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Abstract—Pipeline forwarding is a technology with the 

capability of providing both guaranteed quality of service and 
scalability, two fundamental properties for the future Internet. 
Implementing pipeline forwarding requires network nodes to 
operate with a common time reference that in existing literature 
is considered to have relatively good accuracy and usually be 
derived from an external source, such as the GPS or Galileo. This 
is a major requirement possibly hindering the widespread 
deployment of this technology notwithstanding its potential to 
enable a host of new applications. This paper describes and 
analyzes a solution for realizing pipeline forwarding based on a 
low accuracy common time reference distributed through the 
network and presents experimental results obtained with a 
prototypal implementation of the proposed solution. 

 
Index Terms—pipeline forwarding, packet scheduling, 

distribution of a common time reference, network 
synchronization, experiments on a network testbed 

I. INTRODUCTION 

RAFFIC over the Internet continues to grow steadily. In 

particular, the percentage of traffic requiring quality of 

service (QoS) in terms of end-to-end delay and jitter has been 

increasing during the last few years. For example, some 

applications, such as multimedia ones, need a minimum level 

of service quality in order to operate properly.  

Current approaches to offer controlled quality based on the 

Differentiated Services (DiffServ) model [1] combined with 

over-provisioning of resources cannot withstand a significant 

increase in the fraction of traffic with QoS requirements due to 

a combination of the following factors: 

 Current approaches rely on the fundamental assumption 

that differentiated traffic must use only a small fraction of 

the network capacity. Consequently, the additional 

network capacity needed when traffic with QoS 

requirements grows is larger than the increase in (revenue 

generating) traffic. 

 Given that there are many indicators of technology having 

reached a point where it does not follow any more Moore’s 

Law of a tenfold increase every 18 months, the additional 

processing and switching capacity required to follow the 

steep growth curve of Internet traffic with QoS 

requirements has a high cost. 

 In a possible future scenario in which traffic with QoS 

requirements might dominate the Internet, the excess 
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network capacity stemming from over-provisioning is 

likely to remain unused — i.e., not to yield any revenue.  

In essence, the upgrade that a network infrastructure relying 

on the above approaches should undergo in order to support 

such traffic increase is most likely to result in costs larger than 

the economic benefits, i.e., additional revenue brought by such 

services. Hence, a solution that relies on a more efficient 

utilization of network resources, i.e., allowing for traffic with 

QoS requirements to use a large percentage of network 

capacity, is needed.  

On the other hand, approaches based on the Integrated 

Services (IntServ) model [2], although somewhat more 

efficient in the utilization of network resources, have proven 

not to scale due to the high complexity and processing 

requirements associated with packet scheduling algorithms, 

such as packet-by-packet generalized processor sharing 

(PGPS) [3], a.k.a. weighted fair queuing (WFQ), combined 

with the need for their per-flow deployment. Moreover, PGPS 

and other similar well known scheduling algorithms [4][5], 

such as, class based queuing, weighted round robin and others, 

cannot combine optimal delay and resource utilization 

efficiently (see detailed discussion in [6]).  

In summary, existing asynchronous packet scheduling 

approaches either require (very) large amounts of network 

resources or cannot scale to high performance (multi-terabit) 

routers and switches. Pipeline Forwarding (PF) is a packet 

scheduling technique that can satisfy such requirements thanks 

to its unique combination of simplicity and effectiveness by 

deploying a global common time reference (CTR) for shaping 

the traffic through the network. PF provides guaranteed 

quality of service and scalability, as it has been extensively 

studied both analytically and through simulations (see for 

example [7]–[9]) and experimentation [10][11]. PF properties 

basically stem from the predictability it introduces in network 

operation, hence on the service offered to packets traversing it. 

PF is currently deployed in an experimental testbed 

interconnecting Turin, Milan, and Trento, the impact of its 

hypothetical deployment in the network of an Internet Service 

Provider such as Telecom Italia has been assessed in the 

context of a project sponsored by Telecom Italia Labs [12], 

and its market potential as a commercial application of the 

Galileo positioning system has been evaluated in the context 

of the Harrison Project funded by the Galileo Supervisory 

Authority. 

Also S&G Queuing [13] uses a time reference to drive 

packet forwarding in routers with FIFO-like scheduling 
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complexity — i.e., the solution has the potential to scale to 

high performance architectures. However, S&G Queuing 

relies on a ―per link‖ time reference derived from the 

transmitter end independent local clock. The variable drift of 

clocks used on various input links at a router can lead to the 

impossibility of maintaining the timing profile characterizing 

traffic at the network edge, which eventually results in 

variable delays, jitters and, in the worst case, buffer overflows 

and packet loss. 

Instead PF is based on a time reference (CTR) common to 

all network nodes. Since in much previous work, including 

prototypal implementations, the CTR is derived from UTC 

(coordinated universal time), the technology is often referred 

to as UTC-based pipeline forwarding. If UTC is provided 

through an external channel (e.g., Global Positioning System 

(GPS) is used in the prototypes described in [10] and [11]) the 

system is said to be based on an externally-distributed CTR. If 

an inter-switch synchronization protocol is used to distribute a 

timing signal through the network (as proposed in [8], for 

example), the system is said to be based on a network-

distributed CTR. In both cases, original PF operating 

principles (as defined in [8]) imply that the CTR error in 

different nodes be smaller than the PF operation time unit, 

which is called a time frame (TF).  Relying on such an 

accurate (either externally or network distributed) CTR is a 

major requirement on network nodes and network operations 

that some see as a hurdle with the potential to hinder PF 

deployment. This motivates this work that proposes, analyzes, 

and reports on experiments with a PF implementation 

supporting a low accuracy network distributed CTR. 

Specifically, this paper makes the following contributions: (i) 

a solution for CTR distribution with minimum impact on 

system complexity is defined, (ii) a set of operational rules to 

ensure proper PF operation with CTR error larger than one or 

more TFs is specified, (iii) resulting buffering requirements 

are devised, and (iv) consequences on the quality of the 

service provided in terms of delay and jitter are analyzed. 

Notice that although in this work (ii), (iii), and (iv) are devised 

assuming the synchronization model underlying the CTR 

distribution solution at (i), they can be straightforwardly 

generalized to various CTR distribution alternatives, i.e., their 

relevance is not limited to the proposed CTR distribution 

solution. In essence, the paper shows how minimal changes to 

the PF algorithm originally proposed enable proper operation 

with a low accuracy network-distributed CTR. Although the 

proposed changes to PF are minimal — which contributes to 

the relevance of this work since they do not affect the system 

complexity — they have a major impact because PF 

deployability is greatly improved. In particular, given that the 

proposed CTR distribution solution can be implemented by a 

low complexity software module, this work facilitates PF 

deployment in low end network nodes, such as at the wired or 

wireless edge of the network. This is key to take full 

advantage of PF in terms of guaranteed QoS as its benefits can 

be fully enjoyed when it is deployed end-to-end [6]. 

After a short description of PF and its deployment options 

(Section II), the paper discusses network synchronization 

issues in general (Section III.A), outlines the basic principles 

of the synchronization solution proposed for the distribution of 

the CTR through a network (Section III.B). In fact, 

Section III.B also sets the context for this work: a stable 

network scenario, i.e., changes in the availability of links and 

nodes (e.g., due to failures) are not taken into consideration 

here. Section IV analyzes the impact of a network-distributed 

CTR on the implementation and deployment of the PF 

scheduling algorithm. Various options for the distribution of 

the CTR and a proposed protocol are discussed in Section III, 

while experimental results on a testbed implementing the 

proposed solution are presented in Section V. The outcome of 

this work and future work directions are finally discussed in 

Section VI. 

II. UNDERLYING PRINCIPLES AND TECHNOLOGIES 

As the context of this work is a network performing 

Pipeline Forwarding (PF) of packets, this section briefly 

introduces this technology and its deployment options. An 

extensive and detailed description of pipeline forwarding is 

outside the scope of this paper and is available in the 

literature [7]–[9]. 

A. Pipeline Forwarding 

In PF all packet switches utilize a basic time period called 

time frame (TF). The TF duration   may be derived, for 

example, as a fraction of the UTC second received from a 

time-distribution system such as the GPS and, in the near 

future, Galileo. As shown in Fig. 1, TFs are grouped into time 

cycles (TCs) and TCs are further grouped into super cycles; 

this timing structure aligned in all nodes constitutes a CTR.  

Each super cycle might last one UTC second like, for 

example, in Fig. 1, where the 125-μs time frame duration   is 

obtained by dividing the UTC second by 8000; sequences of 

100 time frames are grouped into one time cycle, and runs of 

80 time cycles are comprised in one super cycle (i.e., one UTC 

second). 

CTR from UTC
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Time

Cycle 0
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Time
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Fig. 1. Common time reference structure 

During a resource reservation phase TFs are partially or 

totally reserved for each flow on the links of its route. Thus, 

TFs can be viewed as virtual containers for multiple packets 

that are switched and forwarded according to the CTR. In the 

PF deployment in the literature, the TC provides the basis for 

a periodic repetition of the reservation, while the super cycle 

offers a basis for reservations with a period longer than a TC. 

In another possible deployment the reservation phase can be 

done on the fly before transmitting a packet without 

necessarily maintaining it across multiple TCs.  

A signaling protocol must be chosen for performing 

resource reservation and TF scheduling, i.e., selecting the TF 

in which packets belonging to a given flow should be 
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forwarded by each router. Existing standard protocols and 

formats should be used whenever possible. Many solutions 

have been proposed for distributed scheduling in pipeline 

forwarding networks [7] and the generalized MPLS (G-

MPLS) control plane provides signaling protocols suitable for 

their implementation. In the traditional traffic management 

models for QoS support, such as ATM User-Network 

Interface and Integrated Services, applications signal their 

QoS requirements to the network for each flow (usually called 

microflow); queuing algorithms used in asynchronous packet 

switches have to maintain status information for each micro-

flow, which is not scalable. Pipeline forwarding does not 

require per-micro-flow status in intermediate nodes, thus 

having similar provisioning scalability as the DiffServ model, 

where micro-flows are aggregated in the network to improve 

scalability [14]. 

The basic pipeline forwarding operation as originally 

proposed in [7] and [8] is regulated by two simple rules: (i) all 

packets that must be sent in TF k by a node must be in its 

output ports' buffers at the end of TF 1k  , and (ii) a packet p 

transmitted in TF k by a node nN  must be transmitted in TF 

k   by the following node 1nN , where   is a predefined 

integer called forwarding delay, and TF k and TF k   are 

also referred to as the forwarding TF of packet p at node nN  

and node 1nN , respectively. It follows that packets are timely 

moved along their path and served at well defined instants at 

each node. Nodes therefore operate as they were part of a 

pipeline, from which the technology’s name is derived. 

Consequently, given the TF at which a packet enters the 

network, the time at which the packet is forwarded by each 

node and eventually reaches its destination is known in 

advance with the accuracy of one TF. 

The value of the forwarding delay is determined at 

resource-reservation time and must be large enough to satisfy 

(i). Note that the time a packet requires to go from the output 

buffer of a node to the output buffer of the following one is 

strictly dependent on the performance of both nodes and the 

distance between them. Thus, the minimum value acceptable 

for   could vary depending on the previous hop from which a 

packet is received. Defining nA  as the set of the neighbors of 

nN , a set of different minimum acceptable forwarding delays 

, :nm m nm N A   have to be defined for nN . 

PF guarantees that reserved real-time traffic experiences: (i) 

bounded end-to-end delay, (ii) low delay jitter independent of 

the number of nodes traversed (less than two TFs when the 

CTR accuracy is smaller than a TF [8]), and (iii) neither 

congestion nor resulting loss. 

B. Deployment Options 

Time-driven priority (TDP) [8] is a synchronous packet 

scheduling technique that enables combining PF with 

conventional routing mechanisms to achieve high flexibility 

together with guaranteed service. While scheduling of packet 

transmission is driven by time, the output port can be selected 

according to either conventional IP destination-address-based 

routing, or multi-protocol label switching (MPLS), or any 

other technology of choice. Within a TF packets can be 

switched and forwarded asynchronously, i.e., in an arbitrary 

order and to different output ports. 

In Time-driven switching (TDS), originally proposed to 

realize sub-lambda or fractional lambda switching (FS) [9], 

all packets in the same TF are switched in the same way, i.e., 

altogether to the same output port. Consequently, header 

processing is not required, which results in low complexity 

(hence high scalability) and enables optical implementation. 

Although with a different degree of flexibility, both TDP 

and TDS can handle non-pipelined (e.g., best-effort) packets 

that can be transmitted during any unused portion of a TF, 

whether not reserved or reserved but actually unused.  

III. NETWORK SYNCHRONIZATION 

A. An Overview 

Several applications and technologies require network 

synchronization for their operation. These requirements are 

different depending on the specific environment. For example, 

a distributed software system may require a time-of-day 

synchronization in order to correctly perform transactions. The 

Network Time Protocol (NTP) [15] is often used for this 

purpose; it carries timing information deployed by a software 

phase locked loop (PLL) that maintains time-of-day 

synchronization by recovering the error on the system time 

introduced by the limited accuracy of the local oscillator. 

Current implementations of this type of network 

synchronization are based on an application layer protocol 

deployed by an application (daemon) process running on 

clients. SONET/SDH, on the contrary, needs synchronization 

at the physical layer in order to pace transmission of bits. The 

timing signal is distributed directly at the physical layer as 

defined by specific ITU standards. 

TDP uses a CTR to determine when to transmit packets, 

i.e., packets must be sent out in predefined time-slots uniquely 

identified throughout the whole network. Similarly, in TDS a 

CTR is deployed by all switches across the network to 

determine when to change their input-output interconnections. 

In particular, in a PC-based implementation of a TDP 

router [10], a periodic UTC-aligned signal generated (as an 

interrupt on the PCI bus) by a GPS receiver is used for 

indicating the beginning of a new TF, i.e., it triggers the 

transmission of packets scheduled for that TF. Analogously, 

the switch controller of a TDS switch [11] prototypal 

implementation uses a signal from a GPS receiver to trigger 

the reconfiguration of the switching fabric at the beginning of 

each TF according to a pre-defined, periodic pattern. Thus, PF 

requires time-of-day (here represented by the number of a TF 

within a TC) synchronization, which the GPS distributes with 

very high accuracy. However, the use of the GPS requires the 

deployment of GPS receivers (i.e., specific hardware) and the 

availability of a properly positioned outdoor antenna. Thus, a 

GPS-based synchronization solution is often impractical for 

logistics and cost reasons that some see as a drawback with the 

potential to hinder the deployment of PF. For these reasons 

this work investigates PF operation based on a network-

distributed CTR.  

Several network synchronization techniques have been 
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proposed, including the aforementioned NTP and 

SONET/SDH synchronization solution. Worth mentioning, 

IEEE 1588 [16] and Synchronous Ethernet [17] have recently 

been proposed specifically to provide synchronization in 

packet switched networks. All these solutions aim at a very 

high accuracy, which results in high complexity and, in the 

case of SONET/SDH, the deployment of dedicated channels 

for carrying synchronization signals. However, in this paper 

we show (see Section IV) that, unlike circuit switching 

technologies, like SONET/SDH, PF does not require high 

accuracy in the realization of the CTR. In fact, since PF nodes 

handle packets, buffering can be leveraged on to relax 

accuracy requirements: an appropriate size buffer enables 

correct PF operation by delaying packets based on the relative 

accuracy of the time reference on neighboring nodes. For 

example, if the time reference of an upstream node is early 

with respect to its downstream neighbor, packets are buffered 

in the latter until their forwarding time according to local time 

reference. A late time reference of an upstream node with 

respect to its downstream neighbor can instead be dealt with 

by introducing a larger forwarding delay than required by the 

nominal packet transfer time between the two nodes, which 

implies additional buffering in the downstream node. 

Section IV is devoted to devising how a PF node can be 

dimensioned based on the CTR accuracy and proving that a 

properly dimensioned system provides the benefits typically 

offered by PF as originally defined in [7] and [8]. 

Consequently, the complexity of existing synchronization 

distribution solutions required to achieve high accuracy is not 

justified when aiming at PF deployment. For these reasons, a 

customized, low complexity network synchronization solution 

is desirable.  

An inter-switch synchronization protocol proposed in [18] 

was specifically adapted to PF in [8]. This solution, aimed at a 

CTR error among nodes smaller than one TF, requires each 

node to have a local clock to trigger the beginning of each TF. 

The CTR distribution solution proposed in this work is based 

on directly triggering the beginning of a new TF on a node 

when a synchronization signal reaches such node. This 

protocol is simple and effective as it (i) does not rely on a 

local clock, hence enabling a (ii) software-only 

implementation, (iii) provides the required time-of-day 

synchronization, and (iv) does not require dedicated network 

resources as the synchronization signal is piggybacked by data 

packets. Being simple and not requiring specific hardware, the 

proposed CTR distribution solution is particularly suitable for 

the deployment in low end nodes, such as at the edge of the 

network (e.g., home gateways and wireless access points). The 

following subsections present and analyze this protocol and its 

implications on the network synchronization. 

B. Network Synchronization Model 

The proposed method to achieve network synchronization 

consists in nodes distributing a synchronization signal to their 

neighbors that can be processed by receiving nodes and used 

to trigger the beginning of TFs. Since a node could have 

several neighbors, it could receive more than one timing 

signal. One of the neighbors is to be selected as 

synchronization source for the node. The selection of the 

synchronization interface has to be done in such a way that 

each node has a synchronization path to a predefined node that 

acts as time server (i.e., a node that distributes a well defined 

time reference at which it is synchronized and which becomes 

the common time reference for the entire network). This 

results in a logical tree topology, referred to as 

synchronization tree, built over the physical mesh network, as 

shown in Fig. 2. The root of this tree is named 

Synchronization Signal Server (S3) and the interface from 

which a node acquires the synchronization signal is called 

Synchronization Signal Server Port (S3P). The establishment 

of this logical tree topology could be automated using several 

methods. For example, a customization of the Spanning Tree 

Protocol or the information contained in a routing protocol 

database (e.g., the OSPF’s) could be used. The definition of 

mechanisms and protocols for these purposes is outside the 

scope of this paper and left for future work. 

S3

S3P

Synchronization Tree

 
Fig. 2. Synchronization distribution model. 

The resulting synchronization model consists in a 

synchronization signal generated by a server (the S3) 

spreading like a wave through the network and reaching all 

nodes. Since the synchronization signal experiences a non-

zero propagation delay and, being network nodes non-ideal, its 

transmission/reception/processing are affected by non-zero 

variable latencies, each TF features a synchronization error, 

i.e., a variable time difference between the beginning of the 

generic TF k at the S3 and the beginning of the same TF at the 

generic node nN . The original PF algorithm was studied and 

developed under the assumption of all nodes sharing a, 

possibly UTC-aligned, CTR ensuring that TFs begin 

simultaneously on all nodes, as shown in Errore. L'origine 

riferimento non è stata trovata.(a) or with a difference 

across all nodes smaller than a TF [8]. Section IV will show 

that few minor modifications to the PF algorithm are actually 

sufficient to allow proper operation when network nodes are 

affected by synchronization errors of any magnitude. 

However, such modifications ensure proper PF operation if the 

synchronization error, and specifically its maximum variation, 

are known. Hence, the remainder of this section is devoted to 

the synchronization error analysis , under the assumption that 

the synchronization signal on reaching a node directly triggers 

the beginning of a new TF
1
. 

Let (see Fig. 3):  

 
k
ni  be the instant when the synchronization signal that 

 
1 The following analysis can be easily extended to other approaches, such 

as synchronizing through the network a local clock that triggers the beginning 
of a new TF. 
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determines the beginning of TF k reaches the S3P of the 

generic node nN , i.e., the instant at which TF k should 

begin at nN  if there were no latencies. 

 
k
nb  be the instant at which the TF k actually begins at 

nN . 

 
k
no  be the instant at which the synchronization signal is 

transmitted by node nN  at the beginning of TF k. 

 nTe  be the minimum time that nN  needs to react to the 

synchronization signal, which includes receiving and 

processing latencies. 

 
k
nTe  be the variable component of the time that nN  

needs to react to the synchronization signal indicating the 

beginning of the generic TF k, where 

 
max

0      .
k
n nTe Te k      (1) 

 nTt  be the minimum time that nN  takes to output (i.e., to 

begin the transmission of) the synchronization signal 

corresponding to the beginning of a TF. nTt  is the output 

side equivalent of the previously introduced nTe and 

includes transmitting latencies. 

 
k
nTt  be the variable component of the time that nN  

takes to output the synchronization signal indicating the 

beginning of the generic TF k, where 

 
max

0      .
k
n nTt Tt k      (2) 

 mnTp  be the propagation delay — considered constant — 

on the link connecting two adjiacent nodes mN  and nN . 

 
k
n  be the synchronization error concerning TF k  

affecting the generic node nN . As defined above this 

equals the delay with which a TF begins at a node nN  

with respect to the time at which the same TF begins at 

the S3, i.e. 3S

k k
nb b . 

Let’s consider a synchronization path in the network 

consisting of a sequence of nodes  dNNN ,...,, 10 , where 0N  

is the S3 from which the others receive the synchronization 

signal through the synchronization path. At 0N  the 

synchronization signal for a certain TF k starts as soon as the 

reference clock triggers the beginning of such TF. Given the 

above described inaccuracies, the instant at which TF k begins 

at node dN  is 

 

1 1

0 ( 1)
0 0

1

1 0 1

            .

d d
k k
d i i i

i i
d d d

k k
i i i

i i i

b b Tp Tt

Te Tt Te

 


 



  

   

    

 

  
 (3) 

That is, the respective synchronization error 
k
d  consists of 

two components: a constant (i.e., time invariant) one d , and a  

time variant one 
k
d : 

 
k k
d d d    , (4) 

where 

  
1

( 1) 1
0

d

d i i i i
i

Tp Tt Te


 


   , (5) 

and 
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i
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 (6) 

In conclusion, a generic node nN  is affected by a 

synchronization error 
k
n  which depends on its position along 

the synchronization path. 

t
Nn

Incoming synchronization signal

Outgoing synchronization signal

k
ni

k
nb

k
no

 k
neTneT( 1)n npT ntT  k

ntT ( 1)n npT

 
Fig. 3. Notation. 

C. Synchronization Signal Transfer Options 

Several solutions could be adopted in order to implement 

the presented CTR distribution method, specifically to 

transmit the synchronization signal. Some alternatives are 

presented and compared leading to the TF delineation protocol 

described in Section III.D. 

The synchronization signal could be transmitted at the 

physical layer using for example redundant codes in the line 

coding, modulation exceptions, or a dedicated wavelength on 

optical links. Physical layer operation results in a small 

synchronization error variation, i.e., considering a generic 

node nN , 
max
n is limited as the uncertainties on the 

transmission and reception of the signal are small. However, 

this solution presents some drawbacks: 

 It requires specific hardware, i.e., the logic handling the 

transmission and reception of the synchronization signal. 

 Intermediate layer protocols have to be modified in order 

to allow the synchronization signal received at the 

physical layer to reach the PF scheduler at the protocol 

layer it is operating.  

 The resulting PF implementation is not general and 

portable as it is dependent from both lower layer 

protocols and the availability of specific hardware. 

Transmission of the synchronization signal at an 

intermediate protocol layer has all the drawbacks listed above, 

while lacking the advantages related to the small variation of 

the synchronization error. Consequently, although possible, a 

CTR distribution based on intermediate layer protocols is not a 

sensible solution unless implementation or deployment 

specific reasons suggest otherwise. 

Alternatively, the synchronization signal can be 

implemented at the layer at which PF is deployed (e.g., IP). 

Two categories of approaches, requiring different types of 

information into packets, can be envisioned: (i) a time stamp 

(e.g., TF number and TC number) can be included in each 

packet, or (ii) a TF delimiter can be transmitted at the 

beginning of each TF. 

The former is more robust as a receiving node misses the 

beginning of a new TF only if all packets transmitted by an 

upstream node during that TF are lost. Moreover, even if this 

happens, the node recovers the correct TF from the 

information carried by packets received during the following 

TF. However, this solution (i) introduces transmission and 

processing overhead resulting from the 16 bit (or more) 

integer that represents the time stamp, and (ii) requires 
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modifications to the protocol headers as common protocols 

(e.g., IPv4, IPv6, Ethernet, MPLS) do not feature any field 

suitable for carrying such time stamp.  

The solution based on a TF delimiter can be implemented in 

various ways ranging from defining a control packet to be 

transmitted as a delimiter to setting a 1 bit field in the first 

packet transmitted during a TF. The latter introduces a very 

limited transmission and processing overhead and it is not 

unlikely that an unused bit be found in an existing protocol 

header, thus not requiring major modifications to the 

standards. For example, a non reserved codepoint of the 

DiffServ (DS) field could be used to implement CTR 

distribution with IP packets. The drawbacks of this solution 

are: 

 Sensitivity to packet loss — a node goes permanently out 

of synchronization when the TF delimiter is lost; 

 An additional mechanism is needed at system startup to 

carry a time stamp allowing each node to initialize the TF 

and TC identity.  

D. TF Delineation Protocol 

In previous work [10] the authors defined a protocol for PF 

routers with an externally-distributed CTR to exchange timing 

information used for the evaluation of the forwarding TF on 

each node. Here this protocol is proposed as a TF delineation 

protocol in a PF network based on a network-distributed CTR 

according to the synchronization model presented in 

Section III.B to implement an efficient and simple CTR 

distribution solution. The protocol is based on the combination 

of a robust TF delimiter and compressed time stamp, thus 

drawing from the strengths of the two solutions, while 

avoiding their drawbacks, both highlighted in Section C. As 

presented in the following, the solution deploys the DS field of 

the IP header, however, it can be similarly implemented with 

other protocols (for example, the EXP field of the MPLS shim 

header can be analogously used). 

Three bits of the DS field, i.e., 8 unreserved DS codepoints, 

are used to carry the delimiter/compressed time stamp. Bits 

0x0c are set in all PF packets to distinguish them from those 

not receiving PF service (e.g., best-effort or differentiated 

service packets), bit 0x10 is set to 1 (0) in packets transmitted 

during odd (even) TFs, and bits 0x20 and 0x40 toggle their 

value every TC and every super cycle, respectively. This 

results in an alternating-bit protocol for TF and TC 

identification
2
. PF routers maintain the number of the TF and 

TC during which the last received packet was transmitted by 

the upstream node. This information is updated every time the 

DS codepoint of a packet is different with respect to the 

previous packet. TF and TC initialization is performed by 

setting the TF and TC number to zero the first time the bit 

corresponding to super cycle (0x40) toggles. Consequently, 

system initialization lasts up to 1 s (i.e., the super cycle 

duration), but happens only when the router starts up and does 

 
2 Such mechanism can be seen as the transmission of a time stamp 

composed of the TC and TF number where, in order to reduce the amount of 
information transmitted, the numbers are compressed by sending only the 
least significant bit. Also, the mechanism can be seen as delimiting the 
beginning of each TF by changing the DS codepoint. 

not require transmission of additional information. When a 

node has no packets (including non-PF packets) to transmit 

during a TF on a given link, it sends sequences of padding IP 

packets with TF and TC marking for keeping the router at the 

other end synchronized
3
.  

While timing information is coming from all interfaces, 

only the one received through the S3P is used by a router to 

derive the CTR, i.e., to trigger the beginning of a new TF. 

Note that the proposed solution can be implemented with 

software only components, thus enabling upgrade of existing 

equipment and reducing costs with respect to other solutions 

that are based on integrated circuits used to control local 

clocks.  

IV. PACKET SCHEDULING ALGORITHM 

Previous work on PF and current implementations are based 

on a UTC-aligned, accurate CTR, i.e., 0, ,
k
n k n   . 

Considering a network scenario where nodes are characterized 

by a variable 0
k
n  , PF properties, implementation, and 

deployment rules have to be reconsidered. The modifications 

required to a PF router initially implemented for and deployed 

with an externally-distributed CTR are presented as an 

example. 

Specifically, a PF router performs four fundamental PF-

related steps: it (i) devises the TF during which each received 

packet was sent out by the previous node, (ii) calculates the 

forwarding TF of the packet based on the predefined 

forwarding delay, (iii) stores the packet in a queue 

corresponding to its forwarding TF; (iv) whenever a new TF 

begins, it transmits all the packets stored in the queue 

corresponding to the TF. The rules and constrains driving 

these steps are part of the PF scheduling algorithm and are 

presented in several publications [7][8] for PF based on an 

accurate CTR. The following sections analyze the 

modifications required to such rules and constraints when 

routers deploy a low accuracy, possibly network-distributed 

CTR. Note that these results can be applied independently of 

the network synchronization distribution protocol deployed. 

The PF rules defined in [7] for a scenario with ideal CTR, are 

generalized here for the case of any synchronization accuracy. 

A. TF Duration 

One implication of the synchronization error including a 

variable component is that the actual duration 
k
n of a generic 

TF k at the generic node nN  as derived from the 

synchronization signal is not constant, as shown in Errore. 

L'origine riferimento non è stata trovata.(b). The actual 

duration of TF k at node nN  is given by the difference 

between the beginning instants of TF k+1 and k, i.e.,  
1k k k

n n nb b


  , which, from the definition of 
k
n , can be 

expressed as  

 3 3

1 1
 S S

k k k k k
n n nb b  

 
    . (7) 

If, as it is reasonable, the latencies in receiving and 

processing an external synchronization signal by an S3 are 

 
3 Notice that this does not represent a bandwidth waste since the 

transmission link would anyway be idle. 
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ignored, 3 3
1 ,S S

k kb b k    . Thus, given that 
min

0,n n   , 

we have that 

 
max max

.
k

n n n       (8) 

Since resource reservation is based on TF nominal 

duration  , a variable TF duration may result in the 

impossibility of keeping PF schedules during shorter TFs (i.e., 

some packets scheduled for a TFs cannot be transmitted 

because the TF finishes too early), with consequent possible 

packet backlog at the PF buffers, buffer overflow, and packet 

drops. 

Guaranteeing deterministic quality of service, i.e., no loss 

and unpredictable delay and jitter due to network congestion, 

is possible by simply forwarding all packets that match the 

predefined schedule for TF k, i.e., that have been reserved 

resources during TF k, even if this requires extending the 

transmission beyond TF k end, i.e., after 
1k

nb


. According to 

this new operation mode, the transmission of packets 

scheduled during a TF k ends at different times on different 

output interfaces of the same node. This leads to a new 

definition for the TF beginning, which is no longer specific 

only to a node nN , but also to a particular output interface: 

Definition 1. In a PF node using a network-distributed CTR 

realized according to the presented synchronization 

mechanism, the beginning of a new TF on an output interface 

is identified by the latest of the following events: 

1) the synchronization signal is received at the S3P, 

2) the output buffer corresponding to the current TF on the 

given interface becomes empty. 

The above definition is coherent with the original definition 

of TF with an ideal CTR, in which case 1) is the possibly 

external timing signal triggering the beginning of a new TF 

and 2) is guaranteed to happen before such event. Moreover, 

Definition 1 can be modified to fit other CTR distribution 

solutions by substituting event 1) with whatever timing event 

triggers the beginning of a new TF. 

Transmission of packets scheduled during a TF lasts at most 

  (resource reservation is based on this value), while the 

minimum TF duration, given by (8), is 
max
n . Thus, the 

maximum time packet transmissions can continue beyond TF 

duration, namely after the arrival of a synchronization signal, 

is max max .ex nT    This happens when a TF has minimum 

duration; the condition for such event can be derived from (6) 

as  

 

max

1 min 0.

k
n n

k
n n

 

 

  

   

 (9) 

Consequently, the maximum error on the beginning of TF 

k+1, i.e., the maximum synchronization error, on a generic 

output interface of a generic node nN  according to 

Definition 1 is obtained by adding 
max

exT  to the maximum 

synchronization error of TF k+1 as given by (4) and then 

applying (9), thus obtaining 

 
maxmaxminmax
nnexnnn T   . (10) 

Thus, it can be concluded that the network synchronization 

model presented in Section III.B also applies when TFs 

comply with Definition 1 and the proposed definition of the 

TF beginning does not affect the maximum synchronization 

error. However, in this case the network-distributed CTR 

features a different synchronization error for each interface. 

Equation (10) is extended as follows in order to capture this: 

 
max max

, :nm nm nm m nm N A     , (11) 

where nA  denotes the set of the neighbors of the generic node 

nN , as defined in Section II.A, and nm refers to the interface 

of nN  connected to the link to mN . 

B. Forwarding TF Evaluation 

As discussed in Section II.A, PF operation determines a 

dependency among the forwarding TFs for each packet in all 

the nodes across the network. The forwarding TF at a generic 

node nN  can be expressed, in accordance to [8], as: 

 1 ( 1)n n n nF F f    , (12) 

where: 

 nF  is the forwarding TF of the packet at the generic node 

nN . 

 1nF   is the forwarding TF of the packet at the previous 

node 1nN   on the path of the packet.
4
 

 ( 1)n n   is the minimum acceptable forwarding delay 

(introduced in Section II.A) between node 1nN   and node 

nN . In order to make sure that packets are already in the 

output buffer of node nN  when their forwarding TF 

begins, the forwarding delay must be greater than or 

equal to the sum of the propagation delay on the link 

connecting the nodes, the processing time, and additional 

latencies that characterize both nodes. Given 1nN   and 

nN , we can express this sum as 

 1
1 1 ( 1)( 1)

F F Fnn n
n n n n n nn nD Tt Tt Tp Te Te
        , (13) 

  which, considering the worst case 
max
( 1) 1n n nD Tt    

  
max max

1 ( 1)n n n n nTt Tp Te Te     , leads to 

 

max
( 1)

( 1)
n n

n n

D





 
  

 
. (14) 

 f  models the adopted forwarding scheme [7]. 0f   

represents immediate forwarding operation, i.e., applying 

the minimum acceptable forwarding delay. 

f  models non-immediate forwarding operation, i.e., 

deploying a larger forwarding delay, which enables 

reducing blocking probability at the expenses of 

implementation complexity by not necessarily forwarding 

a packet as soon as it is available at the output port [7][9]. 

The above forwarding TF calculation method refers to the 

case where all network nodes are perfectly synchronized, i.e., 

0, ,
k
n k n   . If the CTR is distributed through the network 

using the presented technique, (i) TFs do not begin at the same 

time on all nodes, (ii) the synchronization error is different at 

each node (i.e., 
k k
n m    if n mN N ), and (iii) both TF 

alignment and synchronization error vary in time (i.e., 
k k
n n 


   , if k k ). This has to be considered in the 

forwarding TF calculation. 

 
4 Although nF  and 1nF   are packet dependant, the packet is not explicitly 

indicated to simplify the notation. 
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Theorem 1. In a PF network where the CTR is distributed 

to nodes with a non-zero synchronization error, proper PF 

operation is ensured when the forwarding TF for a packet is 

calculated at the generic node nN as: 

 1 ( 1)n n n nF F f


    , (15) 

where 

 

max min max
1 ( 1)

( 1)
n n n n

n n

D


 


   
  

 
. (16) 

Proof. Given a forwarding TF nF  at a node nN , a 

necessary and sufficient condition that guarantees the PF 

algorithm to work properly is that the time at which the packet 

transmission is scheduled at node nN , i.e., the time 

(corresponding to 
Fn
no ) at which transmissions for TF k 

begins at node nN , follows the time at which the packet enters 

the output buffer of the node (denoted as 
Fn
nib ), i.e.,  

 .
F Fn n
n no ib  (17) 

Given the definition of 
Fn
nb  in Section III.B, we can write 

 3
n n n

S

F F F
n no b   (18) 

and 

 1 1 1
3 1 ( 1) .n n n n

S

F F F F
n n n nib b D  

     (19) 

Since the inequality (17) has to hold for every value of 
Fn
n  

and 1
1

Fn
n


 , specifically for the worst case we can derive: 

 1
3 3

min max max
1 ( 1) ,n n

S S

F F
n n n nb b D

       

and converting in TFs as a time measurement unit, we obtain: 

 
max min max

1 ( 1)
1 .

n n n n
n n

D
F F

 


   
   

 
  

□ 

Note that (14) can be derived from (16) with 
1

1 0
F Fn n
n n

   . 

C. Buffer Dimensioning 

Buffers have to be properly dimensioned in network nodes 

to guarantee that no packet is lost when nodes perform PF. 

The additional delay packets incur due to the deployment of a 

network-distributed CTR has to be taken into account when 

dimensioning the buffers. 

Theorem 2. Let R  be the output link capacity. The size of 

the buffer on the output interface of a node nN  that guarantees 

no loss for a pipelined packet is: 

  ( 1) ( 1) ,n n n n nBuff f R 

      (20) 

where, defining 
min min min
( 1) 1 1 ( 1)n n n n n n n nD Tt Tt Tp Te Te        , 

 
max min min

1 ( 1)
( 1)

n n n n
n n

D


 


   
  

 

. (21) 

Proof. For each TF, PF output buffers on node nN  have to 

store packets from the instant (denoted as 
k
nib  for the generic 

TF k) they enter the buffer of the node to the moment they 

begin to be sent out (
k
no  for TF k)

5
. The maximum difference 

between such instants over time is: 

  max .k k
n n

k
o ib  (22) 

Considering that (i) a queue must be associated to each TF, 

(ii) its size must have sufficient capacity to contain the total 

amount of bytes that can be transmitted during such TF (i.e., 

R  bits), and (iii) each queue can be reused (i.e., associated 

to another TF) as soon as the associated TF is over and all its 

packets have been transmitted, the minimum total number of 

required queues is given by the minimum number of TFs 

TFN such that their total duration is longer than (22) , i.e.: 

 
 max k k

n n
k

TF

o ib
N

 
 
 
 

.  

Considering that by definition 3 /S
kb k  ,from (15), (18), 

and (19) we can derive  

 ( 1) ( 1)TF n n n nN f 
    . (23) 

Given that each queue should be capable of storing R  bits, 

the total buffer requirement is: 

 n TFBuff N R  ,  

Note that (20) and (21) are valid also in case 0, ,k
n n k   , 

i.e., when an externally-distributed CTR is deployed all over 

the network. 
□ 

Moreover, adding an extra queue avoids concurrent reading 

and writing access to memory, thus eliminating the need of a 2 

speed up of memory access speed, which can result in a 

significant cost cut for high speed interfaces: 

  ( 1) ( 1) 1n n n n nBuff f R 
       . (24) 

Lemma 1. Lossless PF with a network-distributed CTR on the 

path  HNNN ,...,, 10  is ensured by deploying on the output 

interface of each node nN  a buffer of size: 

max max max max
1 1

1
n n n n

n

Tt Te
Buff f R

       
        

. (25) 

Proof. By substituting ( 1)n n 
 as derived from (16) in (23) 

and considering that either      yxyx   or 

      1 yxyx , in the most conservative case the number 

of queues guaranteeing lossless PF operation according to (23) 

is 

 
max min max min max min

1 1 ( 1) ( 1)
1

n n n n n n n n
TF

D D
N f

         
   

 
. 

Further considering the definitions given in (1), (2), (4), and 

(6) we obtain 

 
max max max max

1 1
1

n n n n
TF

Tt Te
N f

       
   

 
. (26) 

The corresponding amount of buffering can be derived by 

 
5 As it is common in router implementations, an additional transmission 

buffer of size R  is provided at the lower protocol layer to store packets as 

they get transmitted. 
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considering the amount of bits that can be transmitted during 

one TF, i.e., R . 

□ 

From (25) it can be observed that  

1) Buffering at a node nN  depends on the maximum 

variation of timing parameters — specifically the 

synchronization error and the input latency at the node 

(i.e., 
max
n  and max

nTe ) and the synchronization error 

and the output latency at the previous node on the 

forwarding path of the packet (i.e., max
1n   and max

1nTt  ) 

— and not on their absolute values. 

2) Buffering (as well as the forwarding TF) at a generic 

node nN  depends on timing parameters at both the node 

itself and the previous node 1nN   on the path of the 

packet. It can thus be concluded that in order to guarantee 

lossless service in a PF node nN  each output interface 

must be equipped with a buffer of size:  

max max max max

, ,
max max

1 .
m n m n

m m n n
m N A m N A

n

Tt Te
Buff f R

 
 

      
     
   
  

  (27) 

The above is derived by generalizing (25) to take into account 
the neighbor featuring highest variability of its timing 
parameters. 

D. Delay and jitter analysis 

A comparison of (14) and (16) shows that the 

synchronization error impacts directly on the delay introduced 

by each node, i.e., simple and low accuracy network-

distribution of the CTR is possible at the expenses of 

increased end-to-end delay and jitter. By analyzing (5) and (6), 

it can be noted that such increase grows with the number or 

nodes through which the CTR is distributed, i.e., the sparser 

S3s, the higher the end-to-end delay and jitter introduced by 

the network on an average flow. In particular, the time spent 

by a packet in the output queue of a PF node varies between 0 

(when the packet arrives just before the beginning of its 

forwarding TF) and  max k k
n n

k
o ib , as given by (22). The 

maximum jitter J experienced by the packet through a PF 

network is given by the maximum time spent in the buffer of 

the last node on its path HNNN ,...,, 10 , i.e., from Theorem 2 

and (22): 

  ( 1)( 1) H HH HJ f 


    . (28) 

Furthermore, the total maximum buffering delay experienced 

by a packet along the path  HNNN ,...,, 10  is 

  0 0max
H Hk k

hh hh h
k

o ib Buff R    . (29) 

E. Discussion 

Previous subsections gave the guidelines to implement PF 

when the CTR is distributed through the network with 

arbitrarily low accuracy. Equations (16) and (27) provide the 

guidelines to dimension a network node so that proper 

operation is guaranteed by keeping into account maximum and 

minimum synchronization error at each node. While 

synchronization over a traditional packet network is 

significantly affected by queuing delay, which is hard to 

bound and estimate, over a PF network with the proposed 

CTR distribution method, the main causes for the 

synchronization error k
n  at a generic node nN  are (i) non-

zero propagation delay, (ii) non-zero packet processing time of 

transmission and reception modules, and — especially — (iii) 

their variability that depends on issues ranging from hardware 

components, to system architecture, to software 

implementation.  

Providing a reliable estimate of the minimum 

synchronization error is not critical as it could in principle be 

set to 0 or, when the contribution of the propagation delay is 

significant (i.e., in a long haul link scenario), to the 

propagation delay. Also providing an upper bound on the 

variation of the propagation delay, which is due to temperature 

fluctuations caused by changing weather conditions or wear 

and tear of the medium, is not critical. Propagation delay 

variations can be accounted for by allowing a safety margin of 

k TFs in the forwarding delay. k depends on the TF duration, 

is likely to be 1 in most practical cases, and anyway does not 

have a significant impact on the end-to-end delay because the 

propagation delay variation is much smaller than packet 

processing delay and the other components of the 

synchronization error. 

The packet processing time introduced by 

hardware/software modules that perform transmission, 

reception, and handling of packets (such as the PCI bus or the 

Ethernet NIC in the PC-based prototype deployed in the 

experiments reported in the following section) is more critical 

as it has significant relative and absolute variations. However, 

proper design and implementation of the router can ensure 

such time to be bounded and its value can be devised based on 

either the system design or experimental characterization 

though specifically targeted lab tests and measurements.  

Since in the implementation used in this work the 

synchronization signal is conveyed in network layer packets, 

their transmission delay also contributes to the 

synchronization error. Although varying, this is not critical as 

it is obviously bounded by the time required to transmit a 

Maximum Transmission Unit (MTU) as defined for the 

specific data link protocol deployed. 

If the forwarding delay resulting from an estimate of the 

maximum synchronization error is not appropriate, the 

deterministic operation of PF is affected. Deployment of a 

more sophisticated CTR distribution solution, e.g., deploying a 

local clock to smooth out the variations of the synchronization 

error, would ensure that it stays within the estimate, hence 

ensuring deterministic operation with the proposed modified 

PF operation. Moreover, the disruption of the deterministic 

service is temporary and proper operation is automatically 

resumed after the first TF not fully utilized to transmit 

pipelined packets, as ensured by the proposed PF algorithm 

for low accuracy CTR. 

Improvements to the proposed CTR distribution solution 

are possible at the expense of increased complexity to: 

 Reduce the synchronization error, and consequently 

packet delay and jitter resulting from PF (which Section 
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IV.D showed to be dependent on the synchronization 

error);  

 Avoid deterministic service being disrupted if the 

estimate on the maximum processing and propagation 

delay, i.e., on the maximum synchronization error, is 

exceeded; 

 Ensuring proper CTR distribution and seamless PF 

operation in case of link and nodes failures.  

For instance, the timing information received from all the 

input links of a node could be used as synchronization signals, 

along the lines of the solution proposed in [19]. Alternatively, 

a local clock synchronized with the synchronization signals by 

means of a phase locked loop (PLL) could be deployed. 

However, this is outside the scope of this paper that aims at 

showing how PF, with minimal changes to the original 

algorithms, can properly operate with a low accuracy CTR, 

even if distributed through the network with a low complexity 

protocol. A major outcome of this section is the general 

validity, i.e., with any synchronization mechanism, of the 

proposed modifications to the original PF algorithms and 

system dimensioning as expressed by (16) and (27). However, 

an analysis of the performance and properties of PF with more 

sophisticated (and more complex) CTR distribution solutions 

is left for future work. 

V. EXPERIMENTAL RESULTS 

Some experiments were run on a testbed of TDP routers 

implemented by 2.4 GHz Pentium IV PCs running a modified 

version [10] of the FreeBSD 4.8 routing software. The results 

demonstrate the effectiveness of the CTR distribution solution 

proposed in Section III.D and validate the analysis of the 

modified PF operation presented in Section IV. Results 

obtained from the experiments are then extended to a large 

scale network by applying the equations proven in Section IV, 

which demonstrates the feasibility and the effectiveness of the 

proposed method in an arbitrary network. 

A. Synchronization Error Measurement 

If the proposed CTR distribution method is used, the main 

causes for synchronization error are propagation delay, packet 

processing time, and their variability that in our PC-based 

router is due to (i) access to shared resources, such as CPU, 

memory, communication buses, etc. and (ii) the interrupt-

driven nature of the FreeBSD kernel. Thus, the resulting 

synchronization error is in this case expected to be particularly 

large and variable under high traffic load. However, this 

provides a good reference point as it can be considered as a 

worst case scenario in which to experiment with the proposed 

solution. In fact, special purpose routers usually deployed in 

real networks are designed to minimize packet handling time 

and, consequently, its variations.  

A first set of experiments was run to measure the various 

system latencies and devise the synchronization error 

components introduced by our prototypal network nodes in 

order to get an idea of its order of magnitude. Fig. 4 shows the 

measurement setup. An Agilent N2X Router Tester is used to 

generate a traffic flow that enters TDP router R1, is forwarded 

to TDP router R2, and then is routed back to the router tester, 

all across FastEthernet links (100 Mb/s). In this first set of 

experiments, R1 and R2 execute the TDP scheduling 

algorithm with an externally-distributed CTR that is acquired 

through a GPS receiver, i.e., TFs on both routers are aligned 

with UTC. Time from the GPS receivers is also used to 

measure the interval between the beginning of a packet 

transmission at the TDP scheduler on R1 until the packet is 

processed at the IP layer (i.e., where the DS field is processed) 

on R2. In a network-distributed CTR scenario in which R1 is 

an S3 and the interface of R2 toward R1 is its S3P, the 

measured time interval represents the synchronization error at 

R2, which includes the various contributions identified in 

Section III.B, specifically 

 2 1 2 1 2 1 2R R R R R R RTp Tt Te Tt Te      , (30) 

where 21RRTp is negligible for all purposes having used a short 

cable between the routers stacked one on top of the other. 

Router Tester
R1 R2

GPS

 
Fig. 4. Synchronization error evaluation testbed. 
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Fig. 5. Potential synchronization error distribution. 

Fig. 5 plots the distribution of the synchronization error that 

the prototypal router potentially introduces. The various 

components of the synchronization error are measured over 

100 test runs with fully loaded links and various packet 

lengths. In particular, the router tester generates ten 10 Mb/s 

CBR UDP flows with constant message size on its port 

connected to R1 fully loading (as a 100 Mb/s aggregate flow) 

the links. The size of the IP packets is varied in each test run; 

sample configurations include: all flows deploying the 

minimum size of 64 bytes (corresponding to about 20000 

offered packets per second), all flows deploying the maximum 

size of 1500 bytes (about 800 packets per second), all flows 

deploying different packet sizes variably chosen between the 

above minimum and maximum. Each test lasts 15 minutes, 

hence the number of observed packets ranges between about 

720 thousands and about 18 millions. The maximum and 

minimum synchronization errors measured are 

 
min min

2

max max
2

7 μs,

480 μs.

R

R

   

   
 (31) 
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In order to properly configure the forwarding delay and 

buffering space in all nodes of the testbed network deployed 

for the experiments reported in Section B, the synchronization 

error at each node should be devised. Since all nodes are based 

on the same architecture and all links have the same length, 

measurements done on one of the nodes are in all likelihood 

representative of all the others. Consequently, the 

synchronization error at a node d hops from the S3 on the 

synchronization path can be derived from (4) considering that 

each of the d upstream nodes features a synchronization error 

characterized according to (31): 

 
min min

max max
.

d

d

d

d

  

  
 (32) 

B. Experiments with Network-distributed CTR 

Fig. 6 shows the network testbed deployed in the 

experiments that involves 4 TDP routers connected by 

100 Mb/s Ethernet links with 250 μs TFs (i.e., 250 μs  ). 

R1 acquires UTC from the GPS and is an S3; R2, R3, and R4 

acquire the CTR through the network using the CTR 

distribution solution (Section III.B and Section III.D) 

presented in this paper. Each router should select as S3P its 

interface connected to R1 in order to minimize the network 

synchronization error. However, since the presented 

experiments aim at assessing CTR distribution over multiple 

hops — as it would be in a real work network — S3Ps have 

been selected differently and are identified by a solid circle in 

Fig. 6. 

For the sake of brevity and without loss of generality, only 

experiments with TDP immediate forwarding (i.e., 0f ) 

are reported here. The forwarding delay for each input 

interface and the buffer size required on each output interface 

is derived from (16) and (27), respectively, by using the 

network synchronization error figures devised with the first set 

of experiments — i.e., (31) and (32). Since all nodes are based 

on the same architecture and all links have the same length, 

( 1)n n   is the same for every pair of nodes in the testbed and, 

from (13), 
max max
( 1)n nD    , 

min min
( 1)n nD    , and, consequently, 

max max max min
, ,m n m nTt Te m N A      , where nA  is the 

set of nodes directly connected to nN . Although not necessary 

in a PC-based mono-processor router, the additional buffering 

to avoid concurrent read/write access as specified in (24) was 

also considered so that experiments are run with the worst 

case delay scenario. The resulting system parameters are 

summarized in Table I. The detailed calculation of the 

parameters of R2 is reported in the following as an example. 

 Forwarding delay. R1 acquires UTC from the GPS, 

hence
max

1 0R  . From (31) and (32), 
min

2 7 μsR   and 
max

3 2 480 960 μsR    . Furthermore, as described 

above, 
max max
1 2 3 2 480 μsR R R RD D  . This leads to 

 

max min max
1 2 1 2

1 2
R R R R

R R

D


    
  

 
2 TF, 

 

max min max
3 2 3 2

3 2
R R R R

R R

D


    
  

 
6 TF. 

 Buffering. Among the nodes directly connected to R2, 

R3 is affected by the largest synchronization error 

(  max max min
3 3 3 2 480 7 946 μsR R R       ), hence 

from (27) it can be derived: 

max max max min
3 2

2 1 28125 bytes
R R

RBuff R
      

        
 

and, from (24), 

2 2 31250 bytesR RBuff Buff R    . 
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Fig. 6. Testbed 

 

TABLE I 

FORWARDING DELAY AND BUFFER SIZE 

Router Input NIC Forwarding Delay [TF] Buffering [byte] 

R1 

1 4 

31250 2 6 

3 8 

R2 
1 2 

31250 
2 6 

R3 

1 4 

43750 2 2 

3 8 

R4 
1 6 

43750 
2 2 

    
TABLE II 

MAXIMUM JITTER WITH A NETWORK-DISTRIBUTED CTR 

Traffic Flow Max measured [μs] Analytical bound [μs] 

A 730 1000 

B 916 3000 

C 753 2000 

    

The router tester generates three 100 Mb/s UDP flows on 

the Gigabit Ethernet link to R1. Since the three flows are 

routed as shown by the dotted lines in Fig. 6, each link links 

between TDP routers is fully loaded. In order to simplify 

resource reservation (manually performed in our prototypal 

implementation) and without loosing in generality, packet size 

is programmed to periodically vary among the four pre-

defined values 64 bytes, 260 bytes, 625 bytes, and 1041 bytes, 

which result in 48, 12, 5, and 3 packets contained in each TF, 

respectively. The paths of the three flows realize every 

possible scenario a node can be faced with concerning the 

relation between data traffic and CTR distribution. For 

example, packets received by a node nN  from a node 1nN   

where the synchronization error 1
k
n  is smaller/greater 

than
k
n , packets received from the S3P, etc. The jitter is 

measured on each flow (see Table II) during ten different tests, 

each one lasting 2 days. No packet is lost during the 

experiments and the jitter does not exceed its analytical upper 

bound given by (28), which validates the analysis presented in 
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Section IV
6
. As an example, the maximum measured jitter for 

flow A (730 μs) is smaller than the analytical bound 

4 1msJ    obtained by substituting ( 1) 1 2 2TFH H R R 
 

    

and ( 1) 1 2 2 TFH H R R     ( 0f  in all our experiments) 

in (28). 

C. Delay and buffering  

Due to the toy network on which they had been devised, the 

results presented so far do not demonstrate a large scale 

deployment of PF with a network-distributed CTR. However, 

they enable us to validate the presented analysis and devise 

synchronization error bounds for the prototype router that are 

given in (31). By applying (16), (27), and (29), the 

measurements on the testbed in Fig. 6 can be used to evaluate 

the buffering requirements and the maximum delay 

experienced by packets over an arbitrary network composed of 

PC-based prototypal routers. Assuming a network in which the 

maximum number of hops between any node and an S3 is D, 

the largest buffer size and buffering delay are the ones on a 

path traversing only routers at maximum distance D from the 

S3. Fig. 7 shows an example of such path, which we call the 

slowest path, for D = 3 hops that traverses 6 PF hops, i.e., 6 

links on which PF of packets is performed. 

Fig. 8 plots the maximum end-to-end buffering delay 

(devised using (29)) on a slowest path versus the number of 

hops H on the path for several values of D. The buffer size 

(reported in Fig. 10) is calculated according to the procedure 

detailed in Section V.B (the additional buffer to avoid 

concurrent read/write access, as discussed in Section IV.C, is 

not considered here) noticing that, according to (31) and (32), 

the maximum and the minimum synchronization errors of 

nodes at a distance D from the S3 are 
max

D   and 
min

D  , 

respectively. The maximum end-to-end buffering delay is 

devised by applying  H HBuff R , derived from (29) by 

considering that hBuff  is the same for every node hN  in the 

path as all nodes are at distance D from the S3. For example, 
max

D 1.44 ms   and 
min

D 21μs   if D = 3 and 
max

  

and 
min

  assume the values devised for our prototypal router 

and provided by (31). Hence, the buffering delay experienced 

after H = 5 hops by a packet traveling on a path whose nodes 

are at distance D = 3 from the S3 is equal to 

 5 (1419 1419 473) 1 18.75ms        . 

Considering that the total end-to-end delay includes in 

addition propagation delays, we set the maximum acceptable 

end-to-end buffering delay to be 50 ms (dashed line). Fig. 8 

shows that only small distances from the S3 (i.e., low values 

of D) can guarantee this bound on slowest paths composed by 

a reasonable number of hops. For example, if D = 5, packets 

can traverse 9 slowest path hops before exceeding the 50 ms 

bound, which is a reasonable path length. However if D = 11 

the maximum number of hops on the slowest path is only 4 

before exceeding the delay budget, which is unreasonable in 

practical networks. Nevertheless, in an access network where 

 
6 The presented experiments focus on assessing exclusively PF operation 

with network-distributed CTR and the CTR distribution solution presented in 
this paper. A general evaluation of PF, its properties, and benefits stemming 
from its deployment are outside the focus of this paper and were object of 
previous work (see for example [6],[7]–[11]). 

low end routers such as the deployed PC-based prototypes 

might be used D = 5 is a realistic value. Reasonably assuming 

that each service provider deploys an S3 in its network, the S3 

is going to be within a limited number of hops (reasonably less 

than 5) from end-users. Hence, the presented results show how 

the proposed solution enables the PF technology to reach also 

the extreme edge of the network with low cost, not specifically 

designed nodes — such as a PC-based router. 

S3

Source

Destination

D = 1

D = 2

D = 3

 
Fig. 7. Slowest path 

However, these results somehow represent a worst case 

scenario as they refer to a low performance (from both the 

software and hardware viewpoint) prototypal router. In fact, 

high performance commercial routers have maximum packet 

handling latency of few μs. For example, the maximum packet 

handling latency measured on a Juniper Networks T640 core 

router [20] during a zero-loss test with small FIFO buffers and 

no route-lookup delays (no routes present in the router), is 

about 50 μs. Although this test has been designed to avoid 

long buffering and lookup delays, the measured latency 

includes delays related to some functions — such as 

processing, switching, and buffering — that do not affect the 

synchronization accuracy in a PF network, but give the largest 

contribution to packet latency. Consequently, it is reasonable 

to assume that the latency of functions affecting the 

synchronization accuracy, i.e. packet transmission and 

reception, does not exceed 10 μs. This results in a lower 

synchronization error in each node and consequently in lower 

delay, jitter, and buffering requirement when compared to our 

prototype routers. Fig. 9 presents an estimate of the maximum 

end-to-end buffering delay if high performance low latency 

routers are used. TF duration is set to 50 μs, which is a 

suitable value for high performance routers connected with 

high speed links (i.e., 10 Gb/s). Fig. 9 shows that, with D = 11 

and 20 hop paths, the maximum end-to-end buffering delay is 

about 5 ms, thus a small fraction of the 50 ms bound. 

Fig. 10 plots the amount of buffering nodes require versus 

the distance D from the S3, We have considered both our TDP 

router prototype with 100 Mb/s ports and a high performance 

router with 10 Gb/s ports. Results show that the buffer size 

ensuring loss avoidance is limited for both types of routers, 

even if nodes are D = 11 hops far from the S3. The buffer size 

required by the high performance router (solid line in Fig. 10) 

is roughly three orders of magnitude smaller than the one 

adopted in current asynchronous routers operating (with loss) 

according to the DiffServ model. The limited memory 

requirement is extremely important for the realization of so 

called terabit routers as buffers of very high capacity ports 

must have high memory access bandwidth, which at the 
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current state of the art implies very high per-byte cost. Buffer 

size as given by Theorem 2 also implicitly defines the upper 

bound on the per-node jitter (that is also the end-to-end jitter 

because with PF jitter is not additive along the path to the 

destination), as given by (28). The solid curve in Fig. 10 

shows how high performance commercial routers can ensure a 

low jitter even with a network-distributed CTR on a large 

backbone. For example, with D=11 (i.e., nodes as far as 11 

hops from an S3), the jitter is about 300 μs (i.e., 6 TFs). As 

shown by the dotted line in Fig. 10, also low cost PC-based PF 

routers can guarantee acceptable jitter, such as 24 TFs or 6 ms 

when D=5, i.e., when the synchronization signal travels a 

limited number of hops to reach every node. This further 

demonstrates the feasibility of implementing and deploying PF 

with a low accuracy CTR, possibly distributed through the 

network with a very simple protocol such as the one proposed 

in this work. Specifically, the feasibility is demonstrated on 

both a low cost, low performance router platform, such as a 

PC, on an access network, and on a high end commercial 

router on a large backbone. 

VI. CONCLUDING REMARKS 

This paper analyzes how Pipeline Forwarding (PF) of 

packets can be based on a low accuracy Common Time 

Reference (CTR) distributed through the network. A CTR 

distribution solution aiming at simplicity and ease of 

implementation, possibly by adding a software-only module to 

existing devices, is also presented. The analytical work and 

experiments validate both the proposed synchronization 

solution and the PF modifications to enable its operation with 

a low accuracy network-distributed CTR, thus demonstrating 

its feasibility and applicability to both large scale, high speed 

networks where minimum buffering requirements are of 

utmost importance and access networks where low end routers 

might be deployed.  

The experimental results presented in the paper are obtained 

with a TDP router prototype. Although they could seem poor 

at first sight, they are in fact very significant: the simplicity of 

the deployed algorithms, for both packet scheduling and 

synchronization distribution, enables their software-only 

implementation in low cost architectures, such as PCs, thus 

making them capable of providing guaranteed quality of 

service. Such low cost routers provide acceptable delays only 

in scenarios where synchronization is distributed through a 

small number of hops and paths through the network are not 

too long, such as, for example, access networks. In such 

scenario, a low complexity, software-only implementation of 

both PF and CTR distribution is key to enable PF deployment 

in home gateways and wireless access points. In fact, devices 

available in that market segment are currently not equipped 

with local clocks that might be dedicated to the 

implementation of the CTR. Moreover, even if PF became 

more widely adopted, it might not be cost effective to include 

ad-hoc hardware in low-end equipment. On the other hand, the 

paper argues that implementation of PF with network-

distributed CTR in high-end commercial routers is suitable for 

global scale operation.  

The service guarantees, and especially the scalability 

featured by PF, cannot be achieved by other existing 

technologies: asynchronous packet scheduling fails in 

guaranteeing quality of service without underutilizing network 

resources (i.e., without performing resource overallocation), 

while synchronous techniques like Sonet/SDH require 

complex architectures and very accurate synchronization (e.g., 

a PC-based implementation is unthinkable of). 
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Fig. 8. Maximum end-to-end buffering delay on the slowest path 
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Fig. 9. Estimated maximum end-to-end buffering delay with high performance 

commercial routers (
min
i = 1μs, 
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i = 10μs,  = 50μs) 
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Fig. 10. Buffering requirement 

Given that forwarding delay, buffering requirement, and 

jitter are dependent on the synchronization error — the latter 

two on its variation, as shown by (27) — minimizing it, and 

especially its variations, is essential. Work can be done in this 

respect in at least two complementary directions: (i) reducing 

latencies in network nodes and (ii) limiting the maximum 

number of nodes through which the CTR is distributed. 

Regarding the first issue, work is ongoing to improve the 

performance of the TDP router prototype. Fig. 5 shows that 

the variable component of the synchronization error in the 
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presented experiments is less than one TF for most packets. 

The higher latencies randomly observed stem from both 

hardware architecture and operating system designed for 

general purposes and not therefore optimized for PF operation. 

Although, as mentioned earlier, the TDP router prototype is 

not fully representative or optimized commercial routers, work 

on its improvement as PF node can provide experience and 

insight into general implementation issues. Preliminary results 

after modifying the FreeBSD kernel in this direction are very 

promising. 

In order to limit the number of nodes through which the 

CTR is distributed a network can be divided in 

synchronization areas, each one equipped with an S3 from 

which network nodes derive the CTR. Such areas can be 

identified dynamically through the protocol for the 

construction of the synchronization tree according to various 

criteria. For example, in a scenario in which OSPF is used for 

distribution of routing information, it could be also used for 

the construction of the synchronization tree and 

synchronization areas can coincide with OSPF areas. The 

design of a protocol for the construction of the 

synchronization tree, also supporting the identification of 

synchronization areas and reconfiguration in case of failure, is 

the object of additional study that will also address the impact 

on existing schedules of changing S3 and S3P. 
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