by

deploying a global common time reference (CTR) for shaping

the traffic through the network. PF provides guaranteed

quality of service and scalability, as it has been extensively

studied both analytically and through simulations (see for

example [7]–[9]) and experimentation [10][11]. PF properties

basically stem from the predictability it introduces in network

operation, hence on the service offered to packets traversing it.

PF is currently deployed in an experimental testbed

interconnecting Turin, Milan, and Trento, the impact of its

hypothetical deployment in the network of an Internet Service

Provider such as Telecom Italia has been assessed in the

context of a project sponsored by Telecom Italia Labs [12],

and its market potential as a commercial application of the

Galileo positioning system has been evaluated in the context

of the Harrison Project funded by the Galileo Supervisory

Authority.

Also S&G Queuing [13] uses a time reference to drive

packet forwarding in routers with FIFO-like scheduling

Pipeline Forwarding of Packets based on a Low
Accuracy Network-distributed Common Time

Reference
Mario Baldi, Member, IEEE, and Guido Marchetto, Member, IEEE

T

 2

complexity — i.e., the solution has the potential to scale to

high performance architectures. However, S&G Queuing

relies on a ―per link‖ time reference derived from the

transmitter end independent local clock. The variable drift of

clocks used on various input links at a router can lead to the

impossibility of maintaining the timing profile characterizing

traffic at the network edge, which eventually results in

variable delays, jitters and, in the worst case, buffer overflows

and packet loss.

Instead PF is based on a time reference (CTR) common to

all network nodes. Since in much previous work, including

prototypal implementations, the CTR is derived from UTC

(coordinated universal time), the technology is often referred

to as UTC-based pipeline forwarding. If UTC is provided

through an external channel (e.g., Global Positioning System

(GPS) is used in the prototypes described in [10] and [11]) the

system is said to be based on an externally-distributed CTR. If

an inter-switch synchronization protocol is used to distribute a

timing signal through the network (as proposed in [8], for

example), the system is said to be based on a network-

distributed CTR. In both cases, original PF operating

principles (as defined in [8]) imply that the CTR error in

different nodes be smaller than the PF operation time unit,

which is called a time frame (TF). Relying on such an

accurate (either externally or network distributed) CTR is a

major requirement on network nodes and network operations

that some see as a hurdle with the potential to hinder PF

deployment. This motivates this work that proposes, analyzes,

and reports on experiments with a PF implementation

supporting a low accuracy network distributed CTR.

Specifically, this paper makes the following contributions: (i)

a solution for CTR distribution with minimum impact on

system complexity is defined, (ii) a set of operational rules to

ensure proper PF operation with CTR error larger than one or

more TFs is specified, (iii) resulting buffering requirements

are devised, and (iv) consequences on the quality of the

service provided in terms of delay and jitter are analyzed.

Notice that although in this work (ii), (iii), and (iv) are devised

assuming the synchronization model underlying the CTR

distribution solution at (i), they can be straightforwardly

generalized to various CTR distribution alternatives, i.e., their

relevance is not limited to the proposed CTR distribution

solution. In essence, the paper shows how minimal changes to

the PF algorithm originally proposed enable proper operation

with a low accuracy network-distributed CTR. Although the

proposed changes to PF are minimal — which contributes to

the relevance of this work since they do not affect the system

complexity — they have a major impact because PF

deployability is greatly improved. In particular, given that the

proposed CTR distribution solution can be implemented by a

low complexity software module, this work facilitates PF

deployment in low end network nodes, such as at the wired or

wireless edge of the network. This is key to take full

advantage of PF in terms of guaranteed QoS as its benefits can

be fully enjoyed when it is deployed end-to-end [6].

After a short description of PF and its deployment options

(Section II), the paper discusses network synchronization

issues in general (Section III.A), outlines the basic principles

of the synchronization solution proposed for the distribution of

the CTR through a network (Section III.B). In fact,

Section III.B also sets the context for this work: a stable

network scenario, i.e., changes in the availability of links and

nodes (e.g., due to failures) are not taken into consideration

here. Section IV analyzes the impact of a network-distributed

CTR on the implementation and deployment of the PF

scheduling algorithm. Various options for the distribution of

the CTR and a proposed protocol are discussed in Section III,

while experimental results on a testbed implementing the

proposed solution are presented in Section V. The outcome of

this work and future work directions are finally discussed in

Section VI.

II. UNDERLYING PRINCIPLES AND TECHNOLOGIES

As the context of this work is a network performing

Pipeline Forwarding (PF) of packets, this section briefly

introduces this technology and its deployment options. An

extensive and detailed description of pipeline forwarding is

outside the scope of this paper and is available in the

literature [7]–[9].

A. Pipeline Forwarding

In PF all packet switches utilize a basic time period called

time frame (TF). The TF duration may be derived, for

example, as a fraction of the UTC second received from a

time-distribution system such as the GPS and, in the near

future, Galileo. As shown in Fig. 1, TFs are grouped into time

cycles (TCs) and TCs are further grouped into super cycles;

this timing structure aligned in all nodes constitutes a CTR.

Each super cycle might last one UTC second like, for

example, in Fig. 1, where the 125-μs time frame duration is

obtained by dividing the UTC second by 8000; sequences of

100 time frames are grouped into one time cycle, and runs of

80 time cycles are comprised in one super cycle (i.e., one UTC

second).

CTR from UTC

(Coordinated

Universal Time)

1 2 100

Time

Cycle 0

1 2 100

Time

Cycle 1

1 2 100

Time

Cycle 79

Super-cycle 0

with 8k Time-frames

0
beginning

of a UTC second

1
beginning

of a UTC second

1 2 100

Time

Cycle 0

1 2 100

Time

Cycle 1

1 2 100

Time

Cycle 79

Super-cycle m

with 8k Time-frames

T T T T T T T T T T T

Fig. 1. Common time reference structure

During a resource reservation phase TFs are partially or

totally reserved for each flow on the links of its route. Thus,

TFs can be viewed as virtual containers for multiple packets

that are switched and forwarded according to the CTR. In the

PF deployment in the literature, the TC provides the basis for

a periodic repetition of the reservation, while the super cycle

offers a basis for reservations with a period longer than a TC.

In another possible deployment the reservation phase can be

done on the fly before transmitting a packet without

necessarily maintaining it across multiple TCs.

A signaling protocol must be chosen for performing

resource reservation and TF scheduling, i.e., selecting the TF

in which packets belonging to a given flow should be

 3

forwarded by each router. Existing standard protocols and

formats should be used whenever possible. Many solutions

have been proposed for distributed scheduling in pipeline

forwarding networks [7] and the generalized MPLS (G-

MPLS) control plane provides signaling protocols suitable for

their implementation. In the traditional traffic management

models for QoS support, such as ATM User-Network

Interface and Integrated Services, applications signal their

QoS requirements to the network for each flow (usually called

microflow); queuing algorithms used in asynchronous packet

switches have to maintain status information for each micro-

flow, which is not scalable. Pipeline forwarding does not

require per-micro-flow status in intermediate nodes, thus

having similar provisioning scalability as the DiffServ model,

where micro-flows are aggregated in the network to improve

scalability [14].

The basic pipeline forwarding operation as originally

proposed in [7] and [8] is regulated by two simple rules: (i) all

packets that must be sent in TF k by a node must be in its

output ports' buffers at the end of TF 1k , and (ii) a packet p

transmitted in TF k by a node nN must be transmitted in TF

k by the following node 1nN , where is a predefined

integer called forwarding delay, and TF k and TF k are

also referred to as the forwarding TF of packet p at node nN

and node 1nN , respectively. It follows that packets are timely

moved along their path and served at well defined instants at

each node. Nodes therefore operate as they were part of a

pipeline, from which the technology’s name is derived.

Consequently, given the TF at which a packet enters the

network, the time at which the packet is forwarded by each

node and eventually reaches its destination is known in

advance with the accuracy of one TF.

The value of the forwarding delay is determined at

resource-reservation time and must be large enough to satisfy

(i). Note that the time a packet requires to go from the output

buffer of a node to the output buffer of the following one is

strictly dependent on the performance of both nodes and the

distance between them. Thus, the minimum value acceptable

for could vary depending on the previous hop from which a

packet is received. Defining nA as the set of the neighbors of

nN , a set of different minimum acceptable forwarding delays

, :nm m nm N A have to be defined for nN .

PF guarantees that reserved real-time traffic experiences: (i)

bounded end-to-end delay, (ii) low delay jitter independent of

the number of nodes traversed (less than two TFs when the

CTR accuracy is smaller than a TF [8]), and (iii) neither

congestion nor resulting loss.

B. Deployment Options

Time-driven priority (TDP) [8] is a synchronous packet

scheduling technique that enables combining PF with

conventional routing mechanisms to achieve high flexibility

together with guaranteed service. While scheduling of packet

transmission is driven by time, the output port can be selected

according to either conventional IP destination-address-based

routing, or multi-protocol label switching (MPLS), or any

other technology of choice. Within a TF packets can be

switched and forwarded asynchronously, i.e., in an arbitrary

order and to different output ports.

In Time-driven switching (TDS), originally proposed to

realize sub-lambda or fractional lambda switching (FS) [9],

all packets in the same TF are switched in the same way, i.e.,

altogether to the same output port. Consequently, header

processing is not required, which results in low complexity

(hence high scalability) and enables optical implementation.

Although with a different degree of flexibility, both TDP

and TDS can handle non-pipelined (e.g., best-effort) packets

that can be transmitted during any unused portion of a TF,

whether not reserved or reserved but actually unused.

III. NETWORK SYNCHRONIZATION

A. An Overview

Several applications and technologies require network

synchronization for their operation. These requirements are

different depending on the specific environment. For example,

a distributed software system may require a time-of-day

synchronization in order to correctly perform transactions. The

Network Time Protocol (NTP) [15] is often used for this

purpose; it carries timing information deployed by a software

phase locked loop (PLL) that maintains time-of-day

synchronization by recovering the error on the system time

introduced by the limited accuracy of the local oscillator.

Current implementations of this type of network

synchronization are based on an application layer protocol

deployed by an application (daemon) process running on

clients. SONET/SDH, on the contrary, needs synchronization

at the physical layer in order to pace transmission of bits. The

timing signal is distributed directly at the physical layer as

defined by specific ITU standards.

TDP uses a CTR to determine when to transmit packets,

i.e., packets must be sent out in predefined time-slots uniquely

identified throughout the whole network. Similarly, in TDS a

CTR is deployed by all switches across the network to

determine when to change their input-output interconnections.

In particular, in a PC-based implementation of a TDP

router [10], a periodic UTC-aligned signal generated (as an

interrupt on the PCI bus) by a GPS receiver is used for

indicating the beginning of a new TF, i.e., it triggers the

transmission of packets scheduled for that TF. Analogously,

the switch controller of a TDS switch [11] prototypal

implementation uses a signal from a GPS receiver to trigger

the reconfiguration of the switching fabric at the beginning of

each TF according to a pre-defined, periodic pattern. Thus, PF

requires time-of-day (here represented by the number of a TF

within a TC) synchronization, which the GPS distributes with

very high accuracy. However, the use of the GPS requires the

deployment of GPS receivers (i.e., specific hardware) and the

availability of a properly positioned outdoor antenna. Thus, a

GPS-based synchronization solution is often impractical for

logistics and cost reasons that some see as a drawback with the

potential to hinder the deployment of PF. For these reasons

this work investigates PF operation based on a network-

distributed CTR.

Several network synchronization techniques have been

 4

proposed, including the aforementioned NTP and

SONET/SDH synchronization solution. Worth mentioning,

IEEE 1588 [16] and Synchronous Ethernet [17] have recently

been proposed specifically to provide synchronization in

packet switched networks. All these solutions aim at a very

high accuracy, which results in high complexity and, in the

case of SONET/SDH, the deployment of dedicated channels

for carrying synchronization signals. However, in this paper

we show (see Section IV) that, unlike circuit switching

technologies, like SONET/SDH, PF does not require high

accuracy in the realization of the CTR. In fact, since PF nodes

handle packets, buffering can be leveraged on to relax

accuracy requirements: an appropriate size buffer enables

correct PF operation by delaying packets based on the relative

accuracy of the time reference on neighboring nodes. For

example, if the time reference of an upstream node is early

with respect to its downstream neighbor, packets are buffered

in the latter until their forwarding time according to local time

reference. A late time reference of an upstream node with

respect to its downstream neighbor can instead be dealt with

by introducing a larger forwarding delay than required by the

nominal packet transfer time between the two nodes, which

implies additional buffering in the downstream node.

Section IV is devoted to devising how a PF node can be

dimensioned based on the CTR accuracy and proving that a

properly dimensioned system provides the benefits typically

offered by PF as originally defined in [7] and [8].

Consequently, the complexity of existing synchronization

distribution solutions required to achieve high accuracy is not

justified when aiming at PF deployment. For these reasons, a

customized, low complexity network synchronization solution

is desirable.

An inter-switch synchronization protocol proposed in [18]

was specifically adapted to PF in [8]. This solution, aimed at a

CTR error among nodes smaller than one TF, requires each

node to have a local clock to trigger the beginning of each TF.

The CTR distribution solution proposed in this work is based

on directly triggering the beginning of a new TF on a node

when a synchronization signal reaches such node. This

protocol is simple and effective as it (i) does not rely on a

local clock, hence enabling a (ii) software-only

implementation, (iii) provides the required time-of-day

synchronization, and (iv) does not require dedicated network

resources as the synchronization signal is piggybacked by data

packets. Being simple and not requiring specific hardware, the

proposed CTR distribution solution is particularly suitable for

the deployment in low end nodes, such as at the edge of the

network (e.g., home gateways and wireless access points). The

following subsections present and analyze this protocol and its

implications on the network synchronization.

B. Network Synchronization Model

The proposed method to achieve network synchronization

consists in nodes distributing a synchronization signal to their

neighbors that can be processed by receiving nodes and used

to trigger the beginning of TFs. Since a node could have

several neighbors, it could receive more than one timing

signal. One of the neighbors is to be selected as

synchronization source for the node. The selection of the

synchronization interface has to be done in such a way that

each node has a synchronization path to a predefined node that

acts as time server (i.e., a node that distributes a well defined

time reference at which it is synchronized and which becomes

the common time reference for the entire network). This

results in a logical tree topology, referred to as

synchronization tree, built over the physical mesh network, as

shown in Fig. 2. The root of this tree is named

Synchronization Signal Server (S3) and the interface from

which a node acquires the synchronization signal is called

Synchronization Signal Server Port (S3P). The establishment

of this logical tree topology could be automated using several

methods. For example, a customization of the Spanning Tree

Protocol or the information contained in a routing protocol

database (e.g., the OSPF’s) could be used. The definition of

mechanisms and protocols for these purposes is outside the

scope of this paper and left for future work.

S3

S3P

Synchronization Tree

Fig. 2. Synchronization distribution model.

The resulting synchronization model consists in a

synchronization signal generated by a server (the S3)

spreading like a wave through the network and reaching all

nodes. Since the synchronization signal experiences a non-

zero propagation delay and, being network nodes non-ideal, its

transmission/reception/processing are affected by non-zero

variable latencies, each TF features a synchronization error,

i.e., a variable time difference between the beginning of the

generic TF k at the S3 and the beginning of the same TF at the

generic node nN . The original PF algorithm was studied and

developed under the assumption of all nodes sharing a,

possibly UTC-aligned, CTR ensuring that TFs begin

simultaneously on all nodes, as shown in Errore. L'origine

riferimento non è stata trovata.(a) or with a difference

across all nodes smaller than a TF [8]. Section IV will show

that few minor modifications to the PF algorithm are actually

sufficient to allow proper operation when network nodes are

affected by synchronization errors of any magnitude.

However, such modifications ensure proper PF operation if the

synchronization error, and specifically its maximum variation,

are known. Hence, the remainder of this section is devoted to

the synchronization error analysis , under the assumption that

the synchronization signal on reaching a node directly triggers

the beginning of a new TF
1
.

Let (see Fig. 3):

k
ni be the instant when the synchronization signal that

1 The following analysis can be easily extended to other approaches, such

as synchronizing through the network a local clock that triggers the beginning
of a new TF.

 5

determines the beginning of TF k reaches the S3P of the

generic node nN , i.e., the instant at which TF k should

begin at nN if there were no latencies.

k
nb be the instant at which the TF k actually begins at

nN .

k
no be the instant at which the synchronization signal is

transmitted by node nN at the beginning of TF k.

 nTe be the minimum time that nN needs to react to the

synchronization signal, which includes receiving and

processing latencies.

k
nTe be the variable component of the time that nN

needs to react to the synchronization signal indicating the

beginning of the generic TF k, where

max

0 .
k
n nTe Te k (1)

 nTt be the minimum time that nN takes to output (i.e., to

begin the transmission of) the synchronization signal

corresponding to the beginning of a TF. nTt is the output

side equivalent of the previously introduced nTe and

includes transmitting latencies.

k
nTt be the variable component of the time that nN

takes to output the synchronization signal indicating the

beginning of the generic TF k, where

max

0 .
k
n nTt Tt k (2)

 mnTp be the propagation delay — considered constant —

on the link connecting two adjiacent nodes mN and nN .

k
n be the synchronization error concerning TF k

affecting the generic node nN . As defined above this

equals the delay with which a TF begins at a node nN

with respect to the time at which the same TF begins at

the S3, i.e. 3S

k k
nb b .

Let’s consider a synchronization path in the network

consisting of a sequence of nodes dNNN ,...,, 10 , where 0N

is the S3 from which the others receive the synchronization

signal through the synchronization path. At 0N the

synchronization signal for a certain TF k starts as soon as the

reference clock triggers the beginning of such TF. Given the

above described inaccuracies, the instant at which TF k begins

at node dN is

1 1

0 (1)
0 0

1

1 0 1

 .

d d
k k
d i i i

i i
d d d

k k
i i i

i i i

b b Tp Tt

Te Tt Te

 (3)

That is, the respective synchronization error
k
d consists of

two components: a constant (i.e., time invariant) one d , and a

time variant one
k
d :

k k
d d d , (4)

where

1

(1) 1
0

d

d i i i i
i

Tp Tt Te

 , (5)

and

1

0 1
1

max max max
1

0

,

0 .

d d
k k k
d i i

i i
d

k
d d i i

i

Tt Te

Tt Te

 (6)

In conclusion, a generic node nN is affected by a

synchronization error
k
n which depends on its position along

the synchronization path.

t
Nn

Incoming synchronization signal

Outgoing synchronization signal

k
ni

k
nb

k
no

 k
neTneT(1)n npT ntT k

ntT (1)n npT

Fig. 3. Notation.

C. Synchronization Signal Transfer Options

Several solutions could be adopted in order to implement

the presented CTR distribution method, specifically to

transmit the synchronization signal. Some alternatives are

presented and compared leading to the TF delineation protocol

described in Section III.D.

The synchronization signal could be transmitted at the

physical layer using for example redundant codes in the line

coding, modulation exceptions, or a dedicated wavelength on

optical links. Physical layer operation results in a small

synchronization error variation, i.e., considering a generic

node nN ,
max
n is limited as the uncertainties on the

transmission and reception of the signal are small. However,

this solution presents some drawbacks:

 It requires specific hardware, i.e., the logic handling the

transmission and reception of the synchronization signal.

 Intermediate layer protocols have to be modified in order

to allow the synchronization signal received at the

physical layer to reach the PF scheduler at the protocol

layer it is operating.

 The resulting PF implementation is not general and

portable as it is dependent from both lower layer

protocols and the availability of specific hardware.

Transmission of the synchronization signal at an

intermediate protocol layer has all the drawbacks listed above,

while lacking the advantages related to the small variation of

the synchronization error. Consequently, although possible, a

CTR distribution based on intermediate layer protocols is not a

sensible solution unless implementation or deployment

specific reasons suggest otherwise.

Alternatively, the synchronization signal can be

implemented at the layer at which PF is deployed (e.g., IP).

Two categories of approaches, requiring different types of

information into packets, can be envisioned: (i) a time stamp

(e.g., TF number and TC number) can be included in each

packet, or (ii) a TF delimiter can be transmitted at the

beginning of each TF.

The former is more robust as a receiving node misses the

beginning of a new TF only if all packets transmitted by an

upstream node during that TF are lost. Moreover, even if this

happens, the node recovers the correct TF from the

information carried by packets received during the following

TF. However, this solution (i) introduces transmission and

processing overhead resulting from the 16 bit (or more)

integer that represents the time stamp, and (ii) requires

 6

modifications to the protocol headers as common protocols

(e.g., IPv4, IPv6, Ethernet, MPLS) do not feature any field

suitable for carrying such time stamp.

The solution based on a TF delimiter can be implemented in

various ways ranging from defining a control packet to be

transmitted as a delimiter to setting a 1 bit field in the first

packet transmitted during a TF. The latter introduces a very

limited transmission and processing overhead and it is not

unlikely that an unused bit be found in an existing protocol

header, thus not requiring major modifications to the

standards. For example, a non reserved codepoint of the

DiffServ (DS) field could be used to implement CTR

distribution with IP packets. The drawbacks of this solution

are:

 Sensitivity to packet loss — a node goes permanently out

of synchronization when the TF delimiter is lost;

 An additional mechanism is needed at system startup to

carry a time stamp allowing each node to initialize the TF

and TC identity.

D. TF Delineation Protocol

In previous work [10] the authors defined a protocol for PF

routers with an externally-distributed CTR to exchange timing

information used for the evaluation of the forwarding TF on

each node. Here this protocol is proposed as a TF delineation

protocol in a PF network based on a network-distributed CTR

according to the synchronization model presented in

Section III.B to implement an efficient and simple CTR

distribution solution. The protocol is based on the combination

of a robust TF delimiter and compressed time stamp, thus

drawing from the strengths of the two solutions, while

avoiding their drawbacks, both highlighted in Section C. As

presented in the following, the solution deploys the DS field of

the IP header, however, it can be similarly implemented with

other protocols (for example, the EXP field of the MPLS shim

header can be analogously used).

Three bits of the DS field, i.e., 8 unreserved DS codepoints,

are used to carry the delimiter/compressed time stamp. Bits

0x0c are set in all PF packets to distinguish them from those

not receiving PF service (e.g., best-effort or differentiated

service packets), bit 0x10 is set to 1 (0) in packets transmitted

during odd (even) TFs, and bits 0x20 and 0x40 toggle their

value every TC and every super cycle, respectively. This

results in an alternating-bit protocol for TF and TC

identification
2
. PF routers maintain the number of the TF and

TC during which the last received packet was transmitted by

the upstream node. This information is updated every time the

DS codepoint of a packet is different with respect to the

previous packet. TF and TC initialization is performed by

setting the TF and TC number to zero the first time the bit

corresponding to super cycle (0x40) toggles. Consequently,

system initialization lasts up to 1 s (i.e., the super cycle

duration), but happens only when the router starts up and does

2 Such mechanism can be seen as the transmission of a time stamp

composed of the TC and TF number where, in order to reduce the amount of
information transmitted, the numbers are compressed by sending only the
least significant bit. Also, the mechanism can be seen as delimiting the
beginning of each TF by changing the DS codepoint.

not require transmission of additional information. When a

node has no packets (including non-PF packets) to transmit

during a TF on a given link, it sends sequences of padding IP

packets with TF and TC marking for keeping the router at the

other end synchronized
3
.

While timing information is coming from all interfaces,

only the one received through the S3P is used by a router to

derive the CTR, i.e., to trigger the beginning of a new TF.

Note that the proposed solution can be implemented with

software only components, thus enabling upgrade of existing

equipment and reducing costs with respect to other solutions

that are based on integrated circuits used to control local

clocks.

IV. PACKET SCHEDULING ALGORITHM

Previous work on PF and current implementations are based

on a UTC-aligned, accurate CTR, i.e., 0, ,
k
n k n .

Considering a network scenario where nodes are characterized

by a variable 0
k
n , PF properties, implementation, and

deployment rules have to be reconsidered. The modifications

required to a PF router initially implemented for and deployed

with an externally-distributed CTR are presented as an

example.

Specifically, a PF router performs four fundamental PF-

related steps: it (i) devises the TF during which each received

packet was sent out by the previous node, (ii) calculates the

forwarding TF of the packet based on the predefined

forwarding delay, (iii) stores the packet in a queue

corresponding to its forwarding TF; (iv) whenever a new TF

begins, it transmits all the packets stored in the queue

corresponding to the TF. The rules and constrains driving

these steps are part of the PF scheduling algorithm and are

presented in several publications [7][8] for PF based on an

accurate CTR. The following sections analyze the

modifications required to such rules and constraints when

routers deploy a low accuracy, possibly network-distributed

CTR. Note that these results can be applied independently of

the network synchronization distribution protocol deployed.

The PF rules defined in [7] for a scenario with ideal CTR, are

generalized here for the case of any synchronization accuracy.

A. TF Duration

One implication of the synchronization error including a

variable component is that the actual duration
k
n of a generic

TF k at the generic node nN as derived from the

synchronization signal is not constant, as shown in Errore.

L'origine riferimento non è stata trovata.(b). The actual

duration of TF k at node nN is given by the difference

between the beginning instants of TF k+1 and k, i.e.,
1k k k

n n nb b

 , which, from the definition of
k
n , can be

expressed as

 3 3

1 1
 S S

k k k k k
n n nb b

 . (7)

If, as it is reasonable, the latencies in receiving and

processing an external synchronization signal by an S3 are

3 Notice that this does not represent a bandwidth waste since the

transmission link would anyway be idle.

 7

ignored, 3 3
1 ,S S

k kb b k . Thus, given that
min

0,n n ,

we have that

max max

.
k

n n n (8)

Since resource reservation is based on TF nominal

duration , a variable TF duration may result in the

impossibility of keeping PF schedules during shorter TFs (i.e.,

some packets scheduled for a TFs cannot be transmitted

because the TF finishes too early), with consequent possible

packet backlog at the PF buffers, buffer overflow, and packet

drops.

Guaranteeing deterministic quality of service, i.e., no loss

and unpredictable delay and jitter due to network congestion,

is possible by simply forwarding all packets that match the

predefined schedule for TF k, i.e., that have been reserved

resources during TF k, even if this requires extending the

transmission beyond TF k end, i.e., after
1k

nb

. According to

this new operation mode, the transmission of packets

scheduled during a TF k ends at different times on different

output interfaces of the same node. This leads to a new

definition for the TF beginning, which is no longer specific

only to a node nN , but also to a particular output interface:

Definition 1. In a PF node using a network-distributed CTR

realized according to the presented synchronization

mechanism, the beginning of a new TF on an output interface

is identified by the latest of the following events:

1) the synchronization signal is received at the S3P,

2) the output buffer corresponding to the current TF on the

given interface becomes empty.

The above definition is coherent with the original definition

of TF with an ideal CTR, in which case 1) is the possibly

external timing signal triggering the beginning of a new TF

and 2) is guaranteed to happen before such event. Moreover,

Definition 1 can be modified to fit other CTR distribution

solutions by substituting event 1) with whatever timing event

triggers the beginning of a new TF.

Transmission of packets scheduled during a TF lasts at most

 (resource reservation is based on this value), while the

minimum TF duration, given by (8), is
max
n . Thus, the

maximum time packet transmissions can continue beyond TF

duration, namely after the arrival of a synchronization signal,

is max max .ex nT This happens when a TF has minimum

duration; the condition for such event can be derived from (6)

as

max

1 min 0.

k
n n

k
n n

 (9)

Consequently, the maximum error on the beginning of TF

k+1, i.e., the maximum synchronization error, on a generic

output interface of a generic node nN according to

Definition 1 is obtained by adding
max

exT to the maximum

synchronization error of TF k+1 as given by (4) and then

applying (9), thus obtaining

maxmaxminmax
nnexnnn T . (10)

Thus, it can be concluded that the network synchronization

model presented in Section III.B also applies when TFs

comply with Definition 1 and the proposed definition of the

TF beginning does not affect the maximum synchronization

error. However, in this case the network-distributed CTR

features a different synchronization error for each interface.

Equation (10) is extended as follows in order to capture this:

max max

, :nm nm nm m nm N A , (11)

where nA denotes the set of the neighbors of the generic node

nN , as defined in Section II.A, and nm refers to the interface

of nN connected to the link to mN .

B. Forwarding TF Evaluation

As discussed in Section II.A, PF operation determines a

dependency among the forwarding TFs for each packet in all

the nodes across the network. The forwarding TF at a generic

node nN can be expressed, in accordance to [8], as:

 1 (1)n n n nF F f , (12)

where:

 nF is the forwarding TF of the packet at the generic node

nN .

 1nF is the forwarding TF of the packet at the previous

node 1nN on the path of the packet.
4

 (1)n n is the minimum acceptable forwarding delay

(introduced in Section II.A) between node 1nN and node

nN . In order to make sure that packets are already in the

output buffer of node nN when their forwarding TF

begins, the forwarding delay must be greater than or

equal to the sum of the propagation delay on the link

connecting the nodes, the processing time, and additional

latencies that characterize both nodes. Given 1nN and

nN , we can express this sum as

 1
1 1 (1)(1)

F F Fnn n
n n n n n nn nD Tt Tt Tp Te Te
 , (13)

 which, considering the worst case
max
(1) 1n n nD Tt

max max

1 (1)n n n n nTt Tp Te Te , leads to

max
(1)

(1)
n n

n n

D

. (14)

 f models the adopted forwarding scheme [7]. 0f

represents immediate forwarding operation, i.e., applying

the minimum acceptable forwarding delay.

f models non-immediate forwarding operation, i.e.,

deploying a larger forwarding delay, which enables

reducing blocking probability at the expenses of

implementation complexity by not necessarily forwarding

a packet as soon as it is available at the output port [7][9].

The above forwarding TF calculation method refers to the

case where all network nodes are perfectly synchronized, i.e.,

0, ,
k
n k n . If the CTR is distributed through the network

using the presented technique, (i) TFs do not begin at the same

time on all nodes, (ii) the synchronization error is different at

each node (i.e.,
k k
n m if n mN N), and (iii) both TF

alignment and synchronization error vary in time (i.e.,
k k
n n

 , if k k). This has to be considered in the

forwarding TF calculation.

4 Although nF and 1nF are packet dependant, the packet is not explicitly

indicated to simplify the notation.

 8

Theorem 1. In a PF network where the CTR is distributed

to nodes with a non-zero synchronization error, proper PF

operation is ensured when the forwarding TF for a packet is

calculated at the generic node nN as:

 1 (1)n n n nF F f

 , (15)

where

max min max
1 (1)

(1)
n n n n

n n

D

. (16)

Proof. Given a forwarding TF nF at a node nN , a

necessary and sufficient condition that guarantees the PF

algorithm to work properly is that the time at which the packet

transmission is scheduled at node nN , i.e., the time

(corresponding to
Fn
no) at which transmissions for TF k

begins at node nN , follows the time at which the packet enters

the output buffer of the node (denoted as
Fn
nib), i.e.,

 .
F Fn n
n no ib (17)

Given the definition of
Fn
nb in Section III.B, we can write

 3
n n n

S

F F F
n no b (18)

and

 1 1 1
3 1 (1) .n n n n

S

F F F F
n n n nib b D

 (19)

Since the inequality (17) has to hold for every value of
Fn
n

and 1
1

Fn
n

 , specifically for the worst case we can derive:

 1
3 3

min max max
1 (1) ,n n

S S

F F
n n n nb b D

and converting in TFs as a time measurement unit, we obtain:

max min max

1 (1)
1 .

n n n n
n n

D
F F

□

Note that (14) can be derived from (16) with
1

1 0
F Fn n
n n

 .

C. Buffer Dimensioning

Buffers have to be properly dimensioned in network nodes

to guarantee that no packet is lost when nodes perform PF.

The additional delay packets incur due to the deployment of a

network-distributed CTR has to be taken into account when

dimensioning the buffers.

Theorem 2. Let R be the output link capacity. The size of

the buffer on the output interface of a node nN that guarantees

no loss for a pipelined packet is:

 (1) (1) ,n n n n nBuff f R

 (20)

where, defining
min min min
(1) 1 1 (1)n n n n n n n nD Tt Tt Tp Te Te ,

max min min

1 (1)
(1)

n n n n
n n

D

. (21)

Proof. For each TF, PF output buffers on node nN have to

store packets from the instant (denoted as
k
nib for the generic

TF k) they enter the buffer of the node to the moment they

begin to be sent out (
k
no for TF k)

5
. The maximum difference

between such instants over time is:

 max .k k
n n

k
o ib (22)

Considering that (i) a queue must be associated to each TF,

(ii) its size must have sufficient capacity to contain the total

amount of bytes that can be transmitted during such TF (i.e.,

R bits), and (iii) each queue can be reused (i.e., associated

to another TF) as soon as the associated TF is over and all its

packets have been transmitted, the minimum total number of

required queues is given by the minimum number of TFs

TFN such that their total duration is longer than (22) , i.e.:

 max k k

n n
k

TF

o ib
N

.

Considering that by definition 3 /S
kb k ,from (15), (18),

and (19) we can derive

 (1) (1)TF n n n nN f
 . (23)

Given that each queue should be capable of storing R bits,

the total buffer requirement is:

 n TFBuff N R ,

Note that (20) and (21) are valid also in case 0, ,k
n n k ,

i.e., when an externally-distributed CTR is deployed all over

the network.
□

Moreover, adding an extra queue avoids concurrent reading

and writing access to memory, thus eliminating the need of a 2

speed up of memory access speed, which can result in a

significant cost cut for high speed interfaces:

 (1) (1) 1n n n n nBuff f R
 . (24)

Lemma 1. Lossless PF with a network-distributed CTR on the

path HNNN ,...,, 10 is ensured by deploying on the output

interface of each node nN a buffer of size:

max max max max
1 1

1
n n n n

n

Tt Te
Buff f R

. (25)

Proof. By substituting (1)n n
 as derived from (16) in (23)

and considering that either yxyx or

 1 yxyx , in the most conservative case the number

of queues guaranteeing lossless PF operation according to (23)

is

max min max min max min

1 1 (1) (1)
1

n n n n n n n n
TF

D D
N f

.

Further considering the definitions given in (1), (2), (4), and

(6) we obtain

max max max max

1 1
1

n n n n
TF

Tt Te
N f

. (26)

The corresponding amount of buffering can be derived by

5 As it is common in router implementations, an additional transmission

buffer of size R is provided at the lower protocol layer to store packets as

they get transmitted.

 9

considering the amount of bits that can be transmitted during

one TF, i.e., R .

□

From (25) it can be observed that

1) Buffering at a node nN depends on the maximum

variation of timing parameters — specifically the

synchronization error and the input latency at the node

(i.e.,
max
n and max

nTe) and the synchronization error

and the output latency at the previous node on the

forwarding path of the packet (i.e., max
1n and max

1nTt)

— and not on their absolute values.

2) Buffering (as well as the forwarding TF) at a generic

node nN depends on timing parameters at both the node

itself and the previous node 1nN on the path of the

packet. It can thus be concluded that in order to guarantee

lossless service in a PF node nN each output interface

must be equipped with a buffer of size:

max max max max

, ,
max max

1 .
m n m n

m m n n
m N A m N A

n

Tt Te
Buff f R

 (27)

The above is derived by generalizing (25) to take into account
the neighbor featuring highest variability of its timing
parameters.

D. Delay and jitter analysis

A comparison of (14) and (16) shows that the

synchronization error impacts directly on the delay introduced

by each node, i.e., simple and low accuracy network-

distribution of the CTR is possible at the expenses of

increased end-to-end delay and jitter. By analyzing (5) and (6),

it can be noted that such increase grows with the number or

nodes through which the CTR is distributed, i.e., the sparser

S3s, the higher the end-to-end delay and jitter introduced by

the network on an average flow. In particular, the time spent

by a packet in the output queue of a PF node varies between 0

(when the packet arrives just before the beginning of its

forwarding TF) and max k k
n n

k
o ib , as given by (22). The

maximum jitter J experienced by the packet through a PF

network is given by the maximum time spent in the buffer of

the last node on its path HNNN ,...,, 10 , i.e., from Theorem 2

and (22):

 (1)(1) H HH HJ f

 . (28)

Furthermore, the total maximum buffering delay experienced

by a packet along the path HNNN ,...,, 10 is

 0 0max
H Hk k

hh hh h
k

o ib Buff R . (29)

E. Discussion

Previous subsections gave the guidelines to implement PF

when the CTR is distributed through the network with

arbitrarily low accuracy. Equations (16) and (27) provide the

guidelines to dimension a network node so that proper

operation is guaranteed by keeping into account maximum and

minimum synchronization error at each node. While

synchronization over a traditional packet network is

significantly affected by queuing delay, which is hard to

bound and estimate, over a PF network with the proposed

CTR distribution method, the main causes for the

synchronization error k
n at a generic node nN are (i) non-

zero propagation delay, (ii) non-zero packet processing time of

transmission and reception modules, and — especially — (iii)

their variability that depends on issues ranging from hardware

components, to system architecture, to software

implementation.

Providing a reliable estimate of the minimum

synchronization error is not critical as it could in principle be

set to 0 or, when the contribution of the propagation delay is

significant (i.e., in a long haul link scenario), to the

propagation delay. Also providing an upper bound on the

variation of the propagation delay, which is due to temperature

fluctuations caused by changing weather conditions or wear

and tear of the medium, is not critical. Propagation delay

variations can be accounted for by allowing a safety margin of

k TFs in the forwarding delay. k depends on the TF duration,

is likely to be 1 in most practical cases, and anyway does not

have a significant impact on the end-to-end delay because the

propagation delay variation is much smaller than packet

processing delay and the other components of the

synchronization error.

The packet processing time introduced by

hardware/software modules that perform transmission,

reception, and handling of packets (such as the PCI bus or the

Ethernet NIC in the PC-based prototype deployed in the

experiments reported in the following section) is more critical

as it has significant relative and absolute variations. However,

proper design and implementation of the router can ensure

such time to be bounded and its value can be devised based on

either the system design or experimental characterization

though specifically targeted lab tests and measurements.

Since in the implementation used in this work the

synchronization signal is conveyed in network layer packets,

their transmission delay also contributes to the

synchronization error. Although varying, this is not critical as

it is obviously bounded by the time required to transmit a

Maximum Transmission Unit (MTU) as defined for the

specific data link protocol deployed.

If the forwarding delay resulting from an estimate of the

maximum synchronization error is not appropriate, the

deterministic operation of PF is affected. Deployment of a

more sophisticated CTR distribution solution, e.g., deploying a

local clock to smooth out the variations of the synchronization

error, would ensure that it stays within the estimate, hence

ensuring deterministic operation with the proposed modified

PF operation. Moreover, the disruption of the deterministic

service is temporary and proper operation is automatically

resumed after the first TF not fully utilized to transmit

pipelined packets, as ensured by the proposed PF algorithm

for low accuracy CTR.

Improvements to the proposed CTR distribution solution

are possible at the expense of increased complexity to:

 Reduce the synchronization error, and consequently

packet delay and jitter resulting from PF (which Section

 10

IV.D showed to be dependent on the synchronization

error);

 Avoid deterministic service being disrupted if the

estimate on the maximum processing and propagation

delay, i.e., on the maximum synchronization error, is

exceeded;

 Ensuring proper CTR distribution and seamless PF

operation in case of link and nodes failures.

For instance, the timing information received from all the

input links of a node could be used as synchronization signals,

along the lines of the solution proposed in [19]. Alternatively,

a local clock synchronized with the synchronization signals by

means of a phase locked loop (PLL) could be deployed.

However, this is outside the scope of this paper that aims at

showing how PF, with minimal changes to the original

algorithms, can properly operate with a low accuracy CTR,

even if distributed through the network with a low complexity

protocol. A major outcome of this section is the general

validity, i.e., with any synchronization mechanism, of the

proposed modifications to the original PF algorithms and

system dimensioning as expressed by (16) and (27). However,

an analysis of the performance and properties of PF with more

sophisticated (and more complex) CTR distribution solutions

is left for future work.

V. EXPERIMENTAL RESULTS

Some experiments were run on a testbed of TDP routers

implemented by 2.4 GHz Pentium IV PCs running a modified

version [10] of the FreeBSD 4.8 routing software. The results

demonstrate the effectiveness of the CTR distribution solution

proposed in Section III.D and validate the analysis of the

modified PF operation presented in Section IV. Results

obtained from the experiments are then extended to a large

scale network by applying the equations proven in Section IV,

which demonstrates the feasibility and the effectiveness of the

proposed method in an arbitrary network.

A. Synchronization Error Measurement

If the proposed CTR distribution method is used, the main

causes for synchronization error are propagation delay, packet

processing time, and their variability that in our PC-based

router is due to (i) access to shared resources, such as CPU,

memory, communication buses, etc. and (ii) the interrupt-

driven nature of the FreeBSD kernel. Thus, the resulting

synchronization error is in this case expected to be particularly

large and variable under high traffic load. However, this

provides a good reference point as it can be considered as a

worst case scenario in which to experiment with the proposed

solution. In fact, special purpose routers usually deployed in

real networks are designed to minimize packet handling time

and, consequently, its variations.

A first set of experiments was run to measure the various

system latencies and devise the synchronization error

components introduced by our prototypal network nodes in

order to get an idea of its order of magnitude. Fig. 4 shows the

measurement setup. An Agilent N2X Router Tester is used to

generate a traffic flow that enters TDP router R1, is forwarded

to TDP router R2, and then is routed back to the router tester,

all across FastEthernet links (100 Mb/s). In this first set of

experiments, R1 and R2 execute the TDP scheduling

algorithm with an externally-distributed CTR that is acquired

through a GPS receiver, i.e., TFs on both routers are aligned

with UTC. Time from the GPS receivers is also used to

measure the interval between the beginning of a packet

transmission at the TDP scheduler on R1 until the packet is

processed at the IP layer (i.e., where the DS field is processed)

on R2. In a network-distributed CTR scenario in which R1 is

an S3 and the interface of R2 toward R1 is its S3P, the

measured time interval represents the synchronization error at

R2, which includes the various contributions identified in

Section III.B, specifically

 2 1 2 1 2 1 2R R R R R R RTp Tt Te Tt Te , (30)

where 21RRTp is negligible for all purposes having used a short

cable between the routers stacked one on top of the other.

Router Tester
R1 R2

GPS

Fig. 4. Synchronization error evaluation testbed.

0,000

0,002

0,004

0,006

0,008

0 50 100 150 200 250 300 350 400 450 500

μs

F
ra

c
ti

o
n

 o
f

p
a
c
k
e
ts

Fig. 5. Potential synchronization error distribution.

Fig. 5 plots the distribution of the synchronization error that

the prototypal router potentially introduces. The various

components of the synchronization error are measured over

100 test runs with fully loaded links and various packet

lengths. In particular, the router tester generates ten 10 Mb/s

CBR UDP flows with constant message size on its port

connected to R1 fully loading (as a 100 Mb/s aggregate flow)

the links. The size of the IP packets is varied in each test run;

sample configurations include: all flows deploying the

minimum size of 64 bytes (corresponding to about 20000

offered packets per second), all flows deploying the maximum

size of 1500 bytes (about 800 packets per second), all flows

deploying different packet sizes variably chosen between the

above minimum and maximum. Each test lasts 15 minutes,

hence the number of observed packets ranges between about

720 thousands and about 18 millions. The maximum and

minimum synchronization errors measured are

min min

2

max max
2

7 μs,

480 μs.

R

R

 (31)

 11

In order to properly configure the forwarding delay and

buffering space in all nodes of the testbed network deployed

for the experiments reported in Section B, the synchronization

error at each node should be devised. Since all nodes are based

on the same architecture and all links have the same length,

measurements done on one of the nodes are in all likelihood

representative of all the others. Consequently, the

synchronization error at a node d hops from the S3 on the

synchronization path can be derived from (4) considering that

each of the d upstream nodes features a synchronization error

characterized according to (31):

min min

max max
.

d

d

d

d

 (32)

B. Experiments with Network-distributed CTR

Fig. 6 shows the network testbed deployed in the

experiments that involves 4 TDP routers connected by

100 Mb/s Ethernet links with 250 μs TFs (i.e., 250 μs).

R1 acquires UTC from the GPS and is an S3; R2, R3, and R4

acquire the CTR through the network using the CTR

distribution solution (Section III.B and Section III.D)

presented in this paper. Each router should select as S3P its

interface connected to R1 in order to minimize the network

synchronization error. However, since the presented

experiments aim at assessing CTR distribution over multiple

hops — as it would be in a real work network — S3Ps have

been selected differently and are identified by a solid circle in

Fig. 6.

For the sake of brevity and without loss of generality, only

experiments with TDP immediate forwarding (i.e., 0f)

are reported here. The forwarding delay for each input

interface and the buffer size required on each output interface

is derived from (16) and (27), respectively, by using the

network synchronization error figures devised with the first set

of experiments — i.e., (31) and (32). Since all nodes are based

on the same architecture and all links have the same length,

(1)n n is the same for every pair of nodes in the testbed and,

from (13),
max max
(1)n nD ,

min min
(1)n nD , and, consequently,

max max max min
, ,m n m nTt Te m N A , where nA is the

set of nodes directly connected to nN . Although not necessary

in a PC-based mono-processor router, the additional buffering

to avoid concurrent read/write access as specified in (24) was

also considered so that experiments are run with the worst

case delay scenario. The resulting system parameters are

summarized in Table I. The detailed calculation of the

parameters of R2 is reported in the following as an example.

 Forwarding delay. R1 acquires UTC from the GPS,

hence
max

1 0R . From (31) and (32),
min

2 7 μsR and
max

3 2 480 960 μsR . Furthermore, as described

above,
max max
1 2 3 2 480 μsR R R RD D . This leads to

max min max
1 2 1 2

1 2
R R R R

R R

D

2 TF,

max min max
3 2 3 2

3 2
R R R R

R R

D

6 TF.

 Buffering. Among the nodes directly connected to R2,

R3 is affected by the largest synchronization error

(max max min
3 3 3 2 480 7 946 μsR R R), hence

from (27) it can be derived:

max max max min
3 2

2 1 28125 bytes
R R

RBuff R

and, from (24),

2 2 31250 bytesR RBuff Buff R .

R1 R2

R3R4

GPS

Router Tester

to R1
from

R2

from

R4

to

Router

Tester

to

Router

Tester

from

Router

Tester

Traffic Flow

4
3

1

2

1

2
3

1

2

3

1
2

3

A

B
C

Fig. 6. Testbed

TABLE I

FORWARDING DELAY AND BUFFER SIZE

Router Input NIC Forwarding Delay [TF] Buffering [byte]

R1

1 4

31250 2 6

3 8

R2
1 2

31250
2 6

R3

1 4

43750 2 2

3 8

R4
1 6

43750
2 2

TABLE II

MAXIMUM JITTER WITH A NETWORK-DISTRIBUTED CTR

Traffic Flow Max measured [μs] Analytical bound [μs]

A 730 1000

B 916 3000

C 753 2000

The router tester generates three 100 Mb/s UDP flows on

the Gigabit Ethernet link to R1. Since the three flows are

routed as shown by the dotted lines in Fig. 6, each link links

between TDP routers is fully loaded. In order to simplify

resource reservation (manually performed in our prototypal

implementation) and without loosing in generality, packet size

is programmed to periodically vary among the four pre-

defined values 64 bytes, 260 bytes, 625 bytes, and 1041 bytes,

which result in 48, 12, 5, and 3 packets contained in each TF,

respectively. The paths of the three flows realize every

possible scenario a node can be faced with concerning the

relation between data traffic and CTR distribution. For

example, packets received by a node nN from a node 1nN

where the synchronization error 1
k
n is smaller/greater

than
k
n , packets received from the S3P, etc. The jitter is

measured on each flow (see Table II) during ten different tests,

each one lasting 2 days. No packet is lost during the

experiments and the jitter does not exceed its analytical upper

bound given by (28), which validates the analysis presented in

 12

Section IV
6
. As an example, the maximum measured jitter for

flow A (730 μs) is smaller than the analytical bound

4 1msJ obtained by substituting (1) 1 2 2TFH H R R

and (1) 1 2 2 TFH H R R (0f in all our experiments)

in (28).

C. Delay and buffering

Due to the toy network on which they had been devised, the

results presented so far do not demonstrate a large scale

deployment of PF with a network-distributed CTR. However,

they enable us to validate the presented analysis and devise

synchronization error bounds for the prototype router that are

given in (31). By applying (16), (27), and (29), the

measurements on the testbed in Fig. 6 can be used to evaluate

the buffering requirements and the maximum delay

experienced by packets over an arbitrary network composed of

PC-based prototypal routers. Assuming a network in which the

maximum number of hops between any node and an S3 is D,

the largest buffer size and buffering delay are the ones on a

path traversing only routers at maximum distance D from the

S3. Fig. 7 shows an example of such path, which we call the

slowest path, for D = 3 hops that traverses 6 PF hops, i.e., 6

links on which PF of packets is performed.

Fig. 8 plots the maximum end-to-end buffering delay

(devised using (29)) on a slowest path versus the number of

hops H on the path for several values of D. The buffer size

(reported in Fig. 10) is calculated according to the procedure

detailed in Section V.B (the additional buffer to avoid

concurrent read/write access, as discussed in Section IV.C, is

not considered here) noticing that, according to (31) and (32),

the maximum and the minimum synchronization errors of

nodes at a distance D from the S3 are
max

D and
min

D ,

respectively. The maximum end-to-end buffering delay is

devised by applying H HBuff R , derived from (29) by

considering that hBuff is the same for every node hN in the

path as all nodes are at distance D from the S3. For example,
max

D 1.44 ms and
min

D 21μs if D = 3 and
max

and
min

 assume the values devised for our prototypal router

and provided by (31). Hence, the buffering delay experienced

after H = 5 hops by a packet traveling on a path whose nodes

are at distance D = 3 from the S3 is equal to

 5 (1419 1419 473) 1 18.75ms .

Considering that the total end-to-end delay includes in

addition propagation delays, we set the maximum acceptable

end-to-end buffering delay to be 50 ms (dashed line). Fig. 8

shows that only small distances from the S3 (i.e., low values

of D) can guarantee this bound on slowest paths composed by

a reasonable number of hops. For example, if D = 5, packets

can traverse 9 slowest path hops before exceeding the 50 ms

bound, which is a reasonable path length. However if D = 11

the maximum number of hops on the slowest path is only 4

before exceeding the delay budget, which is unreasonable in

practical networks. Nevertheless, in an access network where

6 The presented experiments focus on assessing exclusively PF operation

with network-distributed CTR and the CTR distribution solution presented in
this paper. A general evaluation of PF, its properties, and benefits stemming
from its deployment are outside the focus of this paper and were object of
previous work (see for example [6],[7]–[11]).

low end routers such as the deployed PC-based prototypes

might be used D = 5 is a realistic value. Reasonably assuming

that each service provider deploys an S3 in its network, the S3

is going to be within a limited number of hops (reasonably less

than 5) from end-users. Hence, the presented results show how

the proposed solution enables the PF technology to reach also

the extreme edge of the network with low cost, not specifically

designed nodes — such as a PC-based router.

S3

Source

Destination

D = 1

D = 2

D = 3

Fig. 7. Slowest path

However, these results somehow represent a worst case

scenario as they refer to a low performance (from both the

software and hardware viewpoint) prototypal router. In fact,

high performance commercial routers have maximum packet

handling latency of few μs. For example, the maximum packet

handling latency measured on a Juniper Networks T640 core

router [20] during a zero-loss test with small FIFO buffers and

no route-lookup delays (no routes present in the router), is

about 50 μs. Although this test has been designed to avoid

long buffering and lookup delays, the measured latency

includes delays related to some functions — such as

processing, switching, and buffering — that do not affect the

synchronization accuracy in a PF network, but give the largest

contribution to packet latency. Consequently, it is reasonable

to assume that the latency of functions affecting the

synchronization accuracy, i.e. packet transmission and

reception, does not exceed 10 μs. This results in a lower

synchronization error in each node and consequently in lower

delay, jitter, and buffering requirement when compared to our

prototype routers. Fig. 9 presents an estimate of the maximum

end-to-end buffering delay if high performance low latency

routers are used. TF duration is set to 50 μs, which is a

suitable value for high performance routers connected with

high speed links (i.e., 10 Gb/s). Fig. 9 shows that, with D = 11

and 20 hop paths, the maximum end-to-end buffering delay is

about 5 ms, thus a small fraction of the 50 ms bound.

Fig. 10 plots the amount of buffering nodes require versus

the distance D from the S3, We have considered both our TDP

router prototype with 100 Mb/s ports and a high performance

router with 10 Gb/s ports. Results show that the buffer size

ensuring loss avoidance is limited for both types of routers,

even if nodes are D = 11 hops far from the S3. The buffer size

required by the high performance router (solid line in Fig. 10)

is roughly three orders of magnitude smaller than the one

adopted in current asynchronous routers operating (with loss)

according to the DiffServ model. The limited memory

requirement is extremely important for the realization of so

called terabit routers as buffers of very high capacity ports

must have high memory access bandwidth, which at the

 13

current state of the art implies very high per-byte cost. Buffer

size as given by Theorem 2 also implicitly defines the upper

bound on the per-node jitter (that is also the end-to-end jitter

because with PF jitter is not additive along the path to the

destination), as given by (28). The solid curve in Fig. 10

shows how high performance commercial routers can ensure a

low jitter even with a network-distributed CTR on a large

backbone. For example, with D=11 (i.e., nodes as far as 11

hops from an S3), the jitter is about 300 μs (i.e., 6 TFs). As

shown by the dotted line in Fig. 10, also low cost PC-based PF

routers can guarantee acceptable jitter, such as 24 TFs or 6 ms

when D=5, i.e., when the synchronization signal travels a

limited number of hops to reach every node. This further

demonstrates the feasibility of implementing and deploying PF

with a low accuracy CTR, possibly distributed through the

network with a very simple protocol such as the one proposed

in this work. Specifically, the feasibility is demonstrated on

both a low cost, low performance router platform, such as a

PC, on an access network, and on a high end commercial

router on a large backbone.

VI. CONCLUDING REMARKS

This paper analyzes how Pipeline Forwarding (PF) of

packets can be based on a low accuracy Common Time

Reference (CTR) distributed through the network. A CTR

distribution solution aiming at simplicity and ease of

implementation, possibly by adding a software-only module to

existing devices, is also presented. The analytical work and

experiments validate both the proposed synchronization

solution and the PF modifications to enable its operation with

a low accuracy network-distributed CTR, thus demonstrating

its feasibility and applicability to both large scale, high speed

networks where minimum buffering requirements are of

utmost importance and access networks where low end routers

might be deployed.

The experimental results presented in the paper are obtained

with a TDP router prototype. Although they could seem poor

at first sight, they are in fact very significant: the simplicity of

the deployed algorithms, for both packet scheduling and

synchronization distribution, enables their software-only

implementation in low cost architectures, such as PCs, thus

making them capable of providing guaranteed quality of

service. Such low cost routers provide acceptable delays only

in scenarios where synchronization is distributed through a

small number of hops and paths through the network are not

too long, such as, for example, access networks. In such

scenario, a low complexity, software-only implementation of

both PF and CTR distribution is key to enable PF deployment

in home gateways and wireless access points. In fact, devices

available in that market segment are currently not equipped

with local clocks that might be dedicated to the

implementation of the CTR. Moreover, even if PF became

more widely adopted, it might not be cost effective to include

ad-hoc hardware in low-end equipment. On the other hand, the

paper argues that implementation of PF with network-

distributed CTR in high-end commercial routers is suitable for

global scale operation.

The service guarantees, and especially the scalability

featured by PF, cannot be achieved by other existing

technologies: asynchronous packet scheduling fails in

guaranteeing quality of service without underutilizing network

resources (i.e., without performing resource overallocation),

while synchronous techniques like Sonet/SDH require

complex architectures and very accurate synchronization (e.g.,

a PC-based implementation is unthinkable of).

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H [hop]

E
n

d
-T

o
-E

n
d

 B
u

ff
e
ri

n
g

 D
e
la

y
 [

m
s
]

D = 1 D = 3

D = 5 D = 7

D = 9 D = 11

Acceptable Delay

Fig. 8. Maximum end-to-end buffering delay on the slowest path

(
min
i = 7μs,

max
i = 480μs, = 250μs)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H [hop]

E
n

d
-T

o
-E

n
d

 B
u

ff
e
ri

n
g

 D
e
la

y
 [

m
s
]

D = 1 D = 3

D = 5 D = 7

D = 9 D = 11

Fig. 9. Estimated maximum end-to-end buffering delay with high performance

commercial routers (
min
i = 1μs,

max
i = 10μs, = 50μs)

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11

D [hop]

B
u

ff
e
r

S
iz

e
 [

K
B

]

Φmin = 7μs, Φmax = 480μs,

T = 250μs, Link 100Mb/s

Φmin = 1μs, Φmax = 10μs,

T = 50μs, Link 10Gb/s

Fig. 10. Buffering requirement

Given that forwarding delay, buffering requirement, and

jitter are dependent on the synchronization error — the latter

two on its variation, as shown by (27) — minimizing it, and

especially its variations, is essential. Work can be done in this

respect in at least two complementary directions: (i) reducing

latencies in network nodes and (ii) limiting the maximum

number of nodes through which the CTR is distributed.

Regarding the first issue, work is ongoing to improve the

performance of the TDP router prototype. Fig. 5 shows that

the variable component of the synchronization error in the

 14

presented experiments is less than one TF for most packets.

The higher latencies randomly observed stem from both

hardware architecture and operating system designed for

general purposes and not therefore optimized for PF operation.

Although, as mentioned earlier, the TDP router prototype is

not fully representative or optimized commercial routers, work

on its improvement as PF node can provide experience and

insight into general implementation issues. Preliminary results

after modifying the FreeBSD kernel in this direction are very

promising.

In order to limit the number of nodes through which the

CTR is distributed a network can be divided in

synchronization areas, each one equipped with an S3 from

which network nodes derive the CTR. Such areas can be

identified dynamically through the protocol for the

construction of the synchronization tree according to various

criteria. For example, in a scenario in which OSPF is used for

distribution of routing information, it could be also used for

the construction of the synchronization tree and

synchronization areas can coincide with OSPF areas. The

design of a protocol for the construction of the

synchronization tree, also supporting the identification of

synchronization areas and reconfiguration in case of failure, is

the object of additional study that will also address the impact

on existing schedules of changing S3 and S3P.

ACKNOWLEDGMENT

The authors would like to thank Riccardo Giacomelli whose

graduation project helped starting up this work.

REFERENCES

[1] S. Blake et al., ―An architecture for Differentiated Services,‖ IETF Std.
RFC 2475, Dec. 1998.

[2] R. Braden, D. Clark, and S. Shenker, ―Integrated Services in the Internet
architecture: an overview,‖ IETF Std. RFC 1633, July 1994.

[3] A. K. Parekh and R. G. Gallager, ―A generalized processor sharing
approach to flow control – the multiple node case,‖ IEEE/ACM Trans.
Networking, vol. 2, no. 2, pp.137–150, 1994.

[4] H. Zhang, ―Service disciplines for guaranteed performance service in
packet-switching networks,‖ Proc. of the IEEE, Vol. 83, No. 10, 1995.

[5] S. Floyd and V. Jacobson, ―Link-sharing and resource management
models for packet networks,‖ IEEE/ACM Trans. Networking, Vol. 3,
No. 4, 1995.

[6] M. Baldi and Y. Ofek, ―End-to-end delay analysis of videoconferencing
over packet-switched networks,‖ IEEE/ACM Trans. Networking, Vol. 8,
No. 4, pp. 479-492, Aug. 2000.

[7] C.-S. Li, Y. Ofek, A. Segall and K. Sohraby, ―Pseudo-isochronous cell
forwarding,‖ Computer Networks and ISDN Systems, 30:2359-2372,
1998.

[8] C.-S. Li, Y. Ofek, and M. Yung, ―Time-driven priority flow control for
real-time heterogeneous internetworking,‖ IEEE Int. Conf. on Computer
Communications (INFOCOM 1996), San Francisco (USA), Mar. 1996.

[9] D. Grieco, A. Pattavina and Y. Ofek, ―Fractional Lambda Switching for
Flexible Bandwidth Provisioning in WDM Networks: Principles and
Performance,‖ Photonic Network Communications, Vol. 9, No 3, May
2005, pp. 281-296.

[10] M. Baldi, G. Marchetto, G. Galante, F. Risso, R. Scopigno, F. Stirano,
―Time Driven Priority Router Implementation and First Experiments,‖
IEEE Int. Conf. on Communications (ICC 2006), Istanbul (Turkey), June
2006.

[11] D. Agrawal, M. Baldi, M. Corrà, G. Fontana, G. Marchetto, V. T.
Nguyen, Y. Ofek, D. Severina, H. T. Truong, O. Zadedyurina, ―Ultra
Scalable UTC-based Pipeline Forwarding Switch for Streaming IP
Traffic,‖ IEEE Int. Conf. on Computer Communications (INFOCOM
2006) – Posters & demos, Barcelona (Spain), Apr. 2006.

[12] M. Baldi, R. Giacomelli, G. Marchetto, A. Vesco, ―On the Deployment
of Pipeline Forwarding in a Nation-wide Internet Service Provider
Network,‖ 2007 International Conference on Broadband Network &
Multimedia Technology (IC-BNMT2007), Beijing (China), Sep. 2007.

[13] S. J. Golestani, ―A Stop-and-Go queuing framework for congestion
management,‖ ACM SIGCOMM 1990, Vol. 20, No. 4, Sep. 1990.

[14] M. Baldi, G. Marchetto, Y. Ofek, ―A scalable solution for engineering
streaming traffic in the Future Internet,‖ Computer Networks, Vol. 51,
No. 14, pp. 4092-4111, Oct. 2007.

[15] D. Mills, ―Network Time Protocol (Version 3) specification,
implementation and analysis,‖ IETF Std. RFC 1305, Mar. 1992.

[16] IEEE Standard committee, ―Precision clock synchronization protocol for
networked measurement and control systems,‖ IEEE Std. 1588, 2004.

[17] J. Gildred et al., ―Synchronous Ethernet,‖ Pioneer Research Center
specification draft v0.39, Nov. 2003.

[18] Y. Ofek, ―Generating a fault tolerant global clock using high-speed
control signals for the MetaNet architecture,‖ IEEE Trans,
Communications, Vol. 42, No. 5, pp. 2179–2188, May 1994.

[19] O. Gurewitz, I. Cidon, M. Sidi. ―Network classless time protocol based
on clock offset optimization,‖ IEEE/ACM Trans. Networking, Vol. 14,
No. 4, pp. 876-888, Aug. 2006.

[20] BTexact Technologies, ―Juniper Networks T640 performance test
report,‖ Technical Report, 2003.

Mario Baldi is Associate Professor at the Department
of Control and Computer Engineering of Politecnico
di Torino, Italy, and Vice Dean of the PoliTong Sino-
Italian Campus in Shanghai, China. He holds a M.S.
Degree in Electrical Engineering and a Ph.D. in
Computer and Systems Engineering. His research
interests include high performance switching, optical
networking, and computer networks in general.

Guido Marchetto is a post-doctoral fellow at the Department of Control and
Computer Engineering of Politecnico di Torino. He
received the Ph.D. Degree in Computer and System
Engineering from Politecnico di Torino in April 2008.
His research topics are packet scheduling and Quality
of Service in packet switched network. His interests
include network protocols and network architectures.

	___PrimaPaginaStandard
	2009_ToN_PF-Sync__draft

