Politecnico di Torino

Porto Institutional Repository

[Article] On the asymptotic formula for Goldbach numbers in short intervals

[^0](Article begins on next page)

ON THE ASYMPTOTIC FORMULA FOR GOLDBACH NUMBERS IN SHORT INTERVALS

by
D. BAZZANELLA and A. LANGUASCO*

This is the authors' post-print version of an article published on
Stud. Sci. Math. Hung. 36 (2000) n.1-2, 185-199, DOI:10.1556/SScMath.36.2000.1-2.14. ${ }^{1}$

1. Introduction

Define a Goldbach number (G-number) to be an even number which can be written as a sum of two primes. In the following we denote by N a sufficiently large integer and let $L=\log N$. Let further

$$
R(k)=\sum_{\substack{N<m \leq 2 N}} \sum_{\substack{N<l \leq 2 N \\ m+l=k}} \Lambda(l) \Lambda(m)
$$

be the weighted counting function of G-numbers,
$\mathfrak{S}(k)= \begin{cases}2 \prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) \prod_{\substack{p \mid k \\ p>2}}\left(\frac{p-1}{p-2}\right) & \text { if } k \text { is even } \\ 0 & \text { if } k \text { is odd }\end{cases}$
be the singular series of Goldbach's problem and

$$
m(k)=\sum_{\substack{N<m \leq 2 N}} \sum_{\substack{N<l \leq 2 N \\ m+l=k}} 1 .
$$

We recall that a well-known conjecture states that as $k \rightarrow \infty$

$$
\begin{equation*}
R(k) \sim m(k) \mathfrak{S}(k) . \tag{1}
\end{equation*}
$$

In this paper we study the asymptotic formula for the average of $R(k)$ over short
intervals of type $[n, n+H)$. In the extreme case $H=1$, Chudakov [1], van der Corput [2] and Estermann [4] proved that, as $N \rightarrow \infty$, (1) holds for all $k \in[1, N]$ but

[^1]$O\left(N L^{-A}\right)$ exceptions, for every $A>0$. Moreover, the same techniques prove, for $H \leq L^{D}$ and $N \rightarrow \infty$, that
\[

$$
\begin{equation*}
\sum_{k \in[n, n+H)} R(k) \sim \sum_{k \in[n, n+H)} m(k) \mathfrak{S}(k) \tag{2}
\end{equation*}
$$

\]

holds for all $n \in\left(\frac{5}{2} N, \frac{7}{2} N\right]$ but $O\left(N L^{-A}\right)$ exceptions, for every $A, D>0$.
We recall that Montgomery-Vaughan [12] improved Chudakov-van der Corput-Estermann's result proving that there exists a (small) constant $\delta>0$ such that $|E(N)| \ll N^{1-\delta}$, where $E(N)=E \cap[1, N]$ and E is the exceptional set for Goldbach's problem. Montgomery-Vaughan's technique intrinsically does not give any information about the asymptotic formula for $R(k)$.
On the other hand, using the circle method and Ingham-Huxley's zero density estimate, Perelli [14] proved that (2) holds as $n \rightarrow \infty$ uniformly for $H \geq n^{1 / 6+\varepsilon}$. Our aim here is to show, using the circle method, that the asymptotic formula (2) holds for almost all $n \in\left(\frac{5}{2} N, \frac{7}{2} N\right]$, uniformly for $L^{D} \leq H \leq N^{1 / 6+\varepsilon}$, for all $D>0$. Our result is

Theorem. Let $D, \varepsilon>0$ be arbitrary constants and $L^{D} \leq H \leq N^{1 / 6+\varepsilon}$. Then, as $N \rightarrow \infty$, (2) holds for all $n \in\left(\frac{5}{2} N, \frac{7}{2} N\right]$ but $O\left(N L^{42+\varepsilon} H^{-2}\right)$ exceptions.
In fact, following the proof of the Theorem, it is easy to see that we have $O\left(N L^{f(\theta)}\right.$ H^{-2}) exceptions, where

$$
H=N^{\theta} \quad \text { and } \quad f(\theta)=\frac{24-18 \theta}{1-3 \theta}+\varepsilon .
$$

A direct computation shows that $f(\theta)$ is an increasing function and hence the exponent 42 in the \log-factor of the Theorem follows taking $\theta=1 / 6+\varepsilon$.
We observe that our result, for $\theta=1 / 6+\varepsilon$, proves only that the number of exceptions for (2) is $O\left(N^{2 / 3-\varepsilon}\right)$ while, from Perelli's [14] result, we know that there are no exceptions.
We recall that Mikawa, see Lemma 4 of [10], proved a slightly weaker, in the log-factor, result without using the circle method. We finally recall that, under the assumption of the Riemann Hypothesis (RH), (2) holds uniformly for $H \geq \infty\left(\log ^{2} n\right)$, where $f=\infty(g)$ means $g=o(f)$, and that, assuming further the Montgomery pair correlation conjecture, (2) holds uniformly for $H \geq \infty(\log n)$.

Acknowledgments. We wish to thank Prof. A.Perelli for some useful discussions.

2. Outline of the method

Let

$$
Q=\frac{H}{L^{\varepsilon}}, T=\frac{N}{Q} L^{2+\varepsilon} \quad \text { and } \quad K_{H}(n)=\sum_{k \in[n, n+H)} e(-k \alpha),
$$

where $e(x)=\exp (2 \pi i x)$. Let further $\beta+i \gamma$ denote the generic non-trivial zero of $\zeta(s)$,

$$
\begin{aligned}
& S(\alpha)=\sum_{N<m \leq 2 N} \Lambda(m) e(m \alpha), T(\alpha)=\sum_{N<m \leq 2 N} e(m \alpha), \\
& T_{\rho}(\alpha)=\sum_{N<m \leq 2 N} a_{\rho}(m) e(m \alpha), a_{\rho}(m)=\int_{m}^{m+1} t^{\rho-1} d t .
\end{aligned}
$$

Given an interval $I=[a, b] \subset[1 / 2,1]$ we define

$$
\Sigma_{b}(\alpha)=\sum_{\substack{|\gamma| \leq T \\ \beta \in I}} T_{\rho}(\alpha), \quad \Sigma_{g}(\alpha)=\sum_{\substack{|\gamma| \leq T \\ \beta \notin I}} T_{\rho}(\alpha)+\sum_{|\gamma|>T} T_{\rho}(\alpha)+R(\alpha)
$$

where $R(\alpha)$ is defined by difference in the approximation

$$
\begin{equation*}
S(\alpha)=T(\alpha)-\Sigma_{g}(\alpha)-\Sigma_{b}(\alpha) . \tag{3}
\end{equation*}
$$

Subdivide now $\left(-\frac{1}{2}, \frac{1}{2}\right)$ into $O(\log Q)$ subintervals of the following form

$$
A_{0}=\left(-\frac{1}{Q}, \frac{1}{Q}\right), A_{j}=\left(-\frac{1}{2^{j}},-\frac{1}{2^{j+1}}\right] \cup\left[\frac{1}{2^{j+1}}, \frac{1}{2^{j}}\right)
$$

for $j \in[1, K]$, where $K=[\log Q / \log 2]$. Hence we have

$$
\begin{align*}
\sum_{k \in[n, n+H)} R(k) & =\int_{-1 / 2}^{1 / 2} S(\alpha)^{2} K_{H}(\alpha) d \alpha=\int_{-1 / Q}^{1 / Q} S(\alpha)^{2} K_{H}(\alpha) d \alpha \\
& +\sum_{j=1}^{K} \int_{A_{j}} S(\alpha)^{2} K_{H}(\alpha) d \alpha=\Sigma_{1}+\Sigma_{2}, \tag{4}
\end{align*}
$$

say. We will prove that

$$
\begin{gather*}
\Sigma_{1}=\sum_{k \in[n, n+H)} m(k) \mathfrak{S}(k)+\int_{-1 / Q}^{1 / Q} \Sigma_{b}(\alpha)^{2} K_{H}(\alpha) d \alpha+o(H N), \tag{5}\\
\sum_{5_{2}^{2} N<n \leq \frac{7}{2} N}\left|\int_{-1 / Q}^{1 / Q} \Sigma_{b}(\alpha)^{2} K_{H}(\alpha) d \alpha\right|^{2} \ll N^{3} L^{f(\theta)}, \tag{6}\\
\text { and } \\
\Sigma_{2}=o(H N) . \tag{7}
\end{gather*}
$$

We will need also that

$$
\begin{equation*}
\sum_{k \in[n, n+H)} m(k) \mathfrak{S}(k) \gg H N \tag{8}
\end{equation*}
$$

which can be obtained immediately using $\mathfrak{S}(2 k) \gg 1$. Since $\varepsilon>0$ is arbitrarily small, our Theorem follows at once from (4)-(8).

3. Preliminary Lemmas

In the following we will need two auxiliary lemmas.
Lemma 1. Let $N(\sigma, T)$ be the number of zeros $\rho=\beta+i \gamma$ of the Riemann zeta-function such that $|\gamma| \leq T$ and $\beta \geq \sigma$, and let $I \subset[1 / 2,1]$ be an interval. Then

$$
\int_{N}^{2 N}\left|\sum_{\substack{|\gamma| \leq T \\ \beta \in I}} x^{\rho} \frac{(1+Q / x)^{\rho}-1}{\rho}\right|^{2} d x \ll Q^{2} L^{4} \max _{\sigma \in I} N^{2 \sigma-1} N\left(\sigma, \frac{N}{Q}\right) .
$$

The proof of Lemma 1 is standard. It can be obtained using, e.g., Saffari-Vaughan's [15] technique and hence we omit it.

Lemma 2. We have, for $|\gamma| \ll N$ and N sufficiently large, that

$$
T_{\rho}(\alpha) \ll N^{\beta}|\gamma|^{-1 / 2} .
$$

Proof. We follow the line of Perelli [13] and hence we give only a brief sketch of the proof. Since

$$
a_{\rho}(m)=\int_{m}^{m+1} t^{\rho-1} d t=\frac{m^{\rho}}{\rho}\left(\left(1+\frac{1}{m}\right)^{\rho}-1\right),
$$

and, for P sufficiently large but fixed,

$$
\left(1+\frac{1}{m}\right)^{\rho}-1=\sum_{j=1}^{P} \frac{\rho(\rho-1) \cdots(\rho-j+1)}{j!}\left(\frac{1}{m}\right)^{j}+O\left(N^{-11}\right),
$$

we can write

$$
\begin{gathered}
T_{\rho}(\alpha)=T_{\rho, 1}(\alpha)+\sum_{j=2}^{P} \frac{(\rho-1)(\rho-2) \cdots(\rho-j+1)}{j!} T_{\rho, j}(\alpha)+O\left(N^{\beta-10}\right), \\
\text { where } \\
T_{\rho, j}(\alpha)=\sum_{N<m \leq 2 N} m^{\rho-j} e(m \alpha) .
\end{gathered}
$$

From Abel's inequality we have

$$
\left|T_{\rho, j}(\alpha)\right| \ll N^{\beta-j} \max _{N \leq y \leq 2 N}\left|\sum_{N \leq m \leq y} e^{2 \pi i f_{\rho}(\alpha)}\right|,
$$

where $f_{\rho}(\alpha)=\frac{\gamma}{2 \pi} \log n+\alpha n$. We can assume that the maximum is attained at $Y=2 N$, and so, using van der Corput's second derivative method, see Theorem 2.2 of Graham-Kolesnik [5], we get

$$
\begin{equation*}
T_{\rho, j}(\alpha) \ll N^{\beta-j+1}|\gamma|^{-1 / 2} . \tag{10}
\end{equation*}
$$

Lemma 2 now follows inserting (10) in (9).

4. Estimation of Σ_{2}

Letting $S(\alpha)=T(\alpha)+R_{1}(\alpha)$, where $R_{1}(\alpha)$ is defined by difference, and using

$$
\begin{gather*}
K_{H}(\alpha) \ll \min \left(H, \frac{1}{|\alpha|}\right) \quad \text { for every } \quad \alpha \in\left[-\frac{1}{2}, \frac{1}{2}\right] \tag{11}\\
\text { we have } \\
\Sigma_{2} \ll \sum_{j=1}^{K}\left(\int_{A_{j}}|T(\alpha)|^{2}\left|K_{H}(\alpha)\right| d \alpha+\int_{A_{j}}\left|R_{1}(\alpha)\right|^{2}\left|K_{H}(\alpha)\right| d \alpha\right) \\
\ll \sum_{j=1}^{K} 2^{j}\left(\int_{A_{j}}|T(\alpha)|^{2} d \alpha+\int_{A_{j}}\left|R_{1}(\alpha)\right|^{2} d \alpha\right)=\Sigma_{2,1}+\Sigma_{2,2}, \tag{12}\\
T(\alpha) \ll \min \left(N, \frac{1}{|\alpha|}\right) \quad \text { for every } \quad \alpha \in\left[-\frac{1}{2}, \frac{1}{2}\right] \\
\Sigma_{2,1} \ll \sum_{j=1}^{K} 4^{j} \ll 4^{K} \ll Q^{2}=o(H N) . \tag{13}
\end{gather*}
$$

By Gallagher's lemma, see, e.g., Lemma 1.9 of Montgomery [11], and the Brun-Titchmarsh theorem we get

$$
\begin{equation*}
\Sigma_{2,2} \ll \sum_{j=1}^{K} 2^{j} \int_{-2^{-j}}^{2^{-j}}\left|\sum_{N<m \leq 2 N}(\Lambda(m)-1) e(m \alpha)\right|^{2} d \alpha \ll \sum_{j=1}^{K} 2^{-j}\left(J\left(N, 2^{j}\right)+L^{2} 2^{3 j}\right), \tag{15}
\end{equation*}
$$

where $J(N, h)$ is the Selberg integral. Inserting the estimate $J(N, h) \ll h^{2} N+h N L$ for all $h \geq 1$, see the Lemma in Languasco [7], in (15) we have

$$
\begin{equation*}
\Sigma_{2,2} \ll \sum_{j=1}^{K} 2^{-j}\left(2^{3 j} L^{2}+2^{2 j} N+2^{j} N L\right) \ll L^{2} Q^{2}+N Q+N L \log Q=o(H N) . \tag{16}
\end{equation*}
$$

Hence, inserting (14) and (16) in (12), we finally have that (7) holds.

5. Estimation of Σ_{1}

Inserting the identity

$$
S(\alpha)^{2}=\left(2 S(\alpha) T(\alpha)-T(\alpha)^{2}\right)-\Sigma_{g}(\alpha)^{2}-2 T(\alpha) \Sigma_{g}(\alpha)+2 S(\alpha) \Sigma_{g}(\alpha)+\Sigma_{b}(\alpha)^{2}
$$

into the definition of Σ_{1}, we obtain

$$
\begin{gather*}
\Sigma_{1}=\Sigma_{1,1}-\Sigma_{1,2}-\Sigma_{1,3}+\Sigma_{1,4}+\int_{-1 / Q}^{1 / Q} \Sigma_{b}(\alpha)^{2} K_{H}(\alpha) d \alpha \tag{17}\\
\text { where } \\
\Sigma_{1,1}=\int_{-1 / Q}^{1 / Q}\left(2 S(\alpha) T(\alpha)-T(\alpha)^{2}\right) K_{H}(\alpha) d \alpha
\end{gather*}
$$

$$
\begin{gathered}
\Sigma_{1,2}=\int_{-1 / Q}^{1 / Q} \Sigma_{g}(\alpha)^{2} K_{H}(\alpha) d \alpha, \\
\Sigma_{1,3}=\int_{-1 / Q}^{1 / Q} 2 T(\alpha) \Sigma_{g}(\alpha) K_{H}(\alpha) d \alpha \\
\text { and } \\
\Sigma_{1,4}=\int_{-1 / Q}^{1 / Q} 2 S(\alpha) \Sigma_{g}(\alpha) K_{H}(\alpha) d \alpha .
\end{gathered}
$$

In this section we will prove

$$
\begin{gather*}
\Sigma_{1,1}=\sum_{k \in[n, n+H)} m(k) \mathfrak{S}(k)+o(H N) \tag{18}\\
\text { and } \\
\Sigma_{1,2}=o(H N) \tag{19}
\end{gather*}
$$

while the estimation of the mean-square of $\int_{-1 / Q}^{1 / Q} \Sigma_{b}(\alpha)^{2} K_{H}(\alpha) d \alpha$ will be performed in the next section.
Assuming that (19) holds, the contribution of $\Sigma_{1,3}$ and $\Sigma_{1,4}$ can be estimated using the Cauchy-Schwarz inequality and

$$
\begin{equation*}
\int_{-1 / Q}^{1 / Q}|S(\alpha)|^{2} d \alpha \ll N \tag{20}
\end{equation*}
$$

which can be proved using the same argument in the proof of Corollary 3 of
Languasco-Perelli [9]. We obtain

$$
\begin{equation*}
\Sigma_{1,3}=o(H N) \quad \text { and } \quad \Sigma_{1,4}=o(H N) . \tag{21}
\end{equation*}
$$

Hence, by (17)-(19) and (21), we have that (5) holds.
Now we proceed to evaluate $\Sigma_{1,1}$ and $\Sigma_{1,2}$.
Contribution of $\Sigma_{1,1}$
Squaring out we obtain

$$
\int_{-1 / 2}^{1 / 2} T(\alpha)^{2} K_{H}(\alpha) d \alpha=\sum_{k \in[n, n+H)} m(k)
$$

and hence, using (11) and (13), we get
$\int_{-1 / Q}^{1 / Q} T(\alpha)^{2} K_{H}(\alpha) d \alpha=\int_{-1 / 2}^{1 / 2} T(\alpha)^{2} K_{H}(\alpha) d \alpha+O\left(Q^{2}\right)=\sum_{k \in[n, n+H)} m(k)+o(H N)$.
Using the Prime Number Theorem, the Cauchy-Schwarz inequality and arguing analogously, we can write

$$
\begin{equation*}
\int_{-1 / Q}^{1 / Q} S(\alpha) T(\alpha) K_{H}(\alpha) d \alpha=\sum_{k \in[n, n+H)} m^{\prime}(k)+o(H N), \tag{23}
\end{equation*}
$$

$$
m^{\prime}(k)=\sum_{N<m \leq 2 N}^{\text {where }} \Lambda(m) \sum_{\substack{N<h \leq 2 N \\ m+h=k}} 1 .
$$

Again by the Prime Number Theorem, we get

$$
\begin{equation*}
\sum_{k \in[n, n+H)} m(k)=\sum_{k \in[n, n+H)} m^{\prime}(k)+o(H N) \tag{24}
\end{equation*}
$$

and hence, by (22)-(24), we have

$$
\begin{equation*}
\Sigma_{1,1}=\sum_{k \in[n, n+H)} m(k)+o(H N) . \tag{25}
\end{equation*}
$$

Using the Theorem of Languasco [8] and by partial summation, it is easy to prove

$$
\begin{equation*}
\sum_{k \in[n, n+H)} m(k)=\sum_{k \in[n, n+H)} m(k) \mathfrak{S}(k)+o(H N) \quad \text { for } \quad H \geq L^{2 / 3+\varepsilon} . \tag{26}
\end{equation*}
$$

Now (18) follows from (25) and (26).

Contribution of $\Sigma_{1,2}$

Since

$$
\Sigma_{g}(\alpha)^{2} \ll\left|\sum_{\substack{\mid \gamma \gamma \leq T \\ \beta \notin I}} T_{\rho}(\alpha)\right|^{2}+\left|\sum_{|\gamma|>T} T_{\rho}(\alpha)\right|^{2}+|R(\alpha)|^{2},
$$

we have

$$
\begin{equation*}
\Sigma_{1,2} \ll A_{1}+A_{2}+A_{3}, \tag{27}
\end{equation*}
$$

where

$$
\begin{gathered}
A_{1}=\int_{-1 / Q}^{1 / Q}\left|\sum_{\substack{|\gamma| \leq T \\
\beta \notin I}} T_{\rho}(\alpha)\right|^{2}\left|K_{H}(\alpha)\right| d \alpha, \\
A_{2}=\int_{-1 / Q}^{1 / Q}\left|\sum_{\substack{|\gamma|>T \\
\text { and }}} T_{\rho}(\alpha)\right|^{2}\left|K_{H}(\alpha)\right| d \alpha \\
A_{3}=\int_{-1 / Q}^{1 / Q}|R(\alpha)|^{2}\left|K_{H}(\alpha)\right| d \alpha .
\end{gathered}
$$

Using (11) and Gallagher's lemma, we obtain

$$
\begin{align*}
A_{1} & \ll \frac{H}{Q^{2}}\left(\int_{N}^{2 N}\left|\sum_{x<m<x+Q} \sum_{\substack{|\gamma| \leq T \\
\beta \notin I}} a_{\rho}(m)\right|^{2} d x+\int_{N-Q}^{N}\left|\sum_{N<m<x+Q} \sum_{\substack{|\gamma| \leq T \\
\beta \notin I}} a_{\rho}(m)\right|^{2} d x\right. \\
& \left.+\int_{2 N-Q}^{2 N}\left|\sum_{x<m \leq 2 N} \sum_{\substack{|\gamma| \leq T \\
\beta \notin I}} a_{\rho}(m)\right|^{2} d x\right)=A_{1,1}+A_{1,2}+A_{1,3}, \tag{28}
\end{align*}
$$

say. Interchanging summation and integration in $A_{1,1}$, we get

$$
\begin{align*}
A_{1,1} & \ll \frac{H}{Q^{2}} \int_{N}^{2 N}\left|\int_{[x]+1}^{[x+Q]} \sum_{\substack{|\gamma| \leq T \\
\beta \notin I}} t^{\rho-1} d t\right|^{2} d x \\
& \ll \frac{H}{Q^{2}} \int_{N}^{2 N}\left|\left(\int_{x}^{x+Q}-\int_{x}^{[x]+1}-\int_{[x+Q]}^{x+Q}\right) \sum_{\substack{|\gamma| \leq T \\
\beta \notin I}} t^{\rho-1} d t\right|^{2} d x \tag{29}
\end{align*}
$$

To bound the contribution of the integral on $[x,[x]+1]$ in (29), we argue as follows.
Interchanging summation and integration, we get

$$
\int_{N}^{2 N}\left|\int_{x}^{[x]+1} \sum_{\substack{|\gamma| \leq T \\ \beta \notin I}} t^{\rho-1} d t\right|^{2} d x \ll \sum_{N<n \leq 2 N} \int_{n}^{n+1}\left|\sum_{\substack{|\gamma| \leq T \\ \beta \notin I}} x^{\rho} \frac{((n+1) / x)^{\rho}-1}{\rho}\right|^{2} d x
$$

and then, using $\frac{((n+1) / x)^{\rho}-1}{\rho} \ll \min \left(\frac{1}{N}, \frac{1}{|\gamma|}\right)$, we have

$$
\begin{equation*}
\int_{N}^{2 N}\left|\int_{x}^{[x]+1} \sum_{\substack{|\gamma| \leq T \\ \beta \notin I}} t^{\rho-1} d t\right|^{2} d x \ll L^{4} \max _{\sigma \notin I} N^{2 \sigma-1} N\left(\sigma, \frac{N}{Q}\right) . \tag{30}
\end{equation*}
$$

To estimate the integral on $[[x+Q], x+Q]$ in (29) we proceed analogously and hence we get

$$
\begin{equation*}
\int_{N}^{2 N}\left|\int_{[x+Q]}^{x+Q} \sum_{\substack{\gamma \mid \leq T \\ \beta \notin I}} t^{\rho-1} d t\right|^{2} d x \ll L^{4} \max _{\sigma \notin I} N^{2 \sigma-1} N\left(\sigma, \frac{N}{Q}\right) \tag{31}
\end{equation*}
$$

Now we treat the integral on $[x, x+Q]$ in (29). Proceeding as above we obtain

$$
\begin{align*}
\int_{N}^{2 N} & \left|\int_{x}^{x+Q} \sum_{\substack{|\gamma| \leq T \\
\beta \notin I}} t^{\rho-1} d t\right|^{2} d x \ll \int_{N}^{2 N}\left|\sum_{\substack{|\gamma| \leq T \\
\beta \notin I}} x^{\rho} \frac{(1+Q / x)^{\rho}-1}{\rho}\right|^{2} d x \tag{32}\\
& \ll Q^{2} L^{4} \max _{\sigma \notin I} N^{2 \sigma-1} N\left(\sigma, \frac{N}{Q}\right),
\end{align*}
$$

where the last inequality follows by Lemma 1 .
Choosing, in the definition of the interval I,

$$
\begin{equation*}
a=\frac{1+3 \theta}{2}-l \frac{\log L}{L} \quad \text { and } \quad b=\frac{5-3 \theta}{6}+k \frac{\log L}{L}, \tag{33}
\end{equation*}
$$

where $l>\frac{27(1-\theta)}{2(1-3 \theta)}$ and k is a sufficiently large constant, we have, using Ingham-Huxley's density estimate, see, e.g., Ivić [6], and (29)-(33), that

$$
\begin{equation*}
A_{1,1} \ll H L^{4} \max _{\sigma \notin I} N^{2 \sigma-1} N\left(\sigma, \frac{N}{Q}\right)=o(H N) \tag{34}
\end{equation*}
$$

Interchanging summation and integration in $A_{1,2}$, we get

$$
A_{1,2} \ll \frac{H}{Q^{2}} \int_{N-Q}^{N}\left|\sum_{\substack{|\gamma| \leq T \\ \beta \notin I}} x^{\rho} c_{\rho, Q}\right|^{2} d x,
$$

where $c_{\rho, Q}=\left(\left(\frac{[x+Q]}{x}\right)^{\rho}-\left(\frac{N}{x}\right)^{\rho}\right) / \rho$. Splitting the summation according to $|\gamma| \leq N / Q$ and $N / Q \leq|\gamma| \leq T$ and using $c_{\rho, Q} \ll \min \left(\frac{Q}{N}, \frac{1}{|\gamma|}\right)$, we obtain

$$
\begin{aligned}
A_{1,2} & \ll \frac{H}{Q^{2}}\left(\frac{Q^{2}}{N^{2}} \int_{N-Q}^{N}\left|\sum_{\substack{|\gamma| \leq N / Q \\
\beta \notin I}} x^{\beta}\right|^{2} d x+\int_{N-Q}^{N}\left|\sum_{\substack{N / Q \leq|\gamma| \leq T \\
\beta \notin I}} \frac{x^{\beta}}{|\gamma|}\right|^{2} d x\right) \\
& \ll H Q L^{4} \max _{\sigma \notin I} N^{2 \sigma-2} N\left(\sigma, \frac{N}{Q}\right)^{2} .
\end{aligned}
$$

Using Ingham-Huxley's density estimate, we see that the maximum is attained at $\sigma=1 / 2$ and hence we can write

$$
\begin{equation*}
A_{1,2} \ll H Q L^{4} N^{-1}\left(\frac{N}{Q}\right)^{2} L^{2}=\frac{H N L^{6}}{Q}=o(H N) \tag{35}
\end{equation*}
$$

$A_{1,3}$ can be bounded following the lines of the estimation of $A_{1,2}$. We have

$$
\begin{equation*}
A_{1,3}=o(H N) \tag{36}
\end{equation*}
$$

Inserting (34) and (35)-(36) in (28) we obtain

$$
\begin{equation*}
A_{1}=o(H N) \tag{37}
\end{equation*}
$$

Now we proceed to estimate A_{2}. By (11) we get

$$
\begin{equation*}
A_{2} \ll H \int_{-1 / Q}^{1 / Q}\left|\sum_{N<m \leq 2 N} \sum_{|\gamma|>T} a_{\rho}(m) e(m \alpha)\right|^{2} d \alpha . \tag{38}
\end{equation*}
$$

Using (38), Gallagher's lemma and the explicit formula for $\psi(x)$, see equations (9)-(10) in ch. 17 of Davenport [3], we have

$$
\begin{equation*}
A_{2} \ll \frac{H}{Q^{2}} \int_{N-Q}^{2 N} \frac{N^{2} L^{4}}{T^{2}} d x \ll \frac{H N^{3}}{Q^{2} T^{2}} L^{4}=o(H N) \tag{39}
\end{equation*}
$$

To bound A_{3} we use (11), Gallagher's lemma and the explicit formula for $\psi(x)$, see equation (1) in ch. 17 of Davenport [3]. Hence

$$
\begin{align*}
A_{3} & \ll \frac{H}{Q^{2}} \int_{N-Q}^{2 N}\left|\sum_{\substack{x<m<x+Q \\
N<m \leq 2 N}}\left(\Lambda(m)-1+\sum_{\rho} a_{\rho}(m)\right)\right|^{2} d x \tag{40}\\
& \ll \frac{H}{Q^{2}} \int_{N-Q}^{2 N} L^{4} d x \ll \frac{H N L^{4}}{Q^{2}}=o(H N) .
\end{align*}
$$

Now (19) follows inserting (37) and (39)-(40) in (27).

6. Mean-square estimate of $\Sigma_{b}(\alpha)^{2}$

Squaring out and using the definition of $\Sigma_{b}(\alpha)$, we get

$$
\begin{aligned}
\sum_{\frac{5}{2} N<n \leq \frac{7}{2} N} & \left|\int_{-1 / Q}^{1 / Q} \Sigma_{b}(\alpha)^{2} K_{H}(\alpha) d \alpha\right|^{2} \\
& =\sum_{\frac{5}{2} N<n \leq \frac{7}{2} N} \int_{-1 / Q}^{1 / Q}\left(\sum_{\substack{|\gamma| \leq T \\
\beta \in I}} T_{\rho}(\alpha)\right)^{2} K_{H}(\alpha) d \alpha \int_{-1 / Q}^{1 / Q}\left(\sum_{\substack{\left|\gamma^{\prime}\right| \leq T \\
\beta^{\prime} \in I}} T_{\bar{\rho}^{\prime}}(\delta)\right)^{2} \overline{K_{H}}(\delta) d \delta \\
& \ll \int_{-1 / Q}^{1 / Q}\left|\sum_{\substack{|\gamma| \leq T \\
\beta \in I}} T_{\rho}(\alpha)\right|^{2} \int_{-1 / Q}^{1 / Q}\left|\sum_{\substack{\mid \gamma^{\prime} \leq T \\
\beta^{\prime} \in I}} T_{\bar{\rho}^{\prime}}(\delta)\right|^{2}\left|\sum_{\frac{5}{2} N<n \leq \frac{7}{2} N} K_{H}(\alpha) \overline{K_{H}}(\delta)\right| d \delta d \alpha=\Sigma_{3},
\end{aligned}
$$

say. Since $K_{H}(\alpha)=\frac{\sin \pi H \alpha}{\sin \pi \alpha} e\left(\frac{1-H}{2} \alpha\right) e(-n \alpha)$, we have

$$
\begin{equation*}
\Sigma_{3} \ll H^{2} \int_{-1 / Q}^{1 / Q}\left|\sum_{\substack{|\gamma| \leq T \\ \beta \in I}} T_{\rho}(\alpha)\right|^{2}\left(\int_{-1 / Q}^{1 / Q}\left|\sum_{\substack{\left|\gamma^{\prime}\right| \leq T \\ \beta^{\prime} \in I}} T_{\bar{\rho}^{\prime}}(\delta)\right|^{2} K_{N}(\alpha-\delta) d \delta\right) d \alpha, \tag{42}
\end{equation*}
$$

where $K_{N}(t)=\sum_{\frac{5}{2} N<n \leq \frac{7}{2} N} e(-n t) \ll \min \left(N, \frac{1}{|t|}\right)$.
Using the latest estimate and (42), we obtain

$$
\begin{aligned}
\Sigma_{3} & \ll H^{2} N \int_{-1 / Q}^{1 / Q}\left|\sum_{\substack{|\gamma| \leq T \\
\beta \in I}} T_{\rho}(\alpha)\right|^{2}\left(\int_{\left(-\frac{1}{Q}, \frac{1}{Q}\right) \cap\left(\alpha-\frac{1}{N}, \alpha+\frac{1}{N}\right)}\left|\sum_{\substack{\left|\gamma^{\prime}\right| \leq T \\
\beta^{\prime} \in I}} T_{\bar{\rho}^{\prime}}(\delta)\right|^{2} d \delta\right) d \alpha \\
& +H^{2} \int_{-1 / Q}^{1 / Q}\left|\sum_{\substack{|\gamma| \leq T \\
\beta \in I}} T_{\rho}(\alpha)\right|^{2}\left(\int_{\left(-\frac{1}{Q}, \frac{1}{Q}\right) \backslash\left(\alpha-\frac{1}{N}, \alpha+\frac{1}{N}\right)}\left|\sum_{\substack{\gamma^{\prime} \mid \leq T \\
\beta^{\prime} \in I}} T_{\bar{\rho}^{\prime}}(\delta)\right|^{2} \frac{1}{|\alpha-\delta|} d \delta\right) d \alpha \\
& =\Sigma_{3,1}+\Sigma_{3,2},
\end{aligned}
$$

say. Using (3) and arguing as in section 6 , we get

$$
\begin{equation*}
\int_{-1 / Q}^{1 / Q}\left|\sum_{\substack{|\gamma| \leq T \\ \beta \in I}} T_{\rho}(\alpha)\right|^{2} d \alpha \ll \int_{-1 / Q}^{1 / Q}|S(\alpha)|^{2} d \alpha+O(N) \ll N, \tag{44}
\end{equation*}
$$

where the latest inequality follows from (20).
Now, inserting (44) in $\Sigma_{3,1}$, we have

$$
\begin{align*}
\Sigma_{3,1} & \ll H^{2} N^{2}\left(\max _{\alpha \in(-1 / Q, 1 / Q)} \int_{\left(-\frac{1}{Q}, \frac{1}{Q}\right) \cap\left(\alpha-\frac{1}{N}, \alpha+\frac{1}{N}\right)}\left|\sum_{\substack{\left|\gamma^{\prime}\right| \leq T \\
\beta^{\prime} \in I}} T_{\bar{\rho}^{\prime}}(\delta)\right|^{2} d \delta\right) \tag{45}\\
& \ll H^{2} N\left(\max _{\delta \in(-1 / Q, 1 / Q)}\left|\sum_{\substack{|\alpha| \leq T \\
\beta \in I}} T_{\rho}()\right|^{2}\right) .
\end{align*}
$$

To bound $\Sigma_{3,2}$, we argue as for $\Sigma_{3,1}$ and we can prove that the bound in (45) holds, with an extra L factor, for $\Sigma_{3,2}$ too. Finally, by (41), (43), (45) and the above remark, we obtain

$$
\begin{equation*}
\sum_{\frac{5}{2} N \leq n \leq \frac{7}{2} N}\left|\int_{-1 / Q}^{1 / Q}\left(\sum_{\substack{|\gamma| \leq T \\ \beta \in I}} T_{\rho}(\alpha)\right)^{2} K_{H}(\alpha) d \alpha\right|^{2} \ll H^{2} N L\left(\max _{\delta \in(-1 / Q, 1 / Q)}\left|\sum_{\substack{|\gamma| \leq T \\ \beta \in I}} T_{\rho}(\delta)\right|^{2}\right) \tag{46}
\end{equation*}
$$

Using Lemma 2 and a standard argument to bound sums over zeros of $\zeta(s)$, we have

$$
\begin{align*}
\sum_{\substack{|\gamma| \leq T \\
\beta \in I}} T_{\rho}(\delta) & \ll L^{2}\left(\max _{\substack{\sigma \in I \\
\sigma<7 / 9}} N^{\sigma} \max _{|t| \leq T} N(\sigma, t)|t|^{-1 / 2}+\max _{\substack{\sigma \in I \\
\sigma \geq 7 / 9}} N^{\sigma} \max _{|t| \leq T} N(\sigma, t)|t|^{-1 / 2}\right) \\
& \ll L^{2}\left(\max _{\substack{\sigma \in I \\
\sigma<7 / 9}} N^{\sigma} N(\sigma, T) T^{-1 / 2}+\max _{\substack{\sigma \in I \\
\sigma \geq 7 / 9}} N^{\sigma}\right) . \tag{47}
\end{align*}
$$

By Ingham-Huxley's density estimate, we have that the first maximum is attained at $\sigma=a$ and the second at $\sigma=b$. Hence, by (46) and (47), we see that (6) holds.

References

[1] N.Chudakov - On Goldbach's problem - Dokl. Akad. Nauk SSSR 17 (1937), 331334.
[2] J.G.van der Corput - Sur l'hypothésé de Goldbach - Proc. Akad. Wet Amsterdam 41 (1938), 76-80.
[3] H.Davenport - Multiplicative Number Theory - 2-nd ed., Springer Verlag 1980.
[4] T.Estermann - On Goldbach's problem: Proof that almost all even positive integers are sums of two primes - Proc. Lon. Math. Soc. (2) 44 (1937), 307-314.
[5] S.W.Graham, G.Kolesnik - Van de Corput's method of Exponential Sums - Cambridge U.P. 1991.
[6] A.Ivić - The Riemann Zeta-function - J.Wiley 1985.
[7] A.Languasco - A note on primes and Goldbach numbers in short intervals - Acta Math. Hungar. 79 (1998), 191-206.
[8] A.Languasco - A singular series average and Goldbach numbers in short intervals - Acta Arith. 83 (1998), 171-179.
[9] A.Languasco, A.Perelli - On Linnik's theorem on Goldbach numbers in short intervals and related problems - Ann. Inst. Fourier 44 (1994), 307-322.
[10] H.Mikawa - On the intervals between consecutive numbers that are sums of two primes - Tsukuba J. Math. 17 (1993), 443-453.
[11] H.L.Montgomery - Topics in Multiplicative Number Theory - Springer L.N. 227, 1971.
[12] H.L.Montgomery, R.C.Vaughan - The exceptional set in Goldbach's problem Acta Arith. 27 (1975), 353-370.
[13] A.Perelli - Local problems with primes, I - J. reine angew. Math. 401 (1989), 209-220.

12 ON THE ASYMPTOTIC FORMULA FOR GOLDBACH NUMBERS IN SHORT INTERVALS
[14] A.Perelli - Goldbach numbers represented by polynomials - Rev. Mat. Iberoamer. 12 (1996), 477-490.
[15] B.Saffari, R.C.Vaughan - On the fractional parts of x / n and related sequences II - Ann. Inst. Fourier 27 (1977), 1-30.

Danilo Bazzanella
Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi 24
10129 Torino, Italy
e-mail : bazzanella@polito.it

Alessandro Languasco
Dipartimento di Matematica Pura e Applicata
Università di Padova
Via Belzoni 7
35131 Padova, Italy
e-mail : languasco@math.unipd.it

[^0]: Original Citation:
 Bazzanella D., Languasco A. (2000). On the asymptotic formula for Goldbach numbers in short intervals. In: STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, vol. 36 n. 1-2, pp. 185199. - ISSN 0081-6906

 Availability:
 This version is available at : http://porto.polito.it/1397857/ since: March 2009
 Publisher:
 Akadémiai Kiadó
 Published version:
 DOI:10.1556/SScMath.36.2000.1-2.14
 Terms of use:
 This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved") , as described at http://porto. polito.it/terms_and_conditions. html
 Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters.

[^1]: * Research supported by a postdoctoral grant from the University of Genova.
 ${ }^{1}$ This version does not contain journal formatting and may contain minor changes with respect to the published version. The final publication is available at http://dx.doi.org/10.1556/SScMath.36.2000.1-2.14. The present version is accessible on PORTO, the Open Access Repository of Politecnico di Torino (http://porto.polito.it), in compliance with the Publisher's copyright policy as reported in the SHERPA-ROMEO website: http://www.sherpa.ac.uk/romeo/issn/0081-6906/

