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Primes in Almost All Short Intervals II

DANILO BAZZANELLA

Sunto. - In questo lavoro vengono migliorati i risultati ottenuti in ”Primes
in Almost All Short Intervals” riguardo la distribuzione dei primi in quasi tutti
gli intervalli corti della forma [g(n), g(n)+H], con g(n) funzione reale apparte-
nente ad una ampia classe di funzioni. Il problema viene trattato mettendo in
relazione l’insieme eccezionale per la distribuzione dei primi in intervalli nella
forma [g(n), g(n) +H] con l’insieme eccezionale per la formula asintotica

 (x+H)�  (x) ⇠ H as x ! 1.

I risultati presentati vengono quindi ottenuti grazie allo studio delle proprietà
dell’insieme eccezionale per tale formula asintotica.

Mathematical Subject Classification : 11NO5 - Distribution of primes

1. - Introduction.

Throughout this paper  (x) will denote Chebyshev’s function, F ⇡ G
will mean that F ⌧ G and G ⌧ F hold, F (x) = 1(G(x)) will mean that
lim
x!1

G(x)
F (x) = 0, N(�, T ) denotes the counting function defined as the number

of zeros % = � + i� of Riemann zeta function which satisfy �  �  1 and
|�|  T and N⇤(�, T ) denotes the counting function defined as the number of
ordered sets of zeros %

j

= �
j

+ i�
j

(1  j  4), each counted by N(�, T ), for
which |�1 + �2 � �3 � �4|  1.

It is known that

 (x+H)�  (x) ⇠ H as x ! 1 (1)

holds with x7/12�o(1)  H  x, see Heath-Brown [6], and holds for almost all x
with x1/6�o(1)  H  x, see Zaccagnini [11]. It is also known that, under the
assumption of the Riemann Hypothesis (RH), (1) holds with x1/2+"  H  x,
and holds for almost all x with H = 1(log2 x), see Selberg [10].

The aim of this paper is to investigate the distribution of primes in intervals
of type

[g(n), g(n) +H],
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for N  g(n)  2N and the function g(x) belonging in a wide class of derivable
functions.

More precisely we consider the class of derivable functions g(x) such that
g(x) ⇡ x↵ and g0(x) ⇡ ↵x↵�1. A function satisfying these requirements will
be called of type ↵.

The problem that we investigate is how must be large H to have the ex-
pected number of primes for almost all intervals of type [g(n), g(n) + H] in
[N, 2N ], with a fixed function g(x) of type ↵.

As in the first paper of the series, see Bazzanella [1], the dimension of H
only depends of ↵ and, more precisely, results an increasing function of ↵.

The basic idea of this paper is to connect the exceptional set for the distri-
bution of primes in intervals of type [g(n), g(n) +H] to the exceptional set for
the asymptotic formula (1) and use the properties of this set, see Bazzanella
and Perelli [2], to obtain the desired results.

Our main unconditional result is the following :

Theorem 1 Let g(x) a function of type ↵ and " > 0. Then almost all inter-
vals of type [g(n), g(n)+H] in [N, 2N ] has the expected number of primes with
H > N c(↵)+" and

c(↵) =

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

11↵� 10

16↵

6

5
 ↵  273

107

3↵� 2

5↵

273

107
 ↵  21

4

47↵� 35

77↵

21

4
 ↵  210

29

45↵� 12�
p
144 + 168↵ + 265↵2

48↵

210

29
 ↵  23.

This result mainly depends of the bound for counting functions N(�, T )
and N⇤(�, T ). For this purpose we use the density estimate of Ingham, see ch.
12 of Montgomery [9], Huxley [7] and Jutila [8] for N(�, T ) and the density
estimate of Heath-Brown [5] for N⇤(�, T ).

This result is strong and more explicit than Theorem 1 of [1] for all values
of ↵ in considered range. Note that this new technique is not good for large
values of ↵. This is due to the fact that we are unable to prove a su�ciently
good estimate for N⇤(�, T ). If we assume the heuristic assumption

N⇤(�, T ) ⌧ N(�, T )4

T
, (2)

we can improve Theorem 1 as follows
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Theorem 2 Assume (2), let g(x) a function of type ↵ and " > 0. Then
almost all intervals of type [g(n), g(n)+H] in [N, 2N ] has the expected number
of primes with H > N c(↵)+" and

c(↵) =

8
>>>><

>>>>:

11↵� 10

16↵

6

5
 ↵  2

7↵� 5

12↵
2  ↵.

This conditional result improve Theorem 1 of [1] for all values of ↵.
Under RH we obtain in a similar way the following theorem

Theorem 3 Assume RH and let g(x) a function of type ↵. Then almost all
intervals of type [g(n), g(n)+H] in [N, 2N ] has the expected number of primes
with H = 1(N

↵�1
2↵ logN).

This is a stronger result than Theorem 2 of [1] for all values of ↵.

We remark that we may obtain results similar to the above theorems slight
weakening the hypothesis on the function g(x). Furthermore we remark that
in the first two theorems we can replace the positive constant " with an ap-
propriate power of logN . We have stated our results in the above form for the
sake of simplicity.

2. - Preliminary lemmas.

We consider the asymptotic formula

 (x+H)�  (x) ⇠ H as x ! 1 (3)

with H = X✓, and define the set

E
�

(X, ✓) = {X  x  2X : |�(x,X✓)| � �X✓},

with
�(x, h) =  (x+ h)�  (x)� h.

It is clear that (3) holds if and only if for every � > 0 there exists X0(�)
such that E

�

(X, ✓) = ; for X � X0(�). Hence for small � > 0, X tending to
1 the set E

�

(X, ✓) contains the exceptions, if any, to the expected asymptotic
formula for the number of primes in short intervals.

To deal with the problem to estimate the exceptional set for (3) we intro-
duce the functions

µ
�

(✓) = inf{⇠ � 0 : |E
�

(X, ✓)| ⌧
�,✓

X⇠}
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and
µ(✓) = sup

�>0
µ
�

(✓). (4)

The basic lemma needed for the proof of the Theorem 1 is the following
unconditional estimate for the exceptional set for the number of primes in
short intervals

Lemma 1 Let µ(✓) defined by (4) then we have

µ(✓) 

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

11� 6✓

10
1
6 < ✓  121

273

3(1� ✓)

2

121

273
 ✓  11

21

47� 42✓

35

11

21
 ✓  23

42

36✓2 � 96✓ + 55

39� 36✓

23

42
 ✓ <

7

12
.

Proof.
We first reduce our problem to a similar one, but technically simpler. We

begin by observing that if for a given 0 < ✓ < 1

|{X  x  2X : |�(x,X✓)| � 4X✓

logX
}| ⌧ X↵+" (5)

holds with some ↵ � 0 and every " > 0, then clearly µ(✓)  ↵. Further,
given any " > 0, we subdivide [X, 2X] into ⌧ X" intervals of the type I

j

=
[X

j

, X
j

+Y ] with X ⌧ X
j

⌧ X and Y ⌧ X1�". Writing ⇠
j

= X✓/X
j

we have

max
x2Ij

|X✓ � ⇠
j

x| ⌧ X✓�"

uniformly in j, and hence

�(x,X✓)� ( (x+ ⇠
j

x)�  (x)� ⇠
j

x) ⌧ X✓�" (6)

uniformly in j and x 2 I
j

.
From (5) and (6) is not di�cult to see that if for some ↵ � 0 and any " > 0

|{X  x  2X : | (x+ ⇠
j

x)�  (x)� ⇠
j

x| � 2X✓

logX
}| ⌧ X↵+" (7)

holds uniformly in j, then µ(✓)  ↵. Also, it is clear that in order to prove
(7) we may restrict ourselves to the case ⇠

j

= ⇠ = X✓�1, the other cases being
completely similar.
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In order to prove (7) we use the classical explicit formula, see ch. 17 of
Davenport [3], to write

 (x+ ⇠x)�  (x)� ⇠x =
X

|�|T

x%c
%

(⇠) +O(
X log2 X

T
), (8)

uniformly for X  x  2X, where 10  T  X, % = � + i� runs over the
non-trivial zeros of ⇣(s),

c
%

(⇠) =
(1 + ⇠)% � 1

%
and c

%

(⇠) ⌧ min(X✓�1,
1

|�|). (9)

Choose
T = X1�✓ log4 X, (10)

and use the Ingham-Huxley and Jutila density estimates, which asserts that
for every " > 0 we have respectively

N(�, T ) ⌧

8
>>>><

>>>>:

T 3(1��)/(2��)+"

1

2
 �  3

4

T 3(1��)/(3��1)+"

3

4
 �  1

(11)

and

N(�, T ) ⌧ T 2(1��)+" for
11

14
 �  1. (12)

From (9), (10), (11) and (12) by a standard argument we see that

X

|�|T

� 62I

x%c
%

(⇠) ⌧ X✓�1 log2 X max
� 62I

X�N(�, T ) ⌧ X✓

log2 X
, (13)

uniformly for X  x  2X, with I = [a, b]

a = max{1
2
, 3✓ � 1� "} and b = min{11

14
+ ",

4

3
� ✓ + "}.

Again by standard argument, from (9), (10), (11) and (12) we obtain that
for ✓ 2 [1/6, 121/273] we have

Z 2X

X

|
X

|�|T

�2I

x%c
%

(⇠)|2dx ⌧ X2✓�1+" max
�2I

X2�N(�, T ) ⌧ X2✓+(11�6✓)/10+",

and hence

|{X  x  2X : |
X

|�|T

�2I

x%c
%

(⇠)| � X✓

logX
}| ⌧ X(11�6✓)/10+".
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Then we get

µ(✓)  11� 6✓

10
for

1

6
 ✓  121

273
.

In order to bound µ(✓) for the other values of ✓ we use Lemma 1 of Heath-
Brown [4] to get

Z 2X

X

|
X

|�|T

�2I

x%c
%

(⇠)|4dx ⌧ X4✓�3+" max
�2I

X4�N⇤(�, T ). (14)

From Theorem 2 of Heath-Brown [5] we have

N⇤(�, T ) ⌧

8
>>>>>>>>>>><

>>>>>>>>>>>:

T (10�11�)/(2��)+"

1

2
 �  2

3

T (18�19�)/(4�2�)+"

2

3
 �  3

4

T 12(1��)/(4��1)+"

3

4
 �  1,

(15)

Hence from (10), (14) and (15) we obtain

Z 2X

X

|
X

|�|T

�2I

x%c
%

(⇠)|4dx ⌧

8
>>>>>>>>>>><

>>>>>>>>>>>:

X4✓+3(1�✓)/2+"

121

273
 ✓  11

21

X4✓+(47�42✓)/35+"

11

21
 ✓  23

42

X4✓+(36✓2�96✓+55)/(39�36✓)+"

23

42
 ✓ <

7

12
.

which implies

|{X  x  2X : |
X

|�|T

�2I

x%c
%

(⇠)| � X✓

logX
}| ⌧

8
>>>>>>>>>>><

>>>>>>>>>>>:

X3(1�✓)/2+"

121

273
 ✓  11

21

X(47�42✓)/35+"

11

21
 ✓  23

42

X(36✓2�96✓+55)/(39�36✓)+"

23

42
 ✓ <

7

12
.
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Then Lemma 1 is proved.

Along the same line, using the heuristic assumption (2) instead of the
unconditional estimate for N⇤(�, T ), we can obtain

Lemma 2 Let µ(✓) defined by (4) then we have

µ(✓) =

8
>>>><

>>>>:

11� 6✓

10

1

6
< ✓  3

8

7(1� ✓)

5

3

8
 ✓ <

7

12
.

3. - Proof of the theorems

As in the proof of theorems of [1] we can immediately obtain the results
for large values of H. More precisely is not di�cult to show that

 (g(n) +H)�  (g(n)) ⇠ H for almost all n

for H � N
↵�1
↵ and g(x) of type ↵.

Hence in the following we consider g(x) of type ↵ and H < N
↵�1
↵ .

To deal with our discrete problem we let H = N ✓ and define the set

A
�

(N, ✓) = {N1/↵  n  (2N)1/↵ : | (g(n) +H)�  (g(n))�H| � �H},

that contains the exceptions, if any, to the expected asymptotic formula for
the number of primes in intervals of type [g(n), g(n) +H] in [N, 2N ], and let

⌘
�

(✓) = inf{⇠ � 0 : |A
�

(N, ✓)| ⌧
�,✓

X⇠},

⌘(✓) = sup
�>0

⌘
�

(✓).

To prove the theorems is su�ciently to show that

⌘(✓) <
1

↵
. (16)

The first step of the proof of the theorems is to obtain that

⌘(✓)  µ(✓)� ✓. (17)

In order to prove (17) we let n 2 A
�

(N, ✓), and x
n

= g(n) 2 [N, 2N ]. From
the definition of the set A

�

(N, ✓) we get

| (g(n) +H)�  (g(n))�H| � �H,
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and then
| (x

n

+H)�  (x
n

)�H| � �H,

which implies x
n

2 E
�

(N, ✓). As in i) of Theorem 1 of [2] we can prove that
exists an e↵ective constant c such that

[x
n

, x
n

+ cH] \ [N, 2N ] ⇢ E
�/2(N, ✓).

Letm 2 A
�

(N, ✓), m > n. In the same way we can define x
m

= g(m) 2 [N, 2N ]
such that

[x
m

, x
m

+ cH] \ [N, 2N ] ⇢ E
�/2(N, ✓).

We observe that

x
m

� x
n

= g(m)� g(n) � g(n+ 1)� g(n) = g0(⇠) ⇡ ↵n↵�1 ⇡ N
↵�1
↵ > H,

for the appropriate ⇠ 2 (n, n+ 1).
Choosing the constant c su�ciently small we obtain that for every m 6= n

we have
[x

n

, x
n

+ cH] \ [x
m

, x
m

+ cH] = ;,
which implies

|A
�

(N, ✓)| 
|E

�/2(N, ✓)|
H

⌧ Nµ(✓)+"

H
⌧ Nµ(✓)�✓+", (18)

for every � > 0 and " > 0.
Hence we have

⌘
�

(✓)  µ(✓)� ✓ + " for every � > 0 and " > 0,

and then (17) follows.
Theorem 1 and 2 follows by using Lemma 1 and 2 for the estimate of µ(✓)

and recalling (17) and (16).
To prove Theorem 3 we recall that Selberg [10] proved, under RH, that

Z 2X

X

| (x+H)�  (x)�H|2dx ⌧ XH log2 X, (19)

which implies

|E
�

(X, ✓)| ⌧
�

X

H
log2 X for all � > 0,

and then

|A
�

(N, ✓)| 
|E

�/2(N, ✓)|
H

⌧ N

H2
log2 N,

for all � > 0, since (18) and (19).
This bound is o(N1/↵) forH = 1(N

↵�1
2↵ logN) and then Theorem 3 follows.
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