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Accuracy of a Multiport Network Analyzer 
Ferdinand0 Sanpietro, Andrea Ferrero, Member, IEEE, Umberto Pisani, and Luciano Brunetti 

Abstract-The accuracy of a multiport vector network ana- 
lyzer, which uses a new calibration concept, has been compared 
with a 2-port network analyzer that implements the classical TRL 
procedure. The accuracy assessment is based on the analysis of 
the error propagation due to the connectors repeatability, both 
of the used standards and the measurands. The comparison, 
performed in the 2-18 GHz band on devices fitted with APC-7 
mm connectors, proved the high accuracy reached by a multiport 
system which can qualify for metrological applications. 

I. INTRODUCTION 

HE network analyzer (NWA) calibrations, based on par- T ticular error correction theories, are ineffective if the 
final measurement accuracy cannot be evaluated correctly. The 
overall accuracy depends on standard modeling, calibration 
algorithm efficiency, hardware stability, system nonlinearities 
and connector repeatabilities [ 11. 

Accuracy assessments that exhaustively account for all the 
random and systematic errors were recently presented for an 
ordinary 2-port NWA [2], but as far as we know, multiport 
network analyzers (MNWA) are not considered yet. 

This paper analyzes the error propagation in a multiport 
network analyzer by taking into account the connectors re- 
peatability and the standard uncertainty. The former is gener- 
ally considered as a random uncertainty (type A [3]), which 
can be reduced by averaging. Because the calibration error 
coefficients are also affected by the connectors repeatability 
of the standards, a type B uncertainty on the corrected data 
is introduced [4]. 

For each calibration algorithm the connectors repeatability 
uncertainty propagates in a different way: here we analyze the 
MNWA calibration technique recently proposed in [5]. In that 
paper a 3-port NWA was simply calibrated by means of 3 thru 
connections between the different ports and a sliding load at 
port 1, thus no air-lines, short-circuits, open-circuits or match 
standards were required. 

Since the thru alone cannot provide information on the 
reference impedance value, the calibration algorithm imposes 
the characteristic impedance of the sliding load line as refer- 
ence impedance for all the ports [5] ,  [6]. Knowing the load 
mismatch is not required because the effective parameter is 
the characteristic impedance of the sliding load. 

This calibration is adopted since it uses almost only thru 
standards, thus the connector repeatability plays the main role 
defining the error coefficients and the overall measurement 

Manuscript received July 1 ,  1994; revised October IS, 1994. 
F. Sanpietro. A. Ferrero, and U. Pisani are with Politecnico di Torino, Corso 

L. Brunetti is with 1EN Galileo Ferraris Strada delle Cacce 91, 10135 

IEEE Log Number 9408845. 

Duca degli Abruzzi 24, 10129 Torino, Italy. 

Torino, Italy. 

I..-_ , 
POUR CHANNEL 
FREQWNPV 
CONVERTER 

ref. a, b, a ,  

1 

Fig. 1. 3-port MNWA hardware. 

accuracy; furthermore the algorithm can be simply applied to 
manage redundancy measurements for a least square solution 
of MNWA calibration. 

From a different point of view, the error contribution 
of connector repeatability is indistinguishable from standard 
uncertainty. When other standards are used in place of a simple 
thru, this analysis is also applicable to the evaluation of the 
standard accuracy influence on the overall uncertainty. 

The 3-port system accuracy is compared with a 2-port 
network analyzer that implements the classical TRL procedure 
[7]; the latter (HP8510C) is used at the Italian National Labo- 
ratory IEN "Galileo Ferraris" to disseminate the S-parameter 
standard and related quantities. 

IT. MNWA HARDWARE AND ERROR MODEL 

Fig. 1 shows the implemented 3-port system, which uses 
two commercial 4-channel frequency converters, that are phase 
synchronized in order to measure six traveling waves, defining 
the 3-port S matrix. 

The APC-7 mm connectors are chosen to avoid gender 
problems, because the 3-port system is compared with a 
measurement system which exploits the best performances 
with the TRL calibration and the NMWA calibration uses 
mainly thru connections. 

As developed in [8], the adopted MNWA error model is 
based on an ideal MNWA in cascade with 3 error boxes, as 
shown in Fig. 2. The error model on which the calibration 
theory is based is exact when it is assumed that no leakage 
exists between every port pair of the error network [8]; the 
same assumption is made in the TRL [7], [9] that is used at 
the IEN system. 
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Equation (3), introduced in [ 5 ] ,  can be considered as a system 
of nine equations ax2 
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Fig. 2. 3-port error model. 

Each error box is defined by a pseudo-scattering matrix Ei, 
where i = 1, 2, 3: 

while, after a proper switch correction procedure, the ideal 
MNWA measures the raw matrix S, [8]. 

In a 3-port system we have the following error matrices:' 

0 r o o  = diag(eyo, e:'. e:') 

0 l?ol = diag (e:', e:', e:') 

0 rl0 = diag (e:'. e:', e;') 

0 rll = diag(e:'. e:'. e; ')  

A = roarll - rolrlo = diag (Al! A,, A,) 

0 K = e:'I?;/ = diag(1, k2, k3) .  

After some matrix algebra it  results that 

moo + smlls, - S K A  - K S ,  = 0. 

' There are I 1  independent error coefficients and K11 = k.1 'Gf 1. 

Every standard measurement provides a certain number of 
equations similar to (4), e.g., one thru connection gives 4 
equations, and therefore the calibration process is so reduced 
the solution of a linear system such as 

N u  = g. ( 5 )  

For a 3-port MNWA the calibration linear system (5) is formed 
at least by 1 1  linear independent equations similar to (4). 

In [ 5 ] ,  it was demonstrated that the calibration can be carried 
out by using the following standards: a sliding load connected 
with one of the three ports, and three thru connections, 
respectively, between ports 1 and 2, ports 1 and 3, and ports 
2 and 3. Note that the number of overall equations given by 
this procedure is 13 but only I 1  are linearly independent. 

Vector g contains only either elements like S,ij, or zeros, 
while the matrix N contains also the standard S;j parameters. 
The calibration coefficient vector U for the 3-port case is shown 
in (6) at the bottom of the page. 

Once U is known the error coefficient matrices of (2) are 
straightforward and the corrected DUT S matrix becomes 

s = (moo - KS,) (KA - ml1sm)-l. (7) 

111. ACCURACY ANALYSIS 
The MNWA calibration algorithm here summarized offers 

a powerful tool for a straightforward accuracy analysis. We 
consider the calibration process and how the accuracy on the 
error coefficient vector U can be increased by multiple standard 
connections, in other words we solve the calibration system (5) 
with an oversized set of equations in the least square sense. 
The extra equations can be given by different standards or 
by multiple connections of the same standard set without any 
limit in their number. Once the best estimate of U is obtained, 
the best estimate DUT S matrix is given by the de-embedding 
equation (7). 

The analysis of (7) also includes a dispersion analysis on 
the DUT matrix S ,  due to the connector repeatability during 
the measurement thus the obtained overall estimate of the 
uncertainty dS takes care both of the calibration and of the 
DUT measurement processes. 

A. Accuracy on the Error Coefficient Vector U 

As it was evidenced in [ 5 ] ,  eleven independent equations 
like (4) are necessary to provide the coefficient vector U. This 

21n general n2 equations for an n-port 
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Fig. 3. Fixed short reflection coefficient. 

set was originally given by three different thru connections 
between three ports (1-2, 1-3, 2-3) and by a single one port 
sliding load procedure. Here we perform multiple connections 
of the rhru (10 times at each port pair) and three sliding load 
procedures at port 1. In this way we get an oversized linear 
system which brings out some useful interesting properties of 
the calibration models. Of course other standards can be used 
to oversize the linear system, but here we want to point out 
the influence of connectors repeatability. 

The matrix N now has m (number of taken equations) 
rows and eleven columns (error coefficients); since each 
measurement is affected by noise, the best estimate of U is 
given by a weighted average rather than simply data averaging 
t41, P I .  

The system (5) is defined as a noisy system by introducing 
a noise vector v as follows: 

where w is a random vector whose expected value is zero, 
thus avoiding systematic errors. The least squares estimate of 
U labeled U is [IO] 

U = N+g (9) 

where 
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Fig. 4. 20 cm coaxial air1 ine S-parameters. 

is the Moon-Penrose matrix, while the estimated variance of 
U is [lo] 

1 
m - 1 1  

A 

ffz = - gT(l - N N f ) g .  

Assuming uncorrelated measurements, the associated co- 
variance matrix 

v = aZ(NTN)-1 (12) 

should be diagonal, and its elements represent the accuracy of 
each 2-sigma error coefficient as 

d u ; = 2 J V ,  ( i = l , . , . , l I )  . (13) 

Once U [from (9)] and du [from (13)J are computed, the 
matrices K, A, and and their uncertainties dK, dA, and 
dr,i are obtained simply by rearranging the elements of U and 
du according to the definition (2). 

B. Error Propagation 

In order to complete the error analysis, we consider a set 
of ten different DUT connections from which we compute the 
average 3, and its uncertainty ds, =  OS,,. 

The best estimate of the DUT S matrix is given by deem- 
bedding (7) applied to s, and U, while the overall uncertainty 
is obtained by differentiating (3) as 

d(KI'o0) + dS(KI'll%) + Sd(KI'11)% + SKrlldS,  
- dS(KA)  - Sd(KA) - dKS, - KdS,, = 0 (14) 
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thus 

dS = [-d(Kroo) - Sd(KI’ll)S, + S d ( K A )  + dKS, 
+ ( K  - s~r~~)dS,][~r~~S, - ~ ~ 1 - l .  (15) 

IV. EXPERIMENTAL VERIFICATION 

To verify the calibration accuracy and the overall MNWA 
uncertainty, ten measurements on each 2-port and 1-port 
traveling standards were made, both with the IEN system 
and the 3-port NWA. Each of these measurements is the 
mean value of 1024 sampling data directly averaged by the 
NWA to get rid of the noise floor, thus we can reasonably 
assume that the results are mainly influenced by the connectors 
repeatability. Each of the following figures reports the best 
estimate S-parameter given by the MNWA, the mean value 
given by the ten measurements of the same parameter from the 
IEN 2-port system, and finally the 3-port error bars computed 
by means of (15). 

In Fig. 3 the reflection coefficient of a fixed short is pre- 
sented while Fig. 4 shows some S-parameters of a 20 cm 
coaxial air-line. The results are in good agreement even if 
the high reflective measurement appears to be less accurate. 
The line measurements give a further confirmation of the 
agreement between the National S-parameter System and the 
MNWA: we have a great dispersion on well matched reflection 
parameters due to very low signal levels (< -40 dB), but the 
IEN value is inside the computed error bar. Since none of the 
measurements exhibits residual bias, we conclude that no great 
discrepancies exist between the reference impedances of the 
two systems. We omit considering a 3-port device since there 
are no %port commercial standards available and since no 
comparison with the National IEN 2-port system is possible. 

V. CONCLUSION 

A first experimental evaluation of a multiport network 
analyzer accuracy is presented. The error formulation includes 
the uncertainties of both calibration coefficients and DUT 
measurements. The experimental results confirm the adopted 
approach and show that the MNWA global uncertainty is 
comparable with the National 2-port measurement system. 
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